人教版八年级下《18.2.2矩形的判定》练习含答案
矩形的性质与判定2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)

18.2.1矩形的性质与判定矩形的定义:有一个角是直角的平行四边形叫做矩形.注意:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分. (2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.题型1:理解矩形的性质1.矩形具有而平行四边形不一定具有的性质是()A.两组对边分别相等B.对角线相等C.两组对边分别平行题型2:利用矩形的性质判定三角形全等2.如图,在矩形ABCD中,连接对角线AC、BD,将△ABC沿BC方向平移,使点B移到点C,得到△DCE.求证:△ACD≌△EDC.【分析】由矩形的性质得出AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,得出AD=EC,由SAS即可得出结论;【解答】证明:∵四边形ABCD是矩形,∴AB=DC,AC=BD,AD=BC,∠ADC=∠ABC=90°,由平移的性质得:DE=AC,CE=BC,∠DCE=∠ABC=90°,DC=AB,∴AD=EC,在△ACD和△EDC中,,∴△ACD≌△EDC(SAS);【变式2-1】已知:如图,在矩形ABCD中,E为AD上一点,EF⊥CE,交AB于点F,DE=2,矩形的周长为16,且CE=EF.求AE的长.【分析】由题意可证△AEF≌△ECD,可得AE=CD,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE的长度.【解答】解:∵四边形ABCD为矩形,∴∠A=∠D=90°∵EF⊥CE∴∠CEF=90°∴∠CED+∠AEF=90°∵∠CED+∠DCE=90°∴∠DCE=∠AEF∵CE=EF,∠A=∠D,∠DCE=∠AEF∴△AEF≌△DCE∴AE=DC由题意可知:2(AE+DE+CD)=16 且DE=2∴2AE=6∴AE=3【变式2-2】如图,在矩形ABCD中,点E是CD边上的中点.求证:AE=BE.【分析】利用矩形的性质证得△ADE≌△BCE后即可证得结论.【解答】证明:∵四边形ABCD是矩形,∴AD=BC,∠D=∠C=90°,∵E为CD边上的中点,∴DE=CE,∴△ADE≌△BCE(SAS),∴AE=BE.题型3:矩形的性质与求角度3.如图,四边形ABCD和四边形AEFG都是矩形.若∠BAG=20°,则∠DGF等于()A.70°B.60°C.80°D.45°【分析】由矩形的性质可得∠EAG=∠DAB=90°,CD∥AB,即可求解.【解答】解:∵四边形ABCD和四边形AEFG都是矩形.∴∠FGA=∠DAB=90°,CD∥AB,∴∠DGA=∠BAG=20°,∴∠DGF=90°﹣∠DGA=90°﹣20°=70°.故选:A.【变式3-1】用两把完全相同的长方形直尺按如图方式摆放,一把直尺压住射线OB交射线OA于点M,另一把直尺压住射线OA交第一把直尺于点P,作射线OP.若∠BOP=28°,则∠AMP的大小为()A.46°B.52°C.56°D.62°【分析】由长方形直尺可得MP∥OB,再根据作图过程可知OP平分∠AOB,进而可得∠AMP的度数.【解答】解:∵OP平分∠AOB,∴∠MOB=2∠BOP=56°,由长方形直尺可知:MP∥OB,∴∠AMP=∠MOB=56°,故选:C.【变式3-2】如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠E=70°,则∠BAC的度数是()A.40°B.45°C.50°D.60°【分析】连接BD,交AC于O,由矩形的性质得∠ABC=90°,OA=OC=AC,OB=OD=BD,AC =DB,则OA=OB,得∠BAC=∠OBA,再证BE=BD,由等腰三角形的性质得∠BDE=∠E=70°,则∠DBE=50°,即可求解.【解答】解:连接BD,交AC于O,如图:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=AC,OB=OD=BD,AC=DB,∴OA=OB,∴∠BAC=∠OBA,∵BE=AC,∴BE=BD,∴∠BDE=∠E=70°,∴∠DBE=180°﹣70°﹣70°=40°,∴∠BAC=∠OBA=90°﹣40°=50°,故选:C.题型4:矩形的性质与求线段4.如图,矩形ABCD中,对角线AC,BD交于点O,若∠AOB=60°,BD=8,则DC长为()A.4B.4C.3D.5【分析】由矩形对角线性质可得AO=BO,又∠AOB=60°,可证△OAB为等边三角形,得DC=AB,即可得解.【解答】解:由矩形对角线相等且互相平分可得AO=BO==4,即△OAB为等腰三角形,又∠AOB=60°,∴△OAB为等边三角形.故AB=BO=4,∴DC=AB=4.故选:B.【变式4-1】如图,矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点,若MN=3,则BD =12.【分析】根据中位线的性质求出BO长度,再依据矩形的性质BD=2BO进行求解.【解答】解:∵M、N分别为BC、OC的中点,∴BO=2MN=6.∵四边形ABCD是矩形,∴BD=2BO=12.故答案为12.【变式4-2】如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长是18.【分析】由矩形的性质得出∠ABC=90°,CD=AB=6,BC=AD=8,由勾股定理求出AC,由直角三角形斜边上的中线性质得出BP,证明PE是△ACD的中位线,由三角形中位线定理得出PE=CD=3,四边形ABPE的周长=AB+BP+PE+AE,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD=AB=6,BC=AD=8,∴AC==10,∴BP=AC=5,∵P是矩形ABCD的对角线AC的中点,E是AD的中点,∴AE=AD=4,PE是△ACD的中位线,∴PE=CD=3,∴四边形ABPE的周长=AB+BP+PE+AE=6+5+3+4=18;故答案为:18.题型5:矩形性质综合5.如图,点P是矩形ABCD的对角线上一点,过点P作EF∥BC,分别交AB,CD于E,F,连接PB,PD,若AE=1,PF=3,则图中阴影部分的面积为()A.3B.6C.9D.12【分析】由矩形的性质可证明S△PEB=S△PFD,即可求解.【解答】解:作PM⊥AD于M,交BC于N.如图:则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×1×3=,∴S阴=+=3,故选:A.【变式5-1】如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形.(2)若AD=4,AB=2,且MN⊥AC,则DM的长为.【分析】(1)在矩形ABCD中,O为对角线AC的中点,可得AD∥BC,AO=CO,可以证明△AOM≌△CON可得AM=CN,进而证明四边形ANCM为平行四边形;(2)根据MN⊥AC,可得四边形ANCM为菱形;根据AD=4,AB=2,AM=AN=NC=AD﹣DM,即可在Rt△ABN中,根据勾股定理,求出DM的长.【解答】(1)证明:在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.故答案为.【变式5-2】如图,已知矩形ABCD,延长CB至点E,使得BE=BC,对角线AC,BD交于点F,连结EF.(1)求证:四边形AEBD是平行四边形;(2)若BC=4,CD=8,求EF的长.【分析】(1)由矩形的性质可得AD∥BC,AD=BC=BE,可得结论;(2)由矩形的性质可得FB=FC=FD,可证FG是△BCD的中位线,在Rt△EFG中,由勾股定理可求EF的长.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BC=BE,∴AD∥BE,AD=BE,∴四边形AEBD是平行四边形;(2)过点F作FG⊥BC于点G,∵四边形ABCD是矩形,∴FB=FC=FD,∴G是BC的中点,∴FG是△BCD的中位线,∴.在Rt△EFG中,FG=4,EG=6,∴.题型6:直角三角形斜边中线等于斜边的一半6.直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6B.6.5C.10D.13【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故选:B.【变式6-1】如图,在△AEC、△BED中,∠AEC=∠BED=90°,AC、BD相交于点O,且O是AC、BD 的中点.求证:四边形ABCD是矩形.【分析】连接EO,首先根据O为BD和AC的中点,在Rt△AEC中EO=AC,在Rt△EBD中,EO=BD,进而得到AC=BD,再根据对角线相等的平行四边形是矩形可证出结论.【解答】证明:连接EO,∵O是AC、BD的中点,∴AO=CO,BO=DO,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.【变式6-2】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得EM=MC=BC,MF=MB=BC,然后根据根据等腰三角形的判定定理即可得到结论;(2)根据等边对等角求出∠ABC=∠MFB,∠ACB=∠MEC,再根据三角形的内角和定理求出∠BMF,∠EMC,然后利用平角等于180°列式计算得出∠EMF.【解答】(1)证明:∵CF⊥AB于F,M为BC的中点,∴ME=BC,同理MF=BC,∴EM=FM,∴△MEF是等腰三角形;(2)解:∵MF=MB,∴∠ABC=∠MFB=50°,同理∠ACB=∠MEC=60°,∴∠BMF=180°﹣50°﹣50°=80°,∠EMC=180°﹣60°﹣60°=60°,∴∠FME=180°﹣80°﹣60°=40°.【变式6-3】如图,BD是△ABC的角平分线,点E在边AB上,且DE∥BC,AE=BE.(1)若BE=5,求DE的长;(2)求证:AB=BC.【分析】(1)根据角平分线的定义得到∠ABD=∠CBD,根据平行线的性质得到∠BDE=∠DBC,求得∠EBD=∠EDB,根据等腰三角形的判定定理得到DE=BE=5;(2)根据等腰三角形的性质得到∠A=∠ADE,根据三角形的内角和定理得到∠ADB=90°,根据全等三角形的性质即可得到结论.【解答】(1)解:∵BD是△ABC的角平分线,∴∠ABD=∠CBD,∵DE∥BC,∴∠BDE=∠DBC,∴∠EBD=∠EDB,∴DE=BE=5;(2)证明:由(1)知,BE=DE,∵AE=BE,∴∠A=∠ADE,∵∠EBD=∠EDB,∠A+∠ABD+∠ADE+∠BDE=180°,∴∠ADE+∠BDE=×180°=90°,∴∠ADB=90°,∴BD⊥AC,在△ABD与△CBD中,,∴△ABD≌△CBD(SAS),∴AB=BC.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形(对角线互相平分且相等).3.有三个角是直角的四边形是矩形.注意:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形. 题型7:矩形的判定(三直角)7.已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE是矩形.【分析】由在△ABC中,AB=AC,AD是BC边的中线,可得AD⊥BC,∠BAD=∠CAD,又由AN为△ABC的外角∠CAM的平分线,可得∠DAE=90°,又由CE⊥AN,即可证得:四边形ADCE为矩形.【解答】证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE∥AD,∴∠AEC=90°,∴四边形ADCE为矩形.【变式7-1】如图,平行四边形ABCD的四个内角的平分线分别相交于点E、F、G、H,求证:四边形EFGH 是矩形.【分析】利用三个内角等于90°的四边形是矩形,即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵BH,CH分别平分∠ABC与∠BCD,∴∠HBC=∠ABC,∠HCB=∠BCD,∴∠HBC+∠HCB=(∠ABC+∠BCD)=×180°=90°,∴∠H=90°,同理∠HEF=∠F=90°,∴四边形EFGH是矩形.【变式7-2】如图,在平行四边形ABCD中,AE,BF,CN,DM分别是∠DAB,∠ABC,∠BCD,∠CDA 的角平分线,且相交于点O,K,H,G,求证:四边形HGOK是矩形.【分析】首先根据平行四边形的性质可得∠DAB+∠ABC=180°,再根据角平分线的性质可得∠GAB+∠GBA=(∠DAB+∠ABC)=×180°=90°,然后同理可得:∠OKH=90°,∠KHG=90°,∠HGO =90°,根据三个角是直角的四边形是矩形可得四边形GHKL是矩形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∵AE,BF分别平分∠DAB,∠ABC,∴∠GAB+∠GBA=(∠DAB+∠ABC)=×180°=90°.∴∠GOK=90°,同理:∠OKH=90°,∠KHG=90°,∴∠HGO=90°,∴四边形KHGO是矩形.题型8:矩形的判定(平行四边形+一个直角)8.如图,在△ABC中,D,E,F分别是边BC,AB,AC的中点,当∠BAC=90°时,想一想,四边形AEDF是什么特殊的四边形?证明你的结论.【分析】根据三角形的中位线定理得到四边形AEDF的两边分别平行,根据平行四边形的定义,可知四边形AEDF是平行四边形,又∠BAC=90°,根据矩形的定义,可知四边形AEDF是矩形;【解答】解:∵D,E,F分别是边BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵∠BAC=90°,∴四边形AEDF是矩形;【变式8-1】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AE平分∠BAC的外角,DE∥AB 交AE于点E.试说明四边形ADCE是矩形.【分析】首先利用外角性质得出∠B=∠ACB=∠F AE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.【解答】证明:如图所示:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠F AE=∠EAC,∵∠B+∠ACB=∠F AE+∠EAC,∴∠B=∠ACB=∠F AE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵AB=AC,AD⊥BC,∴BD=CD,∠ADC=90°,∴AE平行且等于CD,∴四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.【变式8-2】如图,在四边形ABCD中,AC⊥BD,EF∥AC∥HG,EH∥BD∥FG,求证:四边形EFGH是矩形.【分析】首先根据已知条件“EF∥AC∥HG,EH∥BD∥FG”推知四边形EFGH是平行四边形,然后由AC⊥BD可以证得平行四边形EFGH是矩形.【解答】证明:∵EF∥AC∥HG,EH∥BD∥FG,∴EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,又∵AC⊥BD,∴EF⊥FG,∴四边形EFGH是矩形.题型9:矩形的判定(平行四边形+对角线相等)9.如图,在▱ABCD中对角线AC,BD相交于点O,∠1=∠2,试判断四边形ABCD的形状,并证明你的结论.【分析】先由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分得出AC=2OC,BDE=2OB,再由∠1=∠2,根据等角对等边得出OC=OB,那么AC=BD,根据对角线相等的平行四边形是矩形得出▱ABCD是矩形.【解答】解:四边形ABCD是矩形,理由如下:∵四边形ABCD是平行四边形,∴AC=2OC,BDE=2OB,∵∠1=∠2,∴OC=OB,∴AC=BD,∴▱ABCD是矩形.【变式9-1】如图,已知▱ABCD中,E,F分别在边BC,AD上,且BE=DF,AC,EF相交于O,连接AE,CF.(1)求证:AE=CF;(2)若∠FOC=2∠OCE,求证:四边形AECF是矩形.【分析】(1)只要证明四边形AECF是平行四边形即可解决问题;(2)只要证明AC=EF即可解决问题.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF=CE,AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.(2)∵∠FOC=∠OEC+∠OCE=2∠OCE,∴∠OEC=∠OCE,∴OE=OC,∵四边形AECF是平行四边形,∴OA=OC,OE=OF,∴AC=EF,∴四边形AECF是矩形.【变式9-2】如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2MO.求证:四边形AMCN是矩形.【分析】由平行四边形的性质可得OA=OC,OB=OD,可得OM=ON,可证四边形AMCN是平行四边形,通过证明MN=AC,可得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵MO=NO,∵AC=2MO,∴MN=AC,∴四边形AMCN是矩形.【变式9-3】如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.【分析】(1)由平行四边形的性质得出AD=CB,AD∥BC,证明△DEA≌△BFC(AAS),由全等三角形的性质得出AE=CF;(2)根据平行四边形的性质得出OA=OC,OB=OD,由矩形的判定方法解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.题型10:矩形的判定综合10.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)已知∠ADE=60°,若AD=3,求DE的长度.【分析】(1)由平行四边形的性质得到DC∥AB,DC=AB,进而得到DF=BE且DF∥BE,根据平行四边形的判定得到四边形DFBE是平行四边形,由DE⊥AB可得结论;(2)根据直角三角形的边角关系可求DE的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴DF=BE且DF∥BE,∴四边形DFBE是平行四边形.又∵DE⊥AB,∴∠DEB=90°,∴四边形DFBE是矩形;(2)解:∵∠ADE=60°,DE⊥AB,∴∠DAE=30°,又∵AD=3,∴DE=AD=,【变式10-1】如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,菱形ABCD的周长是4,求菱形ABCD的面积.【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,∵四边形ABCD是菱形,∴AB=AD=CD=BC,∵菱形ABCD的周长是4,∴CD=,∴OC==2,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.【变式10-2】如图,在平行四边形ABCD中,P是AB上一点(不与点A,B重合),CP=CD,过点P作PQ⊥CP,交AD于点Q,连接CQ,∠BPC=∠AQP.(1)求证:四边形ABCD是矩形;(2)当AP=3,AD=9时,求AQ和CQ的长.【分析】(1)证出∠A=90°即可得到结论;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=9﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL),∴DQ=PQ,设AQ=x,则DQ=PQ=9﹣x,在Rt△APQ中,AQ2+AP2=PQ2,∴x2+32=(9﹣x)2,解得:x=4,∴AQ的长是4.设CD=AB=CP=y,则PB=y﹣3,在Rt△PCB中,根据勾股定理列方程,求出y=15.在Rt△CDQ中,CQ==5.【变式10-3】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=1,∠A=60°,求DE的长.【分析】(1)先求出四边形CDBE是平行四边形,再根据矩形的判定推出即可;(2)求出AB长,再根据勾股定理求出BC,即可求出DE.【解答】(1)证明:∵CD⊥AB,BE⊥AB,∴∠CDB=90°,CD∥BE,∵CD=BE,∴四边形CDBE是平行四边形,∵∠CDB=90°,∴四边形CDBE是矩形;(2)解:∵在Rt△ABC中,∠ACB=90°,AC=1,∠A=60°,∴∠ABC=30°,∴AB=2AC=2,由勾股定理得:BC==,∵四边形CDBE是矩形,∴DE=BC=.word可编辑文档。
人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。
八年级数学下册第十八章平行四边形18.2矩形同步练习含解析新版新人教版

八年级数学下册第十八章平行四边形18.2矩形同步练习含解析新版新人教版18.2矩形测试卷一.选择题(每题3分,共30分)1.如图,矩形ABCD 中,AB=3,BC=5,过对角线交点O 作OE⊥AC 交AD 于点E ,则AE 的长是()A.1.6B.2.5C.3D.3.42.如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD3.如图,在△ABC 中,∠ACB=90°,CD⊥AB,垂足为D ,点E 是AB 的中点,CD=DE=a ,则AB 的长为()A.2aB.22aC.3aD.334 a4.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为()A.310 B.4C.4.5D.55.如图所示,把矩形OABC 放入平面直角坐标系中,点B 坐标为(10,8),点D 是OC 上一动点,将矩形OABC 沿直线BD 折叠,点C 恰好落在OA 上的点E 处,则点D 的坐标是()A.(59-,512) B.(512-,59) C.(516-,512)D.(-512,516)6.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线,看是否相等B.测量两条对角线,看是否互相平分C.用曲尺测量门框的三个角,看是否都是直角D.用曲尺测量对角线,看是否相互垂直7.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.52cmC.5.5cmD.1cm8.下列说法错误的是()A.矩形的对角线互相平分B.有一个角是直角的四边形是矩形C.矩形的对角线相等D.有一个角是直角的平行四边形叫做矩形9.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需要添加的条件是()A.AO=OCB.AC=BDC.AC⊥BDD.BD平分∠ABC10.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°二.填空题(每小题3分,共24分)11.如图,在□ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB,请你添加一个条件,使四边形DBCE是矩形.12.如图,四边形ABCD是矩形,则∠BAD=度,∠ABC=度,∠BCD=度,∠ADC=度.13.如图,在Rt△ABC中,∠ACB=90°,若AB=6,D是AB的中点,则CD= .14.如图,在Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD=.15.如图,在□ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.①∠DCF=21∠BCD;②EF=CF;③S △BEC =2S △CEF ;④∠DFE=3∠AEF.16.四边形ABCD 中,AD∥B C ,∠D=90°,如果再添加一个条件,可以得到四边形ABCD 是矩形,那么可添加的条件是 .(不再添加线或字母,写出一种情况即可)17.如图,在Rt△ABC 中,∠ABC=90°,AC=10cm ,点D 为AC 的中点,则BD= cm.18.如图,四边形ABCD 是平行四边形,若∠A= 90°,则四边形ABCD 是矩形.【矩形的判定(定义法)】有一个角是的四边形叫做矩形.解答题(共66分)19.如图,□ABCD 的四个内角的平分线分别交于点E ,G ,F ,H.求证:四边形EFGH 为矩形.20.如图,在梯形ABCD 中,AD=31BC ,E ,F 两点在边BC 上,AD∥BC,AB∥DE,AF∥DC. (1)求证:四边形AEFD 是平行四边形;(2)当AB=DC 时,求证:□AEFD 是矩形.21.如图,矩形ABCD的对角线AC、BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点.求证:四边形EFGH是矩形.22.如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.23.题干长与宽之比为2:1的矩形纸片称为标准纸,请思考并解答下列问题:(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸,请给予证明.(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB <BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上的点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上的点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是不是标准纸,请说明理由.(3)不难发现:将一张标准纸按如图3所示的方式一次又一次对开后,所得的矩形纸片都是标准纸,现有一张标准纸ABCD,AB=1,BC=2,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2018次对开后所得标准纸的周长.24.如图,O是矩形ABCD的对角线AC与BD的交点,E,F,G,H分别是AO,BO,CO,DO上的点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.解答题(共34分)25.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形,请加以证明.人教版八年级下册18.2矩形测试卷一.选择题1.答案:D.解:连结CE.设AE=x,则DE=5-x.∵四边形ABCD为矩形,∴AO=CO,∠CDE=90°.∵EO⊥AC,AO=CO,∴EO所在直线为线段AC的垂直平分线,∴EC=AE=x.∵∠CDE=90°,CD=3,DE=5-x,EC=x,∴(5-x)2+32= x2解得x=3.4.则AE的长为3.4.故选D.2.答案:D.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形.∵AC=BD,四边形ABCD是平行四边形,∴四边形ABCD是矩形.故选D.3.答案:B.解:∵CD⊥AB,CD=DE=a,∴CE=2a.∵点E是AB的中点,∠ACB=90°,∴BE=AE=CE=2a,∴AB=22a.故选B.4.答案:D.解:∵四边形ABCD是矩形,∴BC=AD=6,AB=CD=9,∵点C′是AD边的中点,BC=6,∴DC′=3.由折叠的性质可知,C′F=CF.在Rt△C′DF中,DF2+DC′2=C′F2,即CF2+9=(9-CF)2,解得CF=5.故选D.5.答案:C.解:∵折痕BD是四边形DEBC的对称轴,∴在Rt△ABE中,BE=BC=10,AB=8,AE=BE2?AB2=6,∴OE=4,在Rt△DOE中,DO2+OE2=DE2,∵DE=CD,∴(8-CD)2+42=CD2,∴CD=5,则OD=OC-CD=8-5=3,∴D(0,3).故选C.6.答案:C.解:A,两条对角线相等的四边形可能是等腰梯形,故错误;B,两条对角线互相平分的四边形是平行四边形,故错误;C,利用三个角是直角的四边形是矩形,正确;D,两条对角线互相垂直的四边形可能是菱形,故错误.故选C.7.答案:A.解:根据题意易知最长折痕为长方形对角线的长,根据勾股定理可知,对角线的长为62+52=61≈7.8cm,因此折痕长不可能为8cm.故选A.8.答案:B.解:A.矩形的对角线互相平分,正确;B.直角梯形有一个角是直角,但不是矩形,错误;C.矩形的对角线相等,正确;D.有一个角是直角的平行四边形是矩形,正确.故选B.9.答案:B.解:∵四边形ABCD是平行四边形,∵添加AC=BD,∴四边形ABCD是矩形.故选B.10.答案:A.解:连接AC,如图:∵四边形ABCD是距形,∴AD∥BE,AC=BD,且∠BDA=∠DAC=38°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A.填空题11.答案:DC=EB(答案不唯一).解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC.∵AD=DE,∴DE=BC.∵DE∥BC,DE=BC,∴四边形DBCE为平行四边形.所以根据对角线相等的平行四边形是矩形,我们可以添加一个条件即DC=EB.12.答案:90;90;90;90.解:∵四边形ABCD是矩形,∴∠BAD=90度,∠ABC=90度,∠BCD=90度,∠ADC=90度.13.答案:3.解:∵D是AB的中点,∴CD是Rt△ABC的斜边AB的中线,∴CD=12AB=3.14.答案:35°.解:∵∠ABC=90°,D为AC的中点,∴BD=AD=DC,∴∠ABD=∠A,∵∠C=55°,∴∠A=90°-55°=35°,∴∠ABD=35°.15.答案:①②④.解:①∵F是AD的中点,∴AF=FD.∵在平行四边形ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF.∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故结论①正确.延长EF,交CD的延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF.∵F为AD中点,∴AF=FD.在△AEF和△DFM中,{∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF,∴FE=FM,∠AEF=∠M.∵CE⊥AB.∴∠AEC=90°,∴∠AEC=∠ECD=90°.∵FM=EF,∠ECD=90°,∴EF=CF,故②正确;③∵EF=FM,∴S△EFC=S△CFM.∵MC>BE,∴S△ECM>S△BEC.∵S△ECM=S△EFC+S△CFM,S△EFC=S△CFM,∴S△BEC<2S△EFC.故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x.∵∠AEF=90°-x,∴∠DFE=3∠AEF,故结论④正确.综上可知,一定成立的是①②④.16.答案:本题答案不唯一,如AB∥CD或AD=BC.解:答案不唯一,可添加AB∥CD.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,又∵∠D=90°,∴四边形ABCD是矩形.17答案:5.解:∵D是斜边AC的中点,∴BD是Rt△ABC斜边上的中线,∴BD=12×AC=5.故答案为5.18.答案:直角;平行.解:有一个角是直角的平行四边形叫做矩形.解答题(题5分,共15分)19.证明:∵ 四边形ABCD是平行四边形,∴BC∥AD,AB∥CD,∴∠BAD+∠ABC=180°,∠ABC+∠BCD=180°.又∵□ABCD的四个内角的平分线分别交于点E,F,G,H,∴∠BAF+∠ABF=90°,∠GBC+∠GCB=90°,∴ ∠GFE=∠AFB=90°,∠G=90°,同理可证∠GHE=90°,∠E=90°,∴ 四边形EFGH为矩形.20.证明:(1)∵AD∥BC,AB∥DE,∴四边形ABED是平行四边形,∴BE=AD=13BC,同理,FC=AD=13BC,∴E F=BC-BE-FC=13BC,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形.(2)∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF,∴平行四边形AEFD是矩形.21.证明:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∵E、F、G、H分别是OA、OB、OC、OD的中点,∴AE=OE,OG=CG,OF=BF,OH=DH,∴OE=OG,OF=OH,EG=FH.∵OE=OG,OF=OH,∴四边形EFGH是平行四边形,又∵EG=FH,∴四边形EFGH是矩形.22.解:当点O运动到AC的中点(或OA=OC)时,四边形AECF 是矩形.证明:∵CE平分∠BCA,∴∠1=∠2.又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO.同理,FO=CO,∴EO=FO.又∵OA=OC,∴四边形AECF是平行四边形.∵CF是∠BCA的外角平分线,∴∠4=∠5.∵∠1=∠2,∴∠1+∠5=∠2+∠4.又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.23.(1)证明:∵矩形纸片ABCD是标准纸,且AB<BC,∴BCAB=2.由对开的含义知:AF=12BC,∴ABAF=ABBC2=2ABBC=22=2,∴矩形纸片ABEF也是标准纸.(2)解:是标准纸.理由如下:设AB=CD=a,由图形折叠可知DN=CD=DG=a,DG⊥EM,△ABE≌△AFE,∴∠DAE=12∠BAD=45 °,∴△ADG是等腰直角三角形,∴在Rt△ADG中,AD=AG2+DG2=2a,∴ADAB=2,∴矩形纸片ABCD是一张标准纸.(3)解:第一次,周长为:2(1+122)=2+2,第二次,周长为:2(12+122)=1+2,第三次,周长为:2(12+142)=1+22,第四次,周长为:2(14+142)=1+22,第五次,周长为:2(14+182)=2+24,第六次,周长为:2(18+182)=1+24,∴第5次对开后所得标准纸的周长是:2+24,第2018次对开后所得标准纸的周长为:1+221008.24.证明:∵四边形ABCD是矩形,∴AC=BD,AO=BO=CO=DO.∵AE=BF=CG=DH,∴OE=OF=OG=OH,∴四边形EFGH是平行四边形.∵OE+OG=FO+OH即EG=FH,∴四边形EFGH是矩形.解答题(共34分)25.(1)证明:∵AE=CD,EC=DA,AC=AC,∴△DCA≌△EAC.(2)添加AB∥CD(答案不唯一).理由如下:∵BA=DC,AB∥CD,∴四边形ABCD是平行四边形.∵CE⊥AE,∴∠E=90°.∵△DCA≌△EAC,∴∠D=∠E=90°,∴平行四边形ABCD是矩形.。
人教版八年级下册数学第18章18.2.2矩形的判定习题课件

精彩一题 12.【中考·兰州】阅读下面材料:
在数学课上,老师请同学们思考如下问题:如图①,我 们把一个四边形ABCD的四边中点E,F,G,H依次连 接起来得到的四边形EFGH是平行四边形吗? 小敏在思考问题时,有如下思路:连接AC.
精彩一题 结合小敏的思路作答: (1)若只改变图①中四边形ABCD的形状(如图②),
习题链接
提示:点击 进入习题
1
相等;相等;互相平 分
2D
6A 7C
3 见习题
4
平行四边形;直角; 四边形
8 见习题 9A
5C
10 见习题
答案显示
习题链接 11 见习题 12 见习题
答案显示
新知基本功
1.对角线__相__等____的平行四边形是矩形; 对角线__相__等____且___互__相__平__分_____的四边形是矩形.
素质一练通
11.如图,在矩形ABCD中,AB=2,BC=5.点E,P分别在 AD,BC上,且DE=BP=1,AP,BE相交于点H,CE, DP相交于点F.
(1)判断△BEC的形状,并说明理由; 解:△BEC是直角三角形,且∠BEC=90°. 理由:∵四边形ABCD是矩形, ∴∠ADC=∠EAB=90°,AD=BC=5,CD=AB=2. ∵DE=1,∴AE=4.
新知基本功
5.【中考·崇左】如图,在矩形ABCD中,AB>BC,点E,
F,G,H分别是边DA,AB,BC,CD的中点,连接EG,
FH,则图中的矩形共有( C )
A.5个
B.8个
C.9个
D.11个
新知基本功
6.【中考·重庆】下列命题正确的是( A ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形
2022年人教版八年级下《 矩形的判定2》同步练习(附答案)

D A C F OE B 18.2 特殊的平行四边形18.2.1 矩形第2课时 矩形的判定1.矩形具有而一般平行四边形不具有的性质是〔 〕A .对角相等B .对边相等C .对角线相等D .对角线互相垂直2.以下表达中能判定四边形是矩形的个数是〔 〕①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A .1B .2C .3D .43.以下命题中,正确的选项是〔 〕A .有一个角是直角的四边形是矩形B .三个角是直角的多边形是矩形C .两条对角线互相垂直且相等的四边形是矩形D .有三个角是直角的四边形是矩形4.如图1所示,矩形ABCD 中的两条对角线相交于点O ,∠AOD=120°,AB=4cm ,那么矩形的对角线的长为_____.图1 图25.假设四边形ABCD 的对角线AC ,BD 相等,且互相平分于点O ,那么四边形ABCD•是_____形,假设∠AOB=60°,那么AB :AC=______.6.如图2所示,矩形ABCD 周长为24cm ,对角线交于点O ,OE⊥DC 于点E , OF⊥AD 于点F ,OF-OE=2cm ,那么AB=______,BC=______.7.如下图,□ABCD 的四个内角的平分线分别相交于E ,F ,G ,H ,试说明四边形EFGH 是矩形.D A C FP E B8.如下图,△ABC 中,CE ,CF 分别平分∠ACB 和它的邻补角∠ACD.AE ⊥CE 于E ,AF⊥CF 于F ,直线EF 分别交AB ,AC 于M ,N 两点,那么四边形AECF 是矩形吗?为什么?9.〔一题多解题〕如下图,△AB C 为等腰三角形,AB=AC ,CD⊥AB 于D ,P•为BC 上的一点,过P 点分别作PE⊥AB,PF⊥CA,垂足分别为E ,F ,那么有PE+PF=CD ,你能说明为什么吗?10.如下图,△ABC 中,AB=AC ,AD 是BC 边上的高,AE•是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE∥BA,四边形ADCE 是矩形吗?为什么?11.如下图是一个书架,•你能用一根绳子检查一下书架的侧边是否和上下底垂直吗?为什么?12.AC为矩形ABCD的对角线,那么以下图中∠1与∠2一定不相等的是〔〕13.正方形通过剪切可以拼成三角形.方法如图1所示,仿照图1上用图示的方法,解答下面问题:如图2,对直角三角形,设计一种方案,将它分成假设干块,•再拼成一个与原三角形等面积的矩形.图1 图214.〔展开与折叠题〕如下图,折叠矩形纸片ABCD,先折出折痕〔对角线〕BD,再过点D折叠,使AD落在折痕BD上,得另一折痕DG,假设AB=2,BC=1,求AG的长度.参考答案1.C 2.B 3.D 4.8cm 5.矩;1:2 6.8cm;4cm 7.解:∠HAB+∠HBA=90°,所以∠H=90°.同理可求得∠HEF= ∠F= ∠FGH=90°,所以四边形EFGH是矩形.8.解:四边形AECF是矩形.∠ECF=12〔∠ACB+∠ACD〕=90°.∠AEC=∠AFC=90°,点拨:•此题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.9.解法一:能.如图1所示,过P点作PH⊥DC,垂足为H.四边形PHDE是矩形.所以PE=DH,PH∥BD.所以∠HPC=∠B.图1又因为AB=AC,所以∠B=∠ACB.所以∠HPC=∠FCP.又因为PC=CP,∠PHC=∠CFP=90°,所以△PHC≌△CFP.所以PF=HC所以DH+HC=PE+PF,即DC=PE+PF.图2.解法二:能.延长EP,过C点作CH⊥EP,垂足为H,如图2所示,四边形HEDC是矩形.所以EH=•PE+PH=DC,CH∥AB.所以∠HCP=∠B.△PHC≌△PFC,所以PH=PF,所以PE+PF=DC.10.解:是矩形;理由:∠CAE=∠ACB,所以AE∥BC.又DE∥BA,所以四边形ABDE是平行四边形,•所以AE=BD,所以AE=DC.又因为A E∥DC,所以四边形ADCE是平行四边形.又因为∠ADC=90°,所以四边形ADCE是矩形.11.解:能;首先用绳子量一下书架的两组对边,再用绳子量一下书架的对角线,假设对角线相等,那么书架的侧边和上下底垂直,否那么不垂直.12.D13.解:此题有多种拼法,下面提供几种供参考:方法一:如图〔1〕,方法二:如图〔2〕14.解:如下图,过点G作GE⊥BD于点E,那么AG=EG,AD=ED.在Rt△ABD中,由勾股定理,得55,BG=•AB-AG=2-AG,设AG=EG=x,那么BG=2-x.在Rt△BEG中,由勾股定理,得BG2=EG2+BE2,即〔2-x〕2=5〕2+x2,解得51-,即51-.。
初二数学矩形的判定作业练习题(含答案)

初二数学矩形的判定作业练习题一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是( )A .两条对角线互相平分B .一组邻边相等C .两条对角线相等D .两条对角线互相垂直2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A .AB CD = B .AC BD = C .AB BC = D .AC BD ⊥3.平行四边形的四个内角平分线相交所构成的四边形一定是( )A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是( )A .测量其中三个角是否都为直角B .测量对角线是否相等C .测量两组对边是否分别相等D .测量对角线是否相互平分5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 .8.如图,在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 (填写一个即可).9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 .10.对角线 的四边形是矩形.三.解答题(共3小题)11.在平行四边形ABCD中,6AD=.求证:平行四边形ABCD是矩形.AC=,8AB=,1012.如图,AC是ABCD=,连接DEY的对角线,延长BA至点E,使AE AB(1)求证:四边形ACDE是平行四边形;(2)连接EC交AD于点O,若2∠=∠,求证:四边形ACDE是矩形.EOD B13.如图,AD是ABC=.AE BC,BE交AD于点F,且AF DF∆的中线,//(1)求证:AFE DFB∆≅∆;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足条件_______________时,四边形ADCE是矩形.答案与解析一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直【分析】根据平行四边形的判定(对角线互相平分),矩形的判定(对角线互相平分且相等),菱形的判定(对角线互相平分且垂直或一组邻边相等的平行四边形)判断即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.2.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是() A.AB CD⊥=D.AC BD=B.AC BD=C.AB BC【分析】由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.【解答】解:需要添加的条件是AC BD=;理由如下:Q四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,AC BDQ,=∴四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.3.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形【分析】由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.【解答】解:如图;Q四边形ABCD是平行四边形,∴∠+∠=︒;DAB ADC180Q、DH平分DABAH∠、ADC∠,EHG∠=︒;∴∠+∠=︒,即90HAD HDA90同理可证得:90∠=∠=∠=︒;HEF EFG FGH故四边形EFGH是矩形.故选:D.4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B 、测量对角线是否相等,不能判定平行四边形;C 、测量两组对边是否分别相等,能判定平行四边形;D 、对角线是否相互平分,能判定平行四边形;故选:A .5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠【分析】本题考查的是矩形的判定,平行四边形的性质有关知识,利用矩形的判定,平行四边形的性质对选项进行逐一判断即可解答.【解答】解:A .根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;B .根据对角线相等的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;C .不能判定平行四边形ABCD 为矩形,故此选项符合题意;D .平行四边形ABCD 中,//AB CD ,180BAD ADC ∴∠+∠=︒,又BAD ADC ∠=∠Q ,90BAD ADC ∴∠=∠=︒,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意. 故选:C .二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 对角线相等或有一个直角;【分析】根据矩形的判断方法即可解决问题;【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故答案为对角线相等或有一个直角;7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 对角线相等的平行四边形是矩形 .【分析】根据矩形和平行四边形的判定方法填空即可.【解答】解:先测量两组对边是否分别相等,可判定是否是平行四边形,然后测量两条对角线是否相等可判定是否是矩形,所以这样做的依据是:对角线相等的平行四边形是矩形,故答案为:对角线相等的平行四边形是矩形.8.在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 AC BD =或有个内角等于90度 (填写一个即可).【分析】因为在四边形ABCD 中,对角线AC 与BD 互相平分,所以四边形ABCD 是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:Q 对角线AC 与BD 互相平分,∴四边形ABCD 是平行四边形,要使四边形ABCD 成为矩形,需添加一个条件是:AC BD =或有个内角等于90度.故答案为:AC BD =或有个内角等于90度.9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 矩形 .【分析】首先利用外角性质得出B ACB FAE EAC ∠=∠=∠=∠,进而得到//AE CD ,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE 是平行四边形,即可求出四边形ADCE 是矩形.【解答】证明:AB AC =Q ,B ACB ∴∠=∠,Q 点D 为BC 的中点,90ADC ∴∠=︒,AE Q 是BAC ∠的外角平分线,FAE EAC ∴∠=∠,B ACB FAE EAC ∠+∠=∠+∠Q ,B ACB FAE EAC ∴∠=∠=∠=∠,//AE CD ∴,又//DE AB Q ,∴四边形AEDB 是平行四边形,AE ∴平行且等于BD ,又BD DC =Q ,AE ∴平行且等于DC ,故四边形ADCE 是平行四边形,又90ADC ∠=︒Q ,∴平行四边形ADCE 是矩形.即四边形ADCE 是矩形.故答案为矩形.10.对角线 互相平分且相等 四边形是矩形.【分析】根据矩形的判定可得对角线互相平分且相等的四边形为矩形.【解答】解:由对角线互相平分且相等的四边形为矩形可知,故填:互相平分且相等.三.解答题(共3小题)11.在平行四边形ABCD 中,6AB =,10AC =,8AD =.求证:平行四边形ABCD 是矩形.【分析】根据勾股定理的逆定理得到90ABC ∠=︒,从而判定矩形.【解答】解:10AC =Q ,10BD AC ∴==,6AB =Q ,8AD =,222AC AB BC ∴=+,90ABD ∴∠=︒,∴平行四边形ABCD 是矩形.12.如图,AC 是ABCD Y 的对角线,延长BA 至点E ,使AE AB =,连接DE(1)求证:四边形ACDE 是平行四边形;(2)连接EC 交AD 于点O ,若2EOD B ∠=∠,求证:四边形ACDE 是矩形.【分析】(1)由平行四边形的性质可得AB CD =,//AB CD ,由一组对边平行且相等的四边形是平行四边形可证四边形ACDE 是平行四边形;(2)由三角形的外角可证ADC OCD ∠=∠,可得OC OD =,即可得AD EC =,可证四边形ACDE 是矩形.【解答】证明:(1)Q 四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,AE AB =Q ,AE CD ∴=,且//AB CD ,∴四边形ACDE 是平行四边形;(2)Q 四边形ABCD 是平行四边形,B ADC ∴∠=∠,2EOD B ∠=∠Q2EOD ADC ∴∠=∠,且EOD ADC OCD ∠=∠+∠, ADC OCD ∴∠=∠,OC OD ∴=,Q 四边形ACDE 是平行四边形;AO DO ∴=,EO CO =,且OC OD =, AD CE ∴=,∴四边形ACDE 是矩形.13.如图,AD 是ABC ∆的中线,//AE BC ,BE 交AD 于点F ,且AF DF =.(1)求证:AFE DFB ∆≅∆;(2)求证:四边形ADCE 是平行四边形;(3)当AB 、AC 之间满足什么条件时,四边形ADCE 是矩形.【分析】(1)由“AAS ”可证AFE DFB ∆≅∆;(2)由全等三角形的性质和中线性质可得AE CD =,且//AE BC ,可证四边形ADCE 是平行四边形;(3)由等腰三角形的性质可得AD BC ⊥,即可得四边形ADCE 是矩形.【解答】证明:(1)//AE BC Q ,AEF DBF ∴∠=∠,且AFE DFB ∠=∠,AF DF = ()AFE DFB AAS ∴∆≅∆(2)AFE DFB ∆≅∆Q ,AE BD ∴=,AD Q 是ABC ∆的中线,BD CD ∴=AE CD ∴=//AE BC Q∴四边形ADCE 是平行四边形;(3)当AB AC =时,四边形ADCE 是矩形; AB AC =Q ,AD 是ABC ∆的中线,AD BC ∴⊥,90ADC ∴∠=︒Q 四边形ADCE 是平行四边形∴四边形ADCE 是矩形∴当AB AC =时,四边形ADCE 是矩形.。
人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明 习题精选(含答案)
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
八年级数学(下)第十八章《矩形》同步练习(含答案)
八年级数学(下)第十八章《矩形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.矩形具有而平行四边形不一定具有的性质是A.对角相等B.对边相等C.对角线相等D.对角线互相平分【答案】C【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.2.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是A.∠BAC=∠ACB B.∠BAC=∠ACDC.∠BAC=∠DAC D.∠BAC=∠ABD【答案】D3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是A.2 B.4 C.3D.3【答案】B【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD.∴△OAB是等腰三角形.∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OA.∵AB=2,∴OA=2.∵OA=OC,∴AC=4.故选B.4.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是A.3B.2 C.5D.6【答案】C【解析】∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=22125+=,∴CE=5,故选C.5.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是A.24°B.33°C.42°D.43°【答案】B6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10 C.8 D.6【答案】B【解析】四边形ABCD是矩形,∴DC=AB=8,AD=BC=4,∠D=90°,AB∥DC,∴∠FAC=∠DCA,由折叠的性质得∠FCA=∠DCA,∴∠FCA =∠FAC,∴AF=CF,设AF=CF =x,D′F=8-x,在Rt △AD ′F 中,根据勾股定理得AD ′2+D ′F 2=AF 2,即2224(8)x x +-=,解得5x =, ∴11541022AFC S AF AD =⋅=⨯⨯=△.故选B . 7.下列条件中,能判定四边形ABCD 是矩形的是 A .四边形ABCD 中,AC BD = B .四边形ABCD 中,AC BD ⊥C .四边形ABCD 中,90A ∠=︒,90C ∠=︒,90D ∠=︒ D .四边形ABCD 中,90ABC ∠=︒ 【答案】C8.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是A .②③B .③④C .①②④D .②③④【答案】D【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,90BAD ABC ∠=∠=︒,AO =OC ,OD =OB ,AC =BD ,∴AO =OB =OD ,∵AB =1,AD 3BD =2,∴∠ABD =60°,∴△ABO 是等边三角形, ∴AB =OA =OB ,∠BAO =∠AOB =60°,∵AF 平分∠BAD ,∴∠BAF =∠DAF =45°,∵∠DAF =∠AFB , ∴∠BAF =∠BFA ,∴BF AB OB ==,∴②正确;∵CE ⊥BD ,∴60DOC AOB ∠=∠=︒,∴∠ECO =30°,∵604515FAC ∠=︒-︒=︒ , ∴15H ACE CAF CAF ∠=∠-∠=︒=∠,∴AC =CH ,∴③正确; ∵CF 和AH 不垂直,∴AF ≠FH ,∴①错误;∵∠CEO=90°,∠ECA=30°,∴1122OE OC OD DE===,BE=3DE,∴④正确,正确的有②③④,故选D.二、填空题:请将答案填在题中横线上.9.如图,直角三角形ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,AC=CE=10 cm,则BD=__________.【答案】15 cm10.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为__________.【答案】2.5【解析】∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.故答案为:2.5.11.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC为__________度.【答案】56【解析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=34°,∴∠DBC=56°.故答案为:56.12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,CB/的长为__________.【答案】2或10【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图所示,连接AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如图所示,此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,CB2210.综上所述,13B'C的长为210.故答案为:210.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,四边形ABCD为矩形,PB=PC,求证:PA=PD.14.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【解析】(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)如图,作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12EC·OF=1.15.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接BE,DF.判断四边形EBFD的形状,并说明理由.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.16.如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.(2)如图,连接AC,∵AD=4,CD=2,四边形ABCD是平行四边形,四边形BECD是矩形,∴AB=BE=CD=2,BC=AD=4,∠AEC=90°,∴AE=AB+BE=4,在Rt△BCE中,CE22-=4223∴在Rt△ACE中,AC22+=4(23)27。
18.2.2 矩形的判定 人教版数学八年级下册分层作业(含答案)
人教版初中数学八年级下册18.2.2 矩形的判定同步练习夯实基础篇一、单选题:1.下列给出的判定中不能判定一个四边形是矩形的是( )A.有三个角是直角B.对角线互相平分且相等C.对角线互相垂直且相等D.一组对边平行且相等,一个角是直角【答案】C【分析】利用矩形的判定方法即可对各选项进行判断,得到符合题意的选项.【详解】解:A、有三个角是直角的四边形是矩形,该选项说法正确,不合题意;B、对角线互相平分且相等的四边形是矩形,该选项说法正确,不合题意;C、对角线互相平分且相等的四边形是矩形,该选项原说法错误,符合题意;D、一组对边平行且相等,一个角是直角的四边形是矩形,该选项说法正确,不合题意;故选:C.【点睛】此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2.如图,四边形是平行四边形,添加下列条件,能判定这个四边形是矩形的是()A.B.C.D.【答案】A【分析】由矩形的判定和平行四边形的性质分别对各个选项进行判断即可;【详解】解:A、四边形是平行四边形,,,,平行四边形是矩形,故选项A符合题意;B、四边形ABCD是平行四边形,,,,,选项B不能判定这个平行四边形为矩形,故选项B不符合题意;C、四边形是平行四边形,,平行四边形是菱形,故选项C不符合题意;D、四边形是平行四边形,,平行四边形是菱形,故选项D不符合题意;故选:A.【点睛】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识,熟练掌握矩形的判定是解题的关键.3.如图,矩形ABCD的对角线AC,BD相交于点O,过点O作交AD于E,若,则AE的长为()A.3B.4C.5D.【答案】C【分析】根据矩形ABCD,得到AD=BC=8,∠ADC=90°,OA=OC,从而得证△AOE≌△COE,AE=CE,设AE=x,则EC=x,DE=8-x,利用勾股定理计算即可.【详解】如图,连接EC,∵矩形ABCD,,,∴AD=BC=8,AB=CD=4,∠ADC=90°,OA=OC,∵,∴∠AOE=∠COE=90°,∵OE=OE,∴△AOE≌△COE,AE=CE,设AE=x,则EC=x,DE=8-x,在Rt△DEC中,,∴,∴x=5,∴AE=5,故选C.【点睛】本题考查了矩形的性质,三角形全等的判定和性质,勾股定理,熟练掌握矩形的性质,三角形全等,勾股定理是解题的关键.4.如图,平行四边形ABCD的对角线AC,BD相交于点O,AOB是等边三角形,OE BD交BC于点E,CD=2,则CE的长为()A.1B.C.D.【答案】D【分析】先根据等边三角形的性质、平行四边形的性质、矩形的判定证出平行四边形是矩形,再根据矩形的性质可得,然后利用勾股定理可得,,最后根据线段和差即可得.【详解】解:四边形是平行四边形,,,是等边三角形,,,平行四边形是矩形,,,,,设,则,在中,,即,解得或(不符题意,舍去),,,故选:D.【点睛】本题考查了等边三角形的性质、平行四边形的性质、矩形的判定与性质、勾股定理等知识点,熟练掌握矩形的判定与性质是解题关键.5.如图,在四边形中,对角线,垂足为,点、、、分别为边、、、的中点.若,,则四边形的面积为( )A.48B.24C.32D.12【答案】D【分析】有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.【详解】解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF BD,且EF=BD=3.同理求得EH AC GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF GH,FG HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故选:D.【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的性质,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.6.如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,CA的中点,若四边形EFGH是矩形,则四边形ABCD需满足的条件是()A.B.C.D.【答案】A【分析】利用三角形中位线定理可得四边形EFGH是平行四边形,当,利用,可得即可证明四边形EFGH是矩形.【详解】解:∵点E,F,G,H分别是AD,BD,BC,CA的中点,∴,且,且,∴四边形EFGH是平行四边形,∵四边形EFGH是矩形,∴,即,∵,,∴,故选:A.【点睛】本题考查矩形的判定定理,三角形中位线的定义和性质,关键是利用三角形中位线定理证明四边形EFGH是平行四边形,再利用推出.7.如图,在直角三角形中,,,,点M是边上一点(不与点A,B重合),作于点E,于点F,则的最小值是()A.2B.2.4C.2.5D.2.6【答案】B【分析】根据题意可证四边形ECFM是矩形,得EF=CM,再由垂线段最短得CM最短进而可得EF最短,最后进行计算即可.【详解】连接CM,∵ME AC,MF BC,∴MEC=MFC=90°,∵C=90°,∴四边形ECFM是矩形,∴EF=CM,当CM AB时,CM最短,如下图:当CM AB,,∴,∵在Rt ABC中,=,∴,∴CM=2.4,∴CM的最小值是2.4,∴EF=CM=2.4,∴EF的最小值是2.4.故选:B.【点睛】本题考查了矩形的性质和判定、垂线段最短定理和勾股定理,解决此题的关键是要找到CM最短时的情况.二、填空题:8.如图,平行四边形ABCD中,对角线AC,BD相交于点O,欲使四边形ABCD变成矩形,则还需添加______.(写出一个合适的条件即可)【答案】AC=BD(答案不唯一)【分析】根据矩形的判定条件求解即可.【详解】解:添加条件AC=BD,利用如下:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC=BD,∴平行四边形ABCD是矩形,故答案为:AC=BD(答案不唯一).【点睛】本题主要考查了矩形的判定,熟知矩形的判定条件是解题的关键.9.一个木匠要制作矩形的踏板.他在一个对边平行的长木板上分别沿与长边垂直的方向锯两次,就能得到矩形踏板.理由是______.【答案】三个角都是直角的四边形是矩形(或:“有一个角是直角的平行四边形是矩形”)【分析】使用矩形的判定定理,有三个角是直角的四边形是矩形【详解】因为木板的对边平行,在进行两次锯开时都是沿着垂直于对边的方向,所以会出现4个直角,有三个角是直角的四边形是矩形.故答案是三个角是直角的四边形是矩形.【点睛】本题考查矩形的判定,需要熟记矩形的判定定理并灵活运用.10.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,AC与BD应满足的的条件是___________.【答案】【分析】连接,先根据三角形中位线定理、平行四边形的判定可得四边形为平行四边形,再根据矩形的判定即可得.【详解】解:如图,连接,分别为的中点,,,四边形为平行四边形,要使平行四边形为矩形,则,,故答案为:.【点睛】本题考查了三角形中位线定理、平行四边形的判定、矩形的判定,熟练掌握三角形中位线定理是解题关键.11.如图,,、、、分别为角平分线,则四边形是__________.【答案】矩形【分析】首先根据角平分线的性质证明∠MPQ+∠NPQ=90°,再证明四边形PMQN是平行四边形,然后根据有一个角是直角的平行四边形是矩形进行判定.【详解】解:∵PM、PN分别平分∠APQ,∠BPQ,∴∠MPQ=∠APQ,∠NPQ=∠BPQ,∵∠APQ+∠BPQ=180°,∴∠MPQ+∠NPQ=90°,即∠NPM=90°,∵AB∥CD,∴∠APQ=∠PQD,∵QN平分∠PQD,∴∠PQN=∠PQD,∴∠MPQ=∠NQP,∴PM∥QN,同理QM∥PN,∴四边形PMQN是平行四边形,∵∠NPM=90°,∴四边形PMQN是矩形.故答案为:矩形.【点睛】此题主要考查了矩形的判定和平行线的性质,解题关键是根据角平分线和平行线的性质得出90°角和平行四边形.12.如图,矩形ABCD中,BE⊥AC于点E,若∠ACB=23°,则∠DBE=_______度.【答案】44【分析】由矩形的性质可知∠OBC=∠ACB=23°,则可求得∠AOB度数,由直角三角形的性质可得∠DBE的度数.【详解】解:∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD,∴OB=OC,∴∠ACB=∠OBC=23° ,∵∠AOB=∠ACB+∠OBC=46°,且BE⊥AC,∴∠DBE=44° .故答案为:44【点睛】本题主要考查矩形的性质,等腰三角形的性质,利用矩形的对角线相等且平分求得∠OBC的度数是解题的关键.13.如图,在面积为36的四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,则DP的长是_____【答案】6【分析】作DE⊥BC,交BC延长线于E,如图,则四边形BEDP为矩形,再利用等角的余角相等得到∠ADP=∠CDE,则可利用“AAS”证明△ADP≌△CDE,得到DP=DE,S△ADP=S△CDE,所以四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,根据正方形的面积公式得到DP2=36,易得DP=6.【详解】如图,作DE⊥BC,交BC延长线于E,∵DP⊥AB,ABC=90°,∴四边形BEDP为矩形,∴∠PDE=90°,即∠CDE+∠PDC=90°,∵∠ADC=90°,即∠ADP+∠PDC=90°,∴∠ADP=∠CDE,在△ADP和△CDE中,∴△ADP≌△CDE,∴DP=DE,S△ADP=S△CDE,∴四边形BEDP为正方形,S四边形ABCD=S正方形BEDP,∴DP2=36,∴DP=6.故答案为6.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了正方形和矩形的性质.本题的关键的作辅助线构造两个全等的三角形.三、解答题:14.如图,在中,,平分交于点D,分别过点A、D作、,与相交于点E,连接.(1)求证:;(2)求证:四边形是矩形.【答案】(1)见解析(2)见解析【分析】(1)根据、证明四边形为平行四边形,即可得出答案;(2)由等腰三角形的性质得出,,得出,,先证出四边形是平行四边形.再证明四边形是矩形即可.【详解】(1)证明:∵、,∴四边形是平行四边形,∴;(2)证明:∵,平分,∴,,∵,∴,∵,∴四边形是平行四边形,∵,∴∴四边形是矩形.【点睛】本题主要考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质,由等腰三角形的性质得出,,是解决问题的关键.15.如图,四边形是平行四边形,过点作于点,点在边上,,连接,.(1)求证:四边形是矩形.(2)若是的平分线.若,,求的长.【答案】(1)见解析(2)【分析】(1)先证出四边形是平行四边形,再根据矩形的判定即可证得;(2)根据勾股定理求出长,可证得,即可得出答案.【详解】(1)证明:四边形是平行四边形,,,,,即,四边形是平行四边形,,,四边形是矩形;(2)解:四边形是矩形,,,四边形是平行四边形,,是的平分线,,,,,,.【点睛】本题考查了平行四边形的性质,矩形的性质和判定,角平分线的定义,等角对等边,能综合运用定理进行推理是解此题的关键.16.如图,在四边形中,AD BC,.对角线交于点平分交于点,连接.(1)求证:四边形是矩形;(2)若,=,求△的面积.【答案】(1)证明见解析(2)【分析】(1)先根据平行线的性质可得,从而可得,再根据矩形的判定即可得证;(2)先根据含角的直角三角形的性质、勾股定理可得,再根据矩形的性质可得,根据角平分线的定义和直角三角形的性质可得,然后根据等腰三角形的判定可得,从而可得,最后利用三角形的面积公式即可得.(1)证明:,,∵,,∴四边形是矩形.(2)解:在中,,,由(1)已证:四边形是矩形,,平分,,,,,则的面积为.【点睛】本题考查了矩形的判定与性质、勾股定理、等腰三角形的判定等知识点,熟练掌握矩形的判定与性质是解题关键.17.如图,在中,对角线AC,BD相交于点O,于点E,于点F,且.(1)求证:四边形ABCD是矩形.(2)若,求的度数.【答案】(1)见解析(2)10°【分析】(1)证△AEO≌△DFO(AAS),得出OA=OD,则AC=BD,即可得出四边形ABCD是矩形.(2)由矩形的性质得出∠ABC=∠BAD=90°,OA=OB,则∠OAB=∠OBA,求出∠BAE=40°,则∠OBA=∠OAB=50°,即可得出答案.(1)∵四边形ABCD是平行四边形,∴,,∵于点E,于点F,∴,又∵,∴,∴,∴,∴四边形ABCD是矩形;(2)由(1)得:四边形ABCD是矩形,∴,,∴,∵,∴,∴,∴.【点睛】本题考查了矩形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.能力提升篇一、单选题:1.如图,点是中斜边不与,重合上一动点,分别作于点,作于点,点是的中点,若,,当点在上运动时,则的最小值是()A.B.C.D.【答案】B【分析】证明四边形BMPN是矩形,得BP=MN,由勾股定理求出AC=15,当BP⊥AC时,BP最小,然后由面积法求出BP最小值,即可解决问题.【详解】解:连接,如图所示:,于点,于点,四边形是矩形,,,与互相平分,点是的中点,,当时,最小∵,,,故选:B.【点睛】本题主要考查矩形的判定与性质,垂线段最短,勾股定理及面积法等知识,熟练掌握矩形的判定与性质是解题的关键.2.如图,在中,,M为的中点,H为上一点,过点C作,交的延长线于点,若,,则四边形周长的最小值是()A.28B.26C.22D.18【答案】A【分析】通过证明可得,可得四边形的周长即为,进而可确定当时,四边形的周长有最小值,通过证明四边形为矩形可得的长,进而可求解.【详解】解:,,是的中点,,在和中,,,,,,,四边形的周长,当最小时,即时四边形的周长有最小值,,,,四边形为矩形,,四边形的周长最小值为,故选:A.【点睛】本题主要考查轴对称最短路径问题,全等三角形的判定与性质,确定的值是解题的关键.3.在矩形ABCD中,对角线AC、BD相交于点O,AE平分交BC于点E,.连接OE,则下面的结论:①是等边三角形;②是等腰三角形;③;④;⑤,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】判断出△ABE是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB=30°,再判断出△ABO,△DOC是等边三角形,可判断①;根据等边三角形的性质求出OB=AB,再求出OB=BE,可判断②,由直角三角形的性质可得BC=AB,可判断③,由等腰三角形性质求出∠BOE=75°,再根据∠AOE=∠AOB+∠BOE=135°,可判断④;由面积公式可得可判断⑤;即可求解.【详解】解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB−∠CAE=45°−15°=30°,∴∠BAO=90°−30°=60°,∵矩形ABCD中:OA=OB=OC=OD,∴△ABO是等边三角形,△COD是等边三角形,故①正确;∴OB=AB,又∵AB=BE,∴OB=BE,∴△BOE是等腰三角形,故②正确;在Rt△ABC中∵∠ACB=30°∴BC=AB,故③错误;∵∠OBE=∠ABC−∠ABO=90°−60°=30°=∠ACB,∴∠BOE=(180°−30°)=75°,∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故④错误;∵AO=CO,∴,故⑤正确;【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.二、填空题:4.如图,在平行四边形中,,,,点在边上,且,点在线段上,点在线段的延长线上,且,连接交于点,过点作于,则___________.【答案】【分析】过点M作MH BC交CP于H,根据平行线的性质可得∠MHP=∠BCP,∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角角边”证明和全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,利用勾股定理列式求出AP,然后可得PD,再次利用勾股定理列式计算即可求出CP,从而得解.【详解】解:如图,过点M作MH BC交CP于H,则∠MHP=∠BCP,∠NCF=∠MHF,∵BP=BC,∴∠BCP=∠BPC,∴∠BPC=∠MHP,∴PM=MH,∵PM=CN,∴CN=MH,∵ME⊥CP,∴PE=EH,在和中,,∴(AAS),∴CF=FH,∴EF=EH+FH=CP,∵在平行四边形ABCD中,AD=10,,∴BC=AD=10,平行四边形ABCD是矩形,∴BP=BC=10,在Rt中,AP=,∴PD=AD−AP=10−6=4,∵在矩形ABCD中,∠D=90°,∴在Rt中,CP=,∴EF=CP=,故答案为:.【点睛】本题考查了平行四边形的性质,矩形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,熟记各性质并作辅助线构造出全等三角形和等腰三角形是解题的关键.5.如图,在矩形ABCD中,,,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止(同时点Q 也停止),这段时间内,当运动时间为______时,P、Q、C、D四点组成矩形.【答案】2.4s或4s或7.2s【分析】根据已知可知:点Q将由根据矩形的性质得到AD∥BC,设过了t秒,当AP=BQ时,P、Q、C、D四点组成矩形,在点Q由的过程中,则PA=t,BQ=12-4t,求得t=2.4(s),在点Q 由的过程中,t=4(t-3),求得t=4(s),在点Q再由中,t=12-4(t-6),求得t=7.2(s),在点Q 再由的过程中,t=4(t-9),t=13(s),故此舍去,从而得到结论.【详解】解:根据已知可知:点Q由在点Q第一次到达点B过程中,∵四边形ABCD是矩形,∴AD∥BC,若,则四边形APQB是矩形,则以P、Q、C、D四点为顶点组成矩形.设过了t秒,则PA=t,BQ=12-4t,∴t=12-4t,∴t=2.4(s),在点Q由的过程中,设过了t秒,则PA=t,BQ=4(t-3),t=4(t-3),解得:t=4(s),在点Q再由过程中,设过了t秒,则PA=t,BQ=12-4(t-6),t=12-4(t-6),解得:t=7.2(s),在点Q再由的过程中,设过了t秒,则PA=t,BQ=4(t-9),t=4(t-9),解得:t=13(s)>12(s),故此舍去.故答案为:2.4s或4s或7.2s;【点睛】本题考查了矩形的性质与判定,此题属于动点型题目.解题时要注意数形结合与方程思想的应用.三、解答题:6.如图,在平行四边形中,过点D作于点E,点F在边上,,连接.(1)求证:四边形是矩形.(2)已知是的平分线,若,则□的面积为______.【答案】(1)见解析(2)【分析】(1)先证明四边形是平行四边形,再证明平行四边形是矩形.(2)根据边角的关系,得到,再根据S行四边形进行计算.【详解】(1)证明:∵四边形是平行四边形,∴,∵,∴,∴,∵,∴四边形是平行四边形,∵,∴,∴四边形是矩形.(2)解:∵,∴,∵,∴,∴,∵,∴,,∵四边形是平行四边形,∴,∴,∵平分,∴,∴,∴,∵,∴,∴,∴.【点睛】本题主要考查平行四边形及矩形判定,角平分线的性质,勾股定理及平行四边形面积计算,能够熟练运用平行四边形的性质是解题关键.7.如图,在中,,D是AC的中点,,动点P以每秒1个单位长度的速度从点B出发向点A移动,连接PD并延长交CE于点F,设点P移动的时间为t秒.(1)求AB与CE之间的距离;(2)当t为何值时,四边形PBCF为平行四边形;(3)当时,求t的值.【答案】(1)2.4(2)t为时,四边形PBCF为平行四边形(3)【分析】(1)根据勾股定理,可得的长,根据面积的不同表示方法,可得答案;(2)根据两组对边分别平行的四边形是平行四边形,可得答案;(3)根据已知条件判定,即可得出,进而得到四边形为平行四边形,依据,即可得到四边形为矩形.再根据勾股定理即可得到的长,进而得出.(1)解:在中,,,.如图,过作于,则由,得.,与之间的距离为2.4.(2),当时,四边形是平行四边形.为的中点,为的中点..(3),,.为的中点,,.,四边形为平行四边形.,..四边形为矩形..在中,,,..【点睛】此题考查了平行四边形的判定与性质、矩形的判定与性质以及勾股定理的运用,熟练掌握平行四边形的判定与性质是解本题的关键.。
2020—2021年人教版初中数学八年级下册矩形的性质与判定例题+同步练习及答案(精品试题).docx
第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC 上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90° D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10c m3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S△ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE =S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《矩形的判定》练习
一、选择——基础知识运用
1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
2.检查一个门框是否为矩形,下列方法中正确的是()
A.测量两条对角线,是否相等
B.测量两条对角线,是否互相平分
C.测量门框的三个角,是否都是直角
D.测量两条对角线,是否互相垂直
3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是()
A.正方形B.矩形C.菱形D.都有可能
4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()
A.2个B.3个C.4个D.5个
5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
对于两人的作业,下列说法正确的是()
A.两人都对B.两人都不对
C.甲对,乙不对D.甲不对,乙对)
二、解答——知识提高运用
6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。
7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。
8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。
9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。
10.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F。
(1)求证:AC=BE;
(2)若∠AFC=2∠D,连接AC,BE.求证:四边形ABEC是矩形。
11.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P 从A点出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动。
(2)从运动开始,经过多少时间点A、B、Q、P为边得四边形是矩形?
参考答案一、选择——基础知识运用
1.【答案】C
【解析】∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,∴A正确;
∵AO=CO,BO=DO,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴四边形ABCD是矩形,∴B正确;
∵∠B+∠C=180°,
∴AB∥DC,
∵∠A=∠C,
∴∠B+∠A=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,∴C不正确;
∵∠A=∠B=90°,
∴∠A+∠B=180°,
∴AD∥BC,如图所示:
在Rt△ABC和Rt△BAD中,
AC=BD;AB=AB,
∴Rt△ABC≌Rt△BAD(HL),
∴BC=AD,
∴四边形ABCD是平行四边形,
∴四边形ABCD是矩形,∴D正确;
故选:C。
2.【答案】C
【解析】根据“三个角是直角的四边形是矩形”可以得到测量门框的三个角,是否都是直角即可检验该四边形是不是矩形。
故选C。
3.【答案】B
【解析】∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形。
故选:B。
4.【答案】C
【解析】
如图1,∠A=∠B=∠C=∠D=360°÷4=90°,∴①正确;
如图1AD∥BC,∠A=∠B=90°,不能推出∠C和∠D也是90°,如直角梯形,∴②错误;
∵AD=BC,AB=CD,
∴四边形ABCD是平行四边形,
∵∠A=90°,
∴平行四边形ABCD是矩形,∴③正确;
根据对角线相等和有一个角是直角不能推出四边形是平行四边形,即不是矩形,∴④错误;
∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∵AC=BD,
∴平行四边形ABCD是矩形,∴⑤正确;
∵AD∥BC,∠A=90°,
即AB是两平行线AD和BC间的高,
∵CD=AB,
∴CD应也是AD和BC间的高,
∴CD⊥BC,
根据矩形的定义得出四边形是矩形,∴⑥正确;
∴正确的个数是4个,
故选C。
5.【答案】A
【解析】由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形.
所以甲的作业正确;
由乙同学的作业可知,CM=AM,MD=MB,
∴四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴□ABCD是矩形。
所以乙的作业正确;
故选A。
二、解答——知识提高运用
6.【答案】∵AB=5,AD=12,BD=13.
∴AB2+AD2=BD2,
∴∠BAD=90°,
∵四边形ABCD是平行四边形,
∴平行四边形ABCD是矩形;
7.【答案】∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,AB=DC,
∴∠D+∠A=180°,
∵E是AD边的中点,
∴AE=DE,
∵△CBE是等边三角形,
∴BE=CE,
在△ABE和△DCE中,
AB=DC ;AE=DE ;BE=CE,
∴△ABE≌△DCE(SSS),
∴∠A=∠D,
∵∠D+∠A=90°,
∴∠D=∠A=90°,
∵四边形ABCD是平行四边形,
∴□ABCD是矩形。
8.【答案】∵M,N分别是DE,BE的中点,
∴MN是△BDE的中位线,
∴MN∥AB,MN=BD,
同理:PN∥CE,PN=CE,MQ∥CE,MQ=CE,
∴PN=MQ,PN∥MQ,
∴四边形PQMN是平行四边形,
∵∠A=90°,
∴BA⊥CA,
∵MN∥AB,MQ∥AC,
∴MN⊥MQ,
∴∠NMQ=90°,
∴四边形PQMN是矩形。
9.【答案】∵在□ABCD与□ABEF中,AB∥CD,AB=CD,AB∥EF,AB=EF,∴CD∥EF,CD=EF,
∴四边形EFDC是平行四边形,
∵BC=BE,∠ABC=∠ABE,
∴AB⊥CE,
∴CD⊥CE,
∴∠DCE=90°,
∴四边形EFDC是矩形。
10.【答案】(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵CE=DC,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴AC=BE;
(2)∵AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形。
11.【答案】(1)当PD=CQ时,四边形PQCD为平行四边形,即24-t=3t,
解得,t=6,
即当t=6s时,四边形PQCD为平行四边形;
(2)根据题意得:AP=tcm,CQ=3tcm,
∵AB=8cm,AD=24cm,BC=26cm,
∴DP=AD-AP=24-t(cm),BQ=26-3t(cm),
∵AD∥BC,∠B=90°,
∴当AP=BQ时,四边形ABQP是矩形,
∴t=26-3t,
解得:t=6.5,
即当t=6.5s时,四边形ABQP是矩形。