四旋翼飞行器论文(原理图+程序)

合集下载

电子设计大赛四旋翼设计报告最终版

电子设计大赛四旋翼设计报告最终版

四旋翼飞行器〔A 题〕参赛队号:20140057号四旋翼飞行器设计摘要:四旋翼作为一种具有构造特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进展机动,构造简单,易于控制,且能执行各种特殊、危险任务等特点。

因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。

多旋翼无人机飞行原理上比拟简单,但涉及的科技领域比拟广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。

四旋翼无人机的飞行控制技术是无人机研究的重点之一。

它使用直接力矩,实现六自由度〔位置与姿态〕控制,具有多变量、非线性、强耦合和干扰敏感的特性。

此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。

因此,研究既能准确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。

一、引言:1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。

四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。

在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。

以往做的核心板较大,所需的电路较多,考虑到四轴飞行器的轻便,故而不太是一个很理想的选择。

方案二:主控板使用STM32。

STM32板子的I/O口很多,自带定时器和多路PWM,可以实现的功能较多,符合实验要求。

Stm32迷你板在体积和重量上也不是很大,对飞机的载重量要求不是很高。

综上所述,我们一致决定使用STM32 MMC10作为此次大学生电子竞赛的主控板。

2.2 飞行姿态的方案论证:方案一:十字飞行方式。

四轴的四个电机以十字的方式排列,*轴和y轴成直角,调整俯仰角和翻滚角的时候分开调整,角度融合简单,适合初学者,能明确头尾,飞行时机体动作精准,飞控起来也容易。

毕业论文基于ARM的四旋翼自主飞行控制系统设计

毕业论文基于ARM的四旋翼自主飞行控制系统设计

2016 南阳理工学院本科生毕业设计论文学院系电子与电气工程学院专业电子信息工程学生指导教师完成日期南阳理工学院本科生毕业设计论文基于ARM的四旋翼自主飞行控制系统设计Autonomous control system for the quadrotor unmannedaerial vehicle based on ARM processors总计毕业设计论文25 页表格0 个插图20 幅3 南阳理工学院本科毕业设计论文基于ARM的四旋翼自主飞行控制系统设计Autonomous controlsystem for the quadrotor unmanned aerial vehicle based on ARM processors学院系电子与电气工程学院专业电子信息工程学生姓名学号指导教师职称评阅教师完成日期南阳理工学院Nanyang Institute of Technology4基于ARM的四旋翼自主飞行控制系统设计[摘要]针对改变传统以单片机为处理器的四旋翼自主控制飞行器控制方式的问题设计了一种基于嵌入式ARM的飞行控制系统的设计和实现方案。

这是一种基于ARM的低成本、高性能的嵌入式微小无人机飞行控制系统的整体方案。

详细介绍了控制系统的总体构成以及硬软件设计方案包括传感器模块、视屏采集模块、系统核心控制功能模块、无线通信模块、地面控制和数据处理模块。

实验结果表明该设计结合嵌入式实时操作系统保证了系统的高可靠性和高实时性能满足飞行器起飞、悬停、降落等飞行模态的控制要求。

[关键词]ARM四旋翼自主飞行器控制系统。

Autonomous control system for the quadrotor unmannedaerial vehicle based on ARM processors Abstract In order to change the conventional control of four—rotor unmanned aerial vehicles using microcontroller as the processor a solution of flightcontrol system based on embedded ARM was presented which is low-cost,small volume, low power consumption and high performance. The purpose ofthe work is for attending the National Aerial Robotics Competition. The mainfunction of the system the hardware structure and the software design werediscussed in detail including the sensor module the motor module the wirelesscommunication module With embedded real time operating system to ensurethe system’s high reliability and real-time performance the experiments resultsshow that the requirements of flight mode are satisfied including taking ofhovering and landing and so onKey words ARM four-rotor unmanned aerial vehicles control system5 of the control signals 1 四旋翼飞行器的简介 1.1题目综述微型飞行器MicroAir Vehicle/MAV的概念最早是在上世纪九十年代由美国国防部远景研究局DARPA提出的。

四旋翼无人机设计

四旋翼无人机设计
2.2 四旋翼无人机工作原理 ....................................................................................... 4
3 四旋翼无人机硬件系统设计 ......................................................................................... 9
3.1 微惯性组合系统传感器组成 ............................................................................... 9
3.1.1 MEMS 陀螺仪传感器................................................................................ 9
3.4.2 电机和电机驱动模块 ............................................................................. 12
3.4.3 机架和螺旋桨的选型 ............................................................................. 13
4.1.2 PID 控制算法设计 ................................................................................... 17
5 飞行器试验 ................................................................................................................... 19IIFra bibliotek目 录

四旋翼飞行器设计与控制方法研究

四旋翼飞行器设计与控制方法研究

四旋翼飞行器设计与控制方法研究目录目录摘要........................................................................................................................... (I)Abstract............................................................................................................... .............................................III 1绪论. (1)1.1课题研究背景和意义 (1)1.2国内外研究与发展现状 (1)1.3论文的主要内容 (3)2四旋翼飞行器动力学模型 (5)2.1四旋翼飞行器原理 (5)2.2旋翼空气动力学特性 (5)2.2.1旋翼的相对气流与速度系数 (5)2.2.2诱导速度 (6)2.2.3旋翼的力矩与空气动力 (8)2.3四旋翼飞行器空气动力学模型 (10)2.3.1坐标描述及其转换关系 (10)2.3.2动力学方程的建立 (12)2.3.3模型简化 (14)2.4本章小结 (14)3四旋翼飞行器硬件设计 (15)3.1系统总体规划 (15)3.2飞行控制系统设计 (16)3.2.1主控芯片 (16)3.2.2姿态传感器 (17)3.2.3超声波传感器 (18)3.2.4GPS模块 (18)3.2.5无线通信芯片 (19)3.3地面站设计 (20)3.3.1地面站主控芯片 (20)3.3.2电源设计 (21)3.3.3遥控装置 (21)3.4本章小结 (22)4四旋翼飞行器的GPS定位 (23)4.1GPS定位原理 (23)4.1.1GPS信号的数据模型 (23)4.1.2C/A码定位原理 (24)4.1.3GPS的主要误差 (24)4.1.4GPS输出数据协议说明 (25)4.2坐标系转换 (28)4.2.1空间大地坐标系 (28)4.2.2空间直角坐标系 (29)4.2.3坐标转换 (29)4.3数据分析 (31)4.4本章小结 (33)I西安理工大学硕士学位论文5飞行姿态解算 (35)5.1飞行器姿态的四元数表示 (35)5.2姿态解算算法 (36)5.2.1梯度下降法 (37)5.2.2互补滤波融合 (39)5.3本章小结 (40)6基于PID算法的四旋翼飞行器控制系统设计 (41) 6.1控制问题 (41)6.1.1被控对象 (41)6.1.2飞控系统的工作原理 (41)6.2四旋翼飞行器控制系统设计 (42)6.2.1四旋翼飞行器控制算法 (42)6.2.2姿态控制 (44)6.2.3高度控制 (45)6.3飞行状态数据采集及处理 (45)6.3.1传感器数据预处理 (45)6.3.2飞行器状态数据采集与保存 (46)6.4实验结果及分析 (48)6.4.1测试对比 (48)6.4.2测试结果分析 (51)6.5本章小结 (54)7总结与展望 (55)7.1全文总结 (55)7.2研究展望 (55)致谢 (57)参考文献 (59)附录 (63)在校学习期间发表的论文、获奖 (65)II绪论1绪论1.1课题研究背景和意义近年来,随着计算机、信息技术及自动化技术的发展,无人驾驶飞行器以它高机动性、战场威慑大、执行任务多样复杂、生存能力强,具有避免人员伤亡、多种作战能力和隐身特性等优势【1】,引起了军队、科学家和搜救组织的关注,成为全世界航天研究领域的重要方向之一。

动态系统建模(四旋翼飞行器仿真)实验报告-

动态系统建模(四旋翼飞行器仿真)实验报告-

动态系统建模(四旋翼飞行器仿真)实验报告:动态系统建模(四旋翼飞行器仿真)实验报告院(系)名称大飞机班学号学生姓名任课教师2021年 _月四旋翼飞行器的建模与仿真一、实验原理 I.四旋翼飞行器简介四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。

四个旋翼位于一个几何对称的十字支架前、后、左、右四端,如图1-1所示。

旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。

在图1-1中,前端旋翼1 和后端旋翼3 逆时针旋转,而左端旋翼2 和右端的旋翼4 顺时针旋转,以平衡旋翼旋转所产生的反扭转矩。

由此可知,悬停时,四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。

图1-1 四旋翼飞行器旋翼旋转方向示意图从动力学角度分析,四旋翼飞行器系统本身是不稳定的,因此,使系统稳定的控制算法的设计显得尤为关键。

由于四旋翼飞行器为六自由度的系统(三个角位移量,三个线位移量),而其控制量只有四个(4 个旋翼的转速),这就意味着被控量之间存在耦合关系。

因此,控制算法应能够对这种欠驱动(under-actuated)系统足够有效,用四个控制量对三个角位移量和三个线位移量进行稳态控制。

本实验针对四旋翼飞行器的悬浮飞行状态进行建模。

II.飞行器受力分析及运动模型(1)整体分析如图1-2所示,四旋翼飞行器所受外力和力矩为:Ø重力mg,机体受到重力沿-Zw方向Ø四个旋翼旋转所产生的升力Fi(i=1,2,3,4),旋翼升力沿ZB方向Ø旋翼旋转会产生扭转力矩Mi (i=1,2,3,4), Mi垂直于叶片的旋翼平面,与旋转矢量相反。

图1-2 四旋翼飞行器受力分析(2)电机模型Ø力模型(1.1)旋翼通过螺旋桨产生升力。

四旋翼飞行器PID控制器的设计

四旋翼飞行器PID控制器的设计
第 2 章 四旋翼飞行器动力学模型的建立 ................................................... ..5 2.1 四旋翼飞行器机械结构和控制原理 .................................................. 5 2.1.1 机械结构 ................................................................................... 5 2.1.2 控制原理 ................................................................................... 6 2.2 坐标系定义及方向余弦矩阵 .............................................................. 9 2.3 系统模型建立 .................................................................................... 13 2.3.1 直流电机的数学模型 ............................................................. 13 2.3.2 运动学方程 ............................................................................. 15 2.3.3 动力学方程 ............................................................................. 15 2.3.4 系统非线性模型 ..................................................................... 18 2.3.5 简化的非线性动力学模型 ..................................................... 19 2.4 本章小结 ............................................................................................ 20

(完整版)基于单片机的微型四旋翼飞行器毕业设计论文

(完整版)基于单片机的微型四旋翼飞行器毕业设计论文

[摘要]本文对微型四旋翼飞行器自平衡算法进行研究,详细分析了应用互补滤波器,进行信号处理的思路和参数整定过程,应用滤波后的数据,进行飞行器姿态角度融合,解算出飞行器实时的俯仰角、翻滚角、偏航角。

在解算出飞行姿态角度的基础上应用PID算法控制四旋翼飞行器进行自平衡悬停及相关的运动姿态控制。

硬件上,采用STM32F103作为微控制器,以MPU6050作为四旋翼飞行器姿态传感器件,通过AO3402MOS管驱动四个空心杯电机改变飞行器姿态,设计结果是能准确测量飞行器姿态并将测量角度输出给相应坐标的电机,进行姿态调整。

本文将从硬件、软件初始化、控制算法及调试等几个篇幅详细展示整个微型四旋翼飞行器的制作过程。

[关键词] 微型四旋翼飞行器;互补滤波算法;PD控制算法;STM32F103;自平衡Abstract: This paper is a research about algorithm of Quadrotor Micro-aircraft Self-balancing. It will detailed analysis the idea about using Complementary filter deal with the digital signals and the basis of flying-Angle using PID algorithm controlling Quadrotor Micro-aircraft achieves the self-balancing control. Hardware uses STM32F103 as micro controller, with MPU6050 as attitude sensor of Quadrotor Micro-aircraft, through AO3402MOS tube driving four result can accurately measure spacecraft attitude and output the measuring Angle to the corresponding coordinates of the motor and realize the attitude adjustment. This article will show the whole production process of the Quadrotor Micro-aircraft in detail from the , control algorithm, debug and so on.Key words: Micro four rotor aircraft;Complementary filter;PD control algorithm; STM32F103;Self-balancing目录1 绪论............................................................................................................................1.1 本课题的研究意义及必要性 ............................................................................1.2 相关领域国内外研究现状及发展趋势 ............................................................1.3论文篇幅简介 .....................................................................................................2 四旋翼飞行器系统分析 ...............................................................................................2.1系统基本原理 .....................................................................................................2.2系统功能要求 .....................................................................................................2.3 系统可行性分析 ................................................................................................3 四旋翼飞行器总体设计 ...............................................................................................3.1 功能模块划分 ....................................................................................................3.2 系统模块设计图 ................................................................................................3.3 系统流程图.........................................................................................................3.4 开发工具和开发框架介绍 ................................................................................3.4.1 Altium Designer 6.9介绍........................................................................3.4.2 Keil for ARM介绍 ..................................................................................3.4.3 Serial_Digital_Scope V2介绍 ................................................................4 四旋翼飞行器详细方案设计 .......................................................................................4.1 硬件模块的功能及设计 ....................................................................................4.1.1 最小系统板STM32F103模块 ..............................................................4.1.2 低压差电源模块 .....................................................................................4.1.3 倾角传感器模块 .....................................................................................4.1.4 空心杯电机驱动模块 .............................................................................4.1.5 NRF24L01无线模块...............................................................................4.2 驱动程序功能及设计 ........................................................................................4.2.1 最小系统板初始化 .................................................................................4.2.2 MPU6050初始化 ....................................................................................4.2.3 NRF24L01初始化...................................................................................4.2.4 空心杯电机驱动初始化 .........................................................................5 四旋翼飞行器控制算法实现 .......................................................................................5.1角度及角速度数据处理算法 .............................................................................5.1.1 互补滤波器可行性分析 .........................................................................5.1.2 互补滤波器算法软件实现 .....................................................................5.2姿态控制算法 .....................................................................................................5.2.1 PID控制算法可行性分析.......................................................................5.2.2 PID控制算法软件实现...........................................................................5.2.3 多维度控制量输出融合算法 .................................................................6 四旋翼飞行器综合调试 ...............................................................................................6.1基本功能实现 .....................................................................................................6.1.1 姿态角度数据采集功能 .........................................................................6.1.2 四旋翼飞行器遥控功能 .........................................................................6.1.3 电机多维度矢量输出功能 .....................................................................6.2高级功能实现 .....................................................................................................6.2.1 姿态角度数据融合功能 .........................................................................6.2.2 四旋翼飞行器自平衡飞行功能 .............................................................结束语............................................................................................................................致谢..................................................................................................................................参考文献............................................................................................................................附录A 部分代码..............................................................................................................1 绪论1.1 本课题的研究意义及必要性信息时代,微电子技术及惯性传感器件的不断进步,使自平衡算法实现成为可能。

毕业设计论文——基于模糊PID算法的小型四旋翼无人飞行器控制系统设计

毕业设计论文——基于模糊PID算法的小型四旋翼无人飞行器控制系统设计

摘要四旋翼飞行器是一种四螺旋桨驱动的、可垂直起降的飞行器,这种结构被广泛用于微小型无人飞行器的设计,可以应用到航拍、考古、边境巡逻、反恐侦查等多个领域,具有重要的军用和民用价值。

四旋翼飞行器同时也具有欠驱动、多变量、强耦合、非线性和不确定等复杂特性,对其建模和控制是当今控制领域的难点和热点话题。

本次设计对小型四旋翼无人直升机的研究现状进行了细致、广泛的调研,综述了其主要分类、研究领域、关键技术和应用前景,然后针对圆点博士的四旋翼飞行器实际对象,对其建模方法和控制方案进行了初步的研究。

首先,针对四旋翼飞行器的动力学特性,根据欧拉定理以及牛顿定律建立四旋翼无人直升机的动力学模型,并且考虑了空气阻力、转动力矩对于桨叶的影响,建立了四旋翼飞行器的物理模型;根据实验数据和反复推算,建立系统的仿真状态方程;在Matlab环境下搭建了四旋翼飞行器的非线性模型。

选取四旋翼飞行器的姿态角作为控制对象,借助Matlab模糊工具箱设计了模糊PID控制器并依据专家经验编辑了相应的模糊规则;通过仿真和实时控制验证了控制方案的有效性,并在此控制方案下采集到了输入输出数据;利用单片机编写模糊PID算法控制程序,实现对圆点博士四旋翼飞行器实物的姿态控制。

本设计同时进行了Matlab仿真和实物控制设计,利用模糊PID算法,稳定有效的对四旋翼飞行器的姿态进行了控制。

关键词:四旋翼飞行器;模糊PID;姿态控制ⅠAbstractQuadrotor UA V is a four propeller driven, vertical take-off and landing aircraft, this structure is widely used in micro mini unmanned aerial vehicle design and can be applied to multiple areas of aerial, archaeology, border patrol, anti-terrorism investigation, has important military and civil value.Quadrotor UA V is a complicated characteristic of the complicated characteristics such as the less drive, the multi variable, the strong coupling, the nonlinear and the uncertainty, and the difficulty and the hot topic in the control field.Research status of the design of small quadrotor UA V were detailed and extensive research, summarized the main classification, research areas, key technology and application prospect of and according to Dr. dot quadrotor actual object, the modeling method and control scheme were preliminary study.First, for the dynamic characteristics of quadrotor UA V, dynamic model of quadrotor UA V is established according to the theorem of Euler and Newton's laws, and consider the air resistance and rotation torque for the effects of blade, the establishment of the physical model of the quadrotor UA V; root according to experimental data and repeated calculation, the establishment of system simulation equation of state; under the MATLAB environment built the nonlinear model of the quadrotor UA V Select the attitude of the quadrotor angle as the control object, with the help of matlab fuzzy toolbox to design the fuzzy PID controller and according to experience of experts to edit the corresponding fuzzy rules; through the simulation and real-time control verify the effectiveness of the control scheme, and this control scheme under the collection to the data input and output; written by SCM fuzzy PID control algorithm, dots, Quad rotor UA V real attitude control. The design of the Matlab simulation and the physical control design, the use of fuzzy PID algorithm, the stability of the four rotor aircraft attitude control.Keywords:Quadrotor UA V;F uzzy PID;Attitude controlⅡ目录摘要(中文) (Ⅰ)摘要(英文) (Ⅱ)第一章概述 (1)1.1 课题背景及意义 (1)1.2 四旋翼飞行器的研究现状 (2)1.3 四旋翼飞行器的关键技术 (5)1.3.1 数学模型 (6)1.3.2 控制算法 (6)1.3.3 电子技术 (6)1.3.4 动力与能源问题 (6)1.4 本文主要内容 (6)1.5本章小结 (7)第二章四旋翼飞行器的运动原理及数学模型 (7)2.1四旋翼飞行器简介 (7)2.2 四旋翼飞行器的运动原理 (8)2.2.1 四旋翼飞行器高度控制 (8)2.2.2 四旋翼飞行器俯仰角控制 (9)2.2.3 四旋翼飞行器横滚角控制 (9)2.2.4 四旋翼飞行器偏航角控制 (10)2.3四旋翼飞行器的数学模型 (11)2.3.1坐标系建立 (11)2.3.2基于牛顿-欧拉公式的四旋翼飞行器动力学模型 (12)2.4 本章小结 (15)第三章四旋翼飞行器姿态控制算法研究 (15)3.1模糊PID控制原理 (15)3.2 姿态稳定回路的模糊PID控制器设计 (16)3.2.1 构建模糊PID控制器步骤 (17)3.2.2 基于Matlab的姿态角控制算法的仿真 (22)3.3 本章小结 (25)第四章四旋翼飞行器飞行控制系统软件设计 (25)4.1 模糊PID控制算法流程图 (25)4.2 系统实验及结果分析 (26)4.3 本章小结 (27)第五章总结与展望 (28)5.1 总结 (28)5.2 展望 (28)参考文献 (28)第一章概述有史以来,人类一直有一个梦想,那就是可以像蓝天上自由翱翔的鸟儿一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 四旋翼自主飞行器控制算法设计
2.1 四旋翼飞行器动力学模型 设计的小型四旋翼飞行器适用于室内低速飞行,因此忽略空气阻力的影响。因此,简化 后的飞行器动力学模型为
x u4 (sin cos cos sin sin ) / m y u4 (sin cos sin sin cos ) / m z (u4 cos sin mg ) / m u l / I 1 X u2 l / I Y u3 / I Z
-2-
所以选择直流无刷电机作为动力源。
1.3 电机驱动方案的选择与论证
方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻 网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机 的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调 整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命 较 短、可靠性不高。 方案三:采用全桥驱动 PWM 电路。这种驱动的优点是使管子工作在占空比可调的开关状 态,提高使用效率实现电机转速的微调。并且保证了可以简单的方式实现方向控制。 基于上述理论分析,选择方案三。
式中 [ x
式 1-1
y
z ]T 为四旋翼飞行器在导航坐标系下的线位移, [ x y z ]T 为运动加速度,m
为飞行器质量, , , 分别为机体的偏航角、俯仰角和横滚角,l 为旋翼面中心到四旋翼飞行 器质心的距离,I X , IY , I Z 为轴向惯性主矩。该动力学模型对四旋翼飞行器的真实飞行状态进 行了合理的简化,忽略了空气阻力等对系统运行影响较小的参数,使得飞行控制算法更加简 洁。 2.2 PID 控制算法结构分析 在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个控制回路,即位置
1.2 电机的选择与论证
四旋翼无人飞行器是通过控制四个不同无刷直流电机的转速,达到控制四旋翼无人飞行 器的飞行姿态和位置,与传统直升机通过控制舵机来改变螺旋桨的桨距角,达到控制直升机 的目的不同。在电机的选型上,主要有直流有刷电机和直流无刷电机两种。 方案一:直流有刷电机是当前普遍使用的一种直流电机,它的驱动电路简单、控制方法 成熟,但是直流有刷电机使用电刷进行换向,换向时电刷与线圈触电存在机械接触,电机长 时间高速转动使极易因磨损导致电气接触不良等问题,而且有刷电机效率低、力矩小、重量 大,不适合对功率重量比敏感的电动小型飞行器。 方案二:直流无刷电机能量密度高、力矩大、重量轻,采用非接触式的电子换向方法, 消除了电刷磨损,较好地解决了直流有刷电机的缺点,适用于对功率重量比敏感的用途,同 时增强了电机的可靠性。
控制器的原理,设 k p , ki , kd 分别为比例项、积分项和微分项系数,有
x d ) x k p ( x xd ) ki ( x xd )dt kd ( x y d ) y k p ( y yd ) ki ( y yd )dt kd ( y x k p ( z zd ) ki ( z zd )dt kd ( z zd )
本文来自 /PVTe8Q
更详细信息请登陆阅读


1 系统方案论证与控制方案的选择............................................................................................. - 2 1.1 地面黑线检测传感器............................................................................................................. - 2 1.2 电机的选择与论证................................................................................................................. - 2 1.3 电机驱动方案的选择与论证................................................................................................. - 3 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 2.2 PID 控制算法结构分析.......................................................................................................... - 3 3 硬件电路设计与实现................................................................................................................. - 5 3.1 飞行控制电路设计.................................................................................................................. - 5 3.2 电源模块................................................................................................................................. - 6 3.3 电机驱动模块......................................................................................................................... - 6 3.4 传感器检测模块..................................................................................................................... - 7 4 系统的程序设计......................................................................................................................... - 8 5 测试与结果分析......................................................................................................................... - 9 5.1 测试设备................................................................................................................................. - 9 5.2 测试结果................................................................................................................................. - 9 6 总结........................................................................................................................................... - 10 附录 A 部分程序清单.................................................................................................................. - 11 -
其中, xd , yd , zd 为航姿参考系统测量到的加速度积分得到的位移量。
-3-
控制回路和姿态控制回路。算法结构如图 B-1 所示。
给 定 位 置
xyz

பைடு நூலகம்位置控制 姿 态 控 制 电机控制
姿态控制回路 位置控制回路 图 2-1 四旋翼飞行器控制算法结构图
飞 行 器 机 体
使用经典 PID 控制算法实现位置控制回路和姿态控制回路。PID 算法简单可靠,理论体 系完备,而且在长期的应用过程中积攒了大量的使用经验,在飞行器位置和姿态控制应用中 具有良好的控制效果和较强的鲁棒性,能提供控制量的较优解。 控制回路包含了 x, y, z 三个控制量,因此设计 3 个独立的 PID 控制器对位移进行控制。根据 PID
四旋翼自主飞行器(B 题)
摘要
系统以 R5F100LE 作为四旋翼自主飞行器控制的核心, 由电源模块、 电机调速控制模块、 传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器 检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF 模块,瑞萨 MCU 综合飞行器模 块和传感器检测模块的信息,通过控制 4 个直流无刷电机转速来实现飞行器的欠驱动系统飞 行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个 PID 控制回路,即 位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确 控制,具有平均速度快、定位误差小、运行较为稳定等特点。
相关文档
最新文档