解析几何第一章 第六节
第六节__旋转曲面和二次曲面

• 柱面 如,曲面F ( x , y ) 0 表示母线平行 z 轴的柱面. 又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
机动 目录 上页 下页 返回 结束
2. 二次曲面
• 椭球面 • 抛物面: ( p, q 同号)
三元二次方程
椭圆抛物面
双曲抛物面
x2 y2 z 2 p 2q • 双曲面: 单叶双曲面 双叶双曲面 2 2 x2 y2 x y 2 2 1 1 2 2 a b a b x2 y2 • 椭圆锥面: 2 z2 a2 b
z
L
M (0, y, z )
y
两边平方
x
z 2 a2 ( x2 y2 )
机动
目录
上页
下页
返回
结束
例4. 求坐标面 xoz 上的双曲线 轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转 所成曲面方程为
分别绕 x
x2 y2 z 2 1 2 2 a c
绕 z 轴旋转所成曲面方程为
机动
目录
上页
下页
返回
结束
思考:当曲线 C 绕 y 轴旋转时,方程如何?
z
C : f ( y, z ) 0
o x
y
f ( y, x z ) 0
2 2
机动
目录
上页
下页
返回
结束
例3. 试建立顶点在原点, 旋转轴为z 轴, 半顶角为 的圆锥面方程. 解: 在yoz面上直线L 的方程为 绕z 轴旋转时,圆锥面的方程为
平面 x x1 上的截痕为 双曲线
o x
y
平面 z z1 ( z1 c)上的截痕为 椭圆
注意单叶双曲面与双叶双曲面的区别:
《解析几何》教案

页眉内容《解析几何》教案第一章向量与坐标本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。
(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:§1.1 向量的基本概念一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c……标记向量,而用希腊字母λ、μ、ν……标记数量.三、两种特殊向量:1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:①向量不能比较大小,如没有意义;②向量没有运算,如类似的式子没有意义.§1.2 向量的加法一向量的加法:定义1设、,以与为邻边作一平行四边形,取对角线向量,记,如图1-1,称为与之和,并记作(图1-1)这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量与向量在同一直线上,那么,规定它们的和是这样一个向量:若与的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量:定义2作,以的终点为起点作,联接(图1-2)得(1-2)该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律:定理1 向量的加法满足下面的运算律:1、交换律, (1.2-2)2、结合律. (1.2-3)证交换律的证明从向量的加法定义即可得证.下证结合律 .自空间任一点O开始依次作则有,所以.由定理1知,对三向量相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作.二向量的减法定义3 若,则我们把叫做与的差,记为显然,,特别地,.由三角形法则可看出:要从减去,只要把与长度相同而方向相反的向量加到向量上去.由平行四边形法可如下作出向量.设、,以与为邻边作一平行四边形,则对角线向量.例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证必要性设三向量、、可以构成三角形(图1-3),(图1-3),那么,即.充分性设,作那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证设四边形的对角线、交于点且互相平分(图1-4)因此从图可看出:,所以,∥,且,即四边形为平行四边形.(图1-4)§1.3 数量乘向量定义1.3.1设是一个数量,向量与的乘积是一向量,记作,其模等于的倍,即;且方向规定如下:当时,向量的方向与的方向相同;当时,向量是零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知:.据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律:定理1.3.1. 数量与向量的乘法满足下面的运算律:1) 1·=2)结合律, (1.3-1)3)分配律, (1.3-2)4) . ( 1.3-3)证 1)据定义显然成立.2)显然,向量、、的方向是一致,且= == .3)分配律如果或中至少有一个为0,等式显然成立;反之ⅰ)若,显然同向,且所以ⅱ)若不妨设若则有由ⅰ)可得,所以对的情形可类似证明.一个常用的结论:定理3. 若( 为数量 ),则向量与向量平行,记作;反之,若向量与向量平行且,则( 是数量).设是非零向量,用表示与同方向的单位向量.由于与同方向,从而与亦同方向,而且,即.我们规定:若,. 于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子改写成形式.十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证.(图1-5)证如图1-5,因为,所以但因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解定义1.4.1由向量与数量所组成的向量叫做向量的线性组合,或称可以用向量线性表示,或称可以分解成向量的线性组合.定理1.4.1如果向量,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数使得, (1.4-1)并且系数被,唯一确定.证若成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定存在实数使得(见1.3节中1.3.5的证明).再证的唯一性:如果,那么,而,所以,.定理1.4.2如果向量不共线,那么向量与共面的充要条件是可用向量线性表示,即, (1.4-2)并且系数被,唯一确定.证:(图1-6)因与不共线,由定义1.1.4知.设与中之一共线,那么由定理1.4.1有,其中中有一个为零;如果与都不共线,把它们归结共同的始点,并设,,,那么经过的终点分别作的平行线依次交直线于(图1-6),因,由定理 1.4.1,可设,所以由平行四边形法则得,即.反之,设,如果中有一个为零,如,那么与共线,因此与共面.如果,那么,从向量加法的平行四边形法则知与都共面,因此与共面.最后证的唯一性.因为=,那么,如果,那么,将有,这与假设矛盾,所以.同理,这就证明了唯一性.定理1.4.3 如果向量不共面,那么空间任意向量可以由向量线性表示,即存在一组实数使得,(1.4-3)并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2对于个向量,若存在不全为零的实数,使得, (1.4-4)则称向量线性相关.不是线性相关的向量叫做线性无关,即向量线性无关:.定理1.4.4在时,向量线性相关的充要条件是其中至少有一个向量是其余向量的线性组合.证设向量线性相关,则存在不全为零的实数使得,且中至少有一个不等于0,不妨设,则;反过来,设向量中有一个向量,不妨设为,它是其余向量的线性组合,即,即.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证设中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数,使得.则有,因为不全为零,所以线性相关.推论如果一组向量中含有零向量,那么这一组向量就线性相关类似地可证明下面的定理:定理1.4.6 两向量与共线线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点在线段上的充要条件是:存在非负实数,,使得,且,其中是任意取定的一点.证(先证必要性)设在线段上,则与同向,且,所以,.任取一点所以,所以,.取,,则,,.(充分性)若对任一点有非负实数,,使得,且则,所以与共线,即在直线上.又,所以在线段上.例2设为两不共线向量,证明,共线的充要条件是.证共线,线性相关,即存在不全为0的实数,使,(1.4-5)即.又因为不共线即线性无关,故方程有非零解.§1.5 标架与坐标一空间点的直角坐标:平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而轴则是铅垂线,它们的正方向要符合右手规则:(图1-7)右手握住轴,当右手的四个指头从轴的正向以角度转向轴正向时,大拇指的指向就是轴正向.三条坐标轴就组成了一个空间直角坐标系,点叫做坐标原点.注:为使空间直角坐标系画得更富于立体感,通常把轴与轴间的夹角画成左右.当然,它们的实际夹角还是.2、坐标面与卦限三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与面.三个坐标面把空间分成了八个部分,这八个部分称为卦限.(图1-8)3、空间点的直角坐标取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.设为空间的一已知点,过点分别作垂直于轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为,这三点在轴、轴、轴的坐标依次为,于是:空间点就唯一地确定了一个有序数组,这组数叫点的坐标.依次称,,为点的横坐标、纵坐标和竖坐标,记为.反过来,若已知一有序数组,我们可以在轴上取坐标为的点,在轴上取坐标为的点,在轴取坐标为的点,然后过、、分别作轴、轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.这样,通过空间直角坐标系,我们建立了空间点和有序数组之间的一一对应关系.定义1 我们把上面有序数组叫点在此坐标系下的坐标,记为.二空间两点间的距离公式定理1设、为空间的两点,则两点间的距离为(1.5-1)证过、各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方体,如图所示(图1-9)是直角三角形,故,因为是直角三角形,故,从而;而,,,故.特别地,点与坐标原点的距离为.三空间向量的坐标定义2 设是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,使得,那么我们把这组有序的实数,叫做向量在此坐标系下的坐标,记为或.定理2设向量的始终点坐标分别为、,那么向量的坐标为. (1.5-2)证由点及向量坐标的定义知,所以=.由定义知.定理3 两向量和的分量等于两向量对应的分量的和.证设,,那么=+=,所以. (1.5-3)类似地可证下面的两定理:定理4设,则.定理5 设,,则共线的充要条件是.(1.5-4)定理6三非零向量,,共面的充要条件是. (1.5-5)证因为不共面,所以存在不全为0的实数使得,由此可得因为不全为0,所以.§1.6 向量在轴上的射影一、空间点在轴上的投影:设已知点及轴,过点作轴的垂直平面,则平面与轴的交点叫做点在轴上的投影.(图1-10)二、向量在轴上的投影:定义1设向量的始点与终点在轴的投影分别为、,那么轴上的有向线段的值叫做向量在轴上的投影,记作,轴称为投影轴.(图1-11)这里,的值是这样的一个数:(1)即,数的绝对值等于向量的模.(2)当的方向与轴的正向一致时,;当的方向与轴的正向相反时,.三、空间两向量的夹角:设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作.(图1-12)若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度称为向量与数轴的夹角.四投影定理:定理1.6.1向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦.即, (1.6-1)(图1-13)证过向量的始点引轴,且轴与轴平行且具有相同的正方向,那未轴与向量的夹角等于轴与向量的夹角,而且有故由上式可知:向量在轴上的投影是一个数值,而不是向量.当非零向量与投影轴成锐角时,向量的投影为正.定理1.6.2对于任何向量都有. (1.6-2)证取,那么,设分别是在轴上的投影,那么显然有,因为所以,即.类似地可证下面的定理:定理1.6.3对于任何向量与任何实数有. (1.6-3)§1.7 两向量的数性积定义1.7.1 对于两个向量a和b 把它们的模|a|,|b|及它们的夹角的余弦的乘积称为向量和的数量积 记作ab,即ab=|a||b|cos .由此定义和投影的关系可得 ab|b|Prj b a=|a|Prj a b .数量积的性质(1) a·a=|a| 2,记a·a a 2,则a2|a| 2.(2) 对于两个非零向量a、b 如果a· b=0 则a b反之 如果a b 则a· b 0.定理1.7.1 如果认为零向量与任何向量都垂直 则a b a· b 0.定理1.7.2 数量积满足下面运算律:(1)交换律 a· b= b·a(2)分配律( a b)c a c b c( (3)a)· b a·(b )(a·b)(a)·(b )(a·b) 、为数证(1)由定义知显然.(2)的证明因为当c0时上式显然成立当c0时有(a b)c|c|Prj c(a b)|c|(Prj c a Prj c b)|c|Prj c a|c|Prj c ba cb c(3)可类似地证明.例1试用向量证明三角形的余弦定理证设在ΔABC中 ∠BCA||=a ||=b ||=c要证c 2a 2+b 2 2 a b cos记a b =c 则有 c a b从而 |c|2c c(a b)(a b)a2-2ab+b2|a|2+|b|22|a||b|cos(a^b)即c 2a 2+b 2 2 a b cos数量积的坐标表示 :定理1.7.3设a{a x a y a z } b{b x b y b z }则a·b a x b x a y b y a z b z证a· b( a x i a y j a z k)·(b x i b y j b z k)a xb x i·i a x b y i·j a x b z i·ka yb x j ·i a y b y j ·j a y b z j·ka zb x k·i a z b y k·j a z b z k·ka xb x a y b y a z b z定理1.7.4设a={},则向量a的模|a|=.证由定理1.7.2知|a|2=a2=,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={},则a的方向余弦为cos=,cos,cos;且,其中分别是向量a与x轴,y轴,z轴的夹角.证因为ai=|a|cos且ai=,所以 |a|cos=,从而 cos=.同理可证 coscos且显然两向量夹角的余弦的坐标表示定理1.7.6设(a ^ b)则当a0、b0时 有.证 因为a·b|a||b|cos,所以.例2 已知三点M (11 1) 、A (22 1) 和B (21 2) 求AMB解从M到A的向量记为a从M到B的向量记为b则AMB就是向量a与b的夹角 .a{11 0} b{10 1}因为a b1110011所以从而.§1.8 两向量的向量积定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做a b或,它的模|a b||a||b|sin,它的方向与a和b垂直并且按a,b,a b确定这个顺序构成右手标架{O;a,b,a b}.从定义知向量积有下列性质:(1) a a0(2) 对于两个非零向量a,b如果a b0则a//b;反之如果a//b则a b0.定理1.8.1 两不共线向量a与b的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2两向量a与b共线的充要条件是a b0.证当a与b共线时,由于sin(a、b)=0,所以|a b|=|a||b| sin(a、b)=0,从而a b0;反之,当a b0时,由定义知,a=0,或b=0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律(1) 反交换律a b b a,(2) 分配律(a b)c a c b c,(3) 数因子的结合律 (a)b a(b)(a b) (为数).证(略).推论: c (a b) c a c b定理1.8.4 设a a x i a y j a z k b b x i b y j b z k,则a b(a y b za zb y)i(a z b x a x b z)j(a x b y a y b x)k证由向量积的运算律可得a b(a x i a y j a z k)(b x i b y j b z k)a xb x i i a x b y i j a x b z i ka yb x j i a y b y j j a y b z j k a z b x k i a z b y k a z b z k k由于i i j j k k0i j k j k i k i j所以a b(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k.为了帮助记忆利用三阶行列式符号上式可写成a yb z i+a z b x j+a x b y k a y b x k a x b z j a z b y i(a y b z a z b y)i(a z b x a x b z)j(a x b y a y b x)k例1设a(2 11)b(11 2)计算a b解=2i j2k k4j i i5j 3k例2已知三角形ABC的顶点分别是A (123)、B (345)、C (247)求三角形ABC的面积解根据向量积的定义可知三角形ABC的面积由于(222)(124)因此4i6j2k于是例3 设刚体以等角速度绕l轴旋转计算刚体上一点M的线速度解刚体绕l轴旋转时我们可以用在l轴上的一个向量n表示角速度它的大小等于角速度的大小它的方向由右手规则定出即以右手握住l轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向设点M到旋转轴l的距离为a再在l轴上任取一点O作向量r并以表示n与r的夹角那么a|r| sin设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为|v||n|a|n||r| sinv的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有v n r§1.9 三向量的混合积定义1.9.1 给定空间的三个向量,我们把叫做三向量的混合积,记做或.定理1.9.1三个不共面向量的混合积的绝对值等于以为棱的平行六面体的体积,并且当构成右手系时混合积为正;当构成左手系时混合积为负,也就是=当构成右手系时,当构成左手系时.证由于向量不共面,所以把它们归结到共同的试始点可构成以为棱的平行六面体,它的底面是以为边的平行四边形,面积为,它的高为,体积是.根据数性积的定义,其中是与的夹角.当构成右手系时,,,因而可得.当构成左手系时,,,因而可得.定理1.9.2三向量共面的充要条件是.证若三向量共面,由定理1.9.1知,所以,从而.反过来,如果,即,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即.证当共面时,定理显然成立;当不共面时,混合积的绝对值等于以为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论:.定理1.9.4设,,,那么.证由向量的向性积的计算知,再根据向量的数性积得===.推论: 三向量共面的充要条件是.例1设三向量满足,证明:共面。
空间解析几何,李养成(新版),第一章_第六节

提示:
(e1 , e1 , e2 ) 0
b e1 , e ,e . c
(1.6.1)
b, c . 由此可见,只要知道 e1, e2 , e3 , 就可以由坐标算出 a,
命题1.6.4 设向量 a, b, c 在仿射坐标系 O; e1 , e2 , e3 中的 坐标分别为 a , a , a , b ,b ,b , c ,c ,c ,则a, b, c 共面的 充要条件是 a a a b b b . c c c
由于d 是任取的,所以有 a+ b c = a c + b c.
2.混合积的坐标运算 取仿射坐标系O; e1 , e2 , e3 . 设向量 a, b, c 的坐标分别为 a , a , a , b ,b ,b , c ,c ,c .
利用向量形式表示各向量,得 a b c = ab ab e1 e2 ab ab e e
D
A
B
C
S AB AC 3V 所以从顶点 D 所引的高的长度 h 11
S
例1.6.3 证明:对任意四个向量 a,b,c,d,有
a b c d
a c a d bc bd
+ ab ab e e ce1 c e ce a a a b b c b a a a b c b c a a c b b a c e1 e e b
在直角坐标系下,向量的混合积有更简单的形式.
a,b,c
X
Y
Z Z . Z
X Y X Y
X1
证明: 由于(a, b, c ) X 2
《解析几何》教学大纲

《解析几何》教学大纲课程编码:1512100803课程名称:解析几何学时/学分:48/3先修课程:适用专业:信息与计算科学开课教研室:代数与几何教研室一、课程性质与任务1.课程性质:本课程是信息与计算科学专业的一门重要的专业基础课。
2.课程任务:通过学习,使学生初步掌握解析几何的基本思想、基本理论和研究方法,积累必要的数学知识,培养学生抽象思维能力、建立数学模型的能力、推理和演算能力,提高学生利用解析几何知识分析问题和解决问题的能力。
二、课程教学基本要求要求学生熟练掌握本课程的基本概念、基本理论及其推导过程。
通过课程教学及习题训练等教学环节,使学生做到概念清晰、推理严密。
本课程的教学,一方面要注意培养学生从几何直观方面分析和洞察问题的能力,另一方面要使学生注意掌握必要的代数方法和计算技巧,能准确地进行计算。
成绩考核形式:期终成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。
成绩评定采用百分制,60分为及格。
三、课程教学内容第一章 向量与坐标1.教学基本要求使学生掌握向量及其运算的概念,空间坐标系的建立。
2.要求学生掌握的基本概念、理论、技能通过本章学习,使学生理解建立空间坐标系的基本思想,会利用向量法解决一些几何问题。
掌握向量的各种运算及其运算规律。
3.教学重点和难点本章教学重点是向量的线性关系与向量的分解、两向量的数量积、两向量的向量积、三向量的混合积;教学难点是坐标系的建立,利用向量解决几何问题的基本方法。
4.教学内容第一节 向量的概念1.向量的定义2.自由向量的定义3.共线向量的定义4.共面向量的定义第二节 向量的加法1.向量加法的定义2.向量加法的运算规律3.向量减法的定义4.向量加法和减法的互换第三节 数量乘向量1.数乘的定义2.数乘的运算规律第四节 向量的线性关系与向量的分解 1.向量的线性分解定理2.向量线性相关、相性无关的定义3.向量线性相关的判定定理4.向量线性相关与两向量共线、三向量共面的关系第五节 标架与坐标1.标架的定义2.坐标的定义3.用坐标进行向量的运算4.用坐标判定两向量共线、三向量共面5.线段的定比分点坐标第六节 向量在轴上的射影1.向量在轴上的射影的定义2.向量在轴上的射影的计算公式第七节 两向量的数量积1.两向量的数量积的定义2.两向量的数量积的运算规律3.用数量积为零来判断两向量垂直4.直角坐标系下用向量的坐标来表示数量积5.两点间的距离6.向量的方向余弦7.两向量的交角第八节 两向量的向量积1.两向量的向量积的定义2.两向量的向量积的运算规律3.用向量积来判断两向量共线4.用向量积的模来计算平行四边形的面积5.直角坐标系下用向量的坐标来表示向量积第九节 三向量的混合积1.三向量的混合积的定义2.利用三向量的混合积计算平行六面体的体积3.三向量的混合积的运算规律4.利用混合积为零来判断三向量共面5.直角坐标系下用向量的坐标来表示三向量的混合积★第十节 三向量的双重向量积1.三向量的双重向量积的定义2.三向量的双重向量积的运算公式第二章 轨迹与方程1.教学基本要求使学生掌握空间曲面方程与曲线方程的基本概念,能通过曲面或曲线上点的性质,建立曲面或曲线的方程。
解析几何-吕林根-课后习题解答一到五

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。
解析几何第5版

解析几何第5版介绍解析几何是数学中一个重要的分支,主要研究在一个平面上的几何形状的性质和关系。
解析几何第5版是一本经典的教材,通过系统的理论解释和大量的实例,帮助读者深入理解解析几何的基本概念和方法。
本文将对该教材进行全面、详细、完整的探讨,帮助读者深入了解解析几何。
第一章:平面解析几何基本概念1.1 平面直角坐标系平面直角坐标系是解析几何的基础,通过引入坐标轴和坐标点的概念,将几何图形转化为数学问题。
平面直角坐标系包括原点、横坐标轴、纵坐标轴等基本要素,通过坐标点的表示方法,可以准确描述平面上的点的位置。
1.2 平面向量及其运算平面向量是解析几何中另一个重要的概念,它由大小和方向共同确定。
平面向量的运算包括加法、减法、数量乘法等,这些运算法则可以简化解析几何问题的求解过程。
平面向量的性质和运算规律是解析几何中的基本知识点,读者应该牢固掌握。
1.3 平面直线及其方程平面直线是解析几何中的另一个重要概念,它可以由一个或两个方程来描述。
通过对平面直线的方程进行研究,可以准确地描述直线的性质,如斜率、截距等。
平面直线的方程是解析几何中的基础知识,对于解析几何问题的解答至关重要。
1.4 平面曲线及其方程平面曲线是解析几何中较为复杂的概念,它包括圆、椭圆、抛物线、双曲线等形状。
每种曲线都有特定的方程形式,通过研究这些方程,可以揭示曲线的性质和变化规律。
平面曲线的方程是解析几何中的进阶知识,读者需要具备一定的数学基础才能深入理解。
第二章:直线与圆相关性质2.1 直线的位置关系在解析几何中,直线的位置关系是一个重要的研究方向。
直线可以相交、平行或重合,这种关系对于解析几何问题的求解有着重要的指导作用。
本节将详细介绍直线的位置关系及其性质。
2.2 圆的位置关系圆在解析几何中也是一个重要的研究对象,它可以相交、相切或包含等。
圆的位置关系不仅涉及圆心的位置,还涉及半径、切线等概念。
本节将详细介绍圆的位置关系及其性质。
大一第一章解析几何知识点
大一第一章解析几何知识点在大一的学习过程中,解析几何是数学学科中的一个重要分支。
它研究的是平面或空间中的几何图形与代数的关系,通过建立代数模型和方程式,探究几何图形的性质和关系。
本文将以大一第一章解析几何的知识点为主题,从平面直角坐标系、点、直线和圆四个方面来进行分析和讨论。
一、平面直角坐标系解析几何的研究对象是平面几何图形,其中平面直角坐标系是解析几何研究的基础。
平面直角坐标系由两条相互垂直的坐标轴x 轴和y轴以及坐标原点O组成。
在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x表示点在x轴的坐标,y表示点在y轴的坐标。
通过平面直角坐标系,我们可以将几何图形转化为代数方程,从而进行进一步的分析和计算。
二、点的位置关系在解析几何中,研究点的位置关系是非常重要的。
对于平面直角坐标系中的点A(x1, y1)和B(x2, y2),我们可以通过计算它们的坐标差来判断它们之间的位置关系。
如果x1=x2且y1=y2,那么点A与点B重合;如果x1=x2但y1≠y2,那么点A与点B在x轴上;如果y1=y2但x1≠x2,那么点A与点B在y轴上;如果x1≠x2且y1≠y2,那么点A与点B不在任何坐标轴上,可以进一步计算斜率来确定点A和点B之间的位置关系。
三、直线与斜率直线是解析几何中另一个重要的研究对象。
在平面直角坐标系中,一条直线可以用线性方程y=kx+b来表示,其中k是直线的斜率,b是直线与y轴的交点。
斜率可以用来描述直线的倾斜程度,它的计算公式为k=(y2-y1)/(x2-x1)。
通过斜率的计算,我们可以判断直线的方向和关系。
如果两条直线的斜率相等,则它们互相平行;如果两条直线的斜率的乘积为-1,则它们互相垂直。
四、圆的方程圆是解析几何中的另一个重要图形。
在平面直角坐标系中,圆可以由圆心及半径来描述。
圆心坐标为(x0, y0),半径为r,那么圆的方程可以表示为(x-x0)²+(y-y0)²=r²。
《大学数学解析几何》PPT课件
➢笛卡尔的解析几何有两个基本思想: (1)用有序数对表示点的坐标; (2)把互相关联的两个未知数的代数方程,看成平面上的一 条曲线。
Back
四、学习要求
1、课前预习. 2、课上认真听讲,积极思考,记好笔记. 3、课后及时复习,独立认真地完成作业. 4、课外适当阅读课外参考书,拓宽知识面,加深对课本内 容的理解.
Back
五、考核方式及成绩评定
考核方式:闭卷考试 总评成绩=平时成绩×30%
+期末考试成绩70%
《解析几何》
-Chapter 1
Back
3.解析几何创立的意义
➢ 笛卡尔和费马创立解析几何,在数学史上具有划时代的意义。
➢解析几何沟通了数学内数与形、代数与几何等最基本对象之间 的联系,从此,代数与几何这两门学科互相吸取营养而得到迅速 发展,并结合产生出许多新的学科,近代数学便很快发展起来了。
➢恩格斯高度评价了笛卡尔的革新思想。他说:“数学中的转折 点是笛卡儿的变数。有了变数,运动进入了数学;有了变数,辩 证法进入了数学;有了变数,微分和积分也就立刻成为必要的 了。”
关于解析几何产生的历史,可以查阅数学史方面的 书,例 如李文林的《数学史概论》(高等教育出版社),或 上网查阅 查关的内容,网址:
/2/22/07/0641.htm
Back
二、本课程的主要内容及基本要求
本课程在中学平面向量和平面解析几何的基础上,进一步 学习空间向量和空间解析几何。主要内容有:
解析几何第一章
证明 : (2)令 OA α, OB β, OC γ, OD δ, 过 D 点作平行于 OC的直线与 O , A, B决定的平面交 于点 E , 于是 ED // γ,由(1) 知OE 对 α , β可分解 ,从而
δ OE ED 对 α , β, γ可分解 ,即
解析几何第一章
1.《解析几何》的诞生 产生于17世纪前半叶,主要创立者是德国数学家
惹耐笛卡儿。 2. 什么是《解析几何》?
解析几何是这样一个数学分支,它在采用坐标方 法的同时,运用代数方法来研究几何对象。这门学科 在19世纪就已经完备和定型化,并从中发展出代数几 何和微分几何这两大领域。
第一章 向量代数
则
a1 a2 1 A,B,C三点共线 b1 b2 1 0.
c1 c2 1
设A, B,C是平面上的三个不同的点. 取上的O点
和A, B不共线,作平面上的仿射坐标系[O;OA,OB].设C 点在此坐标系中的坐标为(c1, c2 ),则
OC c1OA c2OB. 根据命题1.2,C与A, B共线的充分必要条件是c1 c2 1, 并且在共线时, 有
(2) 对任何实数 , α的坐标为 (a1, a2 , a3 ).
推 论 设点 A, B的坐标分别是 (a1, a2 , a3 ),(b1, b2 , b3 ), 则向量 AB的坐标为 (b1 a1, b2 a2 , b3 a3 ).
例1.4设A,B,C共线,(A 并 ,B,且 C).又设 A,B的
1.2向量的线性运算 1. 向量的加法 定 义 1 . 1两个向量α与β的和也是一个向,量 记作 α β. 规定如下:任取一点A,作AB α, BC β, 则α β AC. 这种求两个向量之和方的法称为加法的 三 角 形 法 则. 平 行 四 边:形 取法 定则 一 A,作 点ABα,ADβ, 以线A段 B和AD为两,作 边平行四A边 BC形 ,则 D
《解析几何》(第四版)吕林根许子道编第一章向量与坐标小结
一组数x, y,使 r xe1 ye2 .
3)若e1, e2 , e3不共面,则 r可表示为
r
xe1
ye2
ze3
(系数x,
y,
z被e1
,
e2
,
e3
,
r唯一确定
).
关于线性相关性的几个重要定理:
1) a1, a2,, an (n 2)线性相关 其中有一个矢量 是其余矢量的线性组合.
2)若一组矢量中的一部分 矢量线性相关 ,则这一
(a (ba)aa) (c0a()aaa0;);(b(c)a);
( )a a a
(a
b)
a
b
多边形法则
OA OA1 A1A2 An1An .
3、向量的分解与线性关系
关于矢量分解的几个重要结论:
1)若e 0,则r与e共线 存在唯一实
数x,使r=xe,
2)若e1, e2不共线,则 r与e1, e2共面 存在唯一
组矢3)量一线个性矢相量关a线. 性相关
a
0,
两a,个b共矢量 线线性存相 关在不 全两为矢零 量共的线数,, ,使 a b 0.
三个矢量线性相关 三矢量共面.
a,
b,
c共面
存在不全 为0的数,
,
,
使
a b c 0.
4) 空间中任意四个矢量总 是线性相关的.
即存在线性关系
a b c d 0.
4、向量在轴上的射影
点在轴上的射影 (点) 向量在轴上的射影 (数)
射影定理
Pr ju AB | AB | cos(AB,u);
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
Pr
ju a Pr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a c b c a d
a d b d .
课内作业: 1.证明: a b , b c , c a = a , b , c
.
2.设 a ,b ,c 为三个不共面的向量, 求任意向量 d 关于a ,b ,c 的分解式
d = xa + yb + zc
点D所引的高的长度. 的体积 V 等于以 之一,因此
解 AB , AC , AD
AB, AC , AD
为棱的平行六面体的体积的六分
V (AB, AC , AD) .
d ,b ,c 因 a , b , c 0 ,于是有 x = . a ,b ,c
a ,d ,c a ,b ,d y = a ,b ,c , z = a ,b ,c .
a ,b ,c
的坐标分别为
a b c
= a b a b e 1 e 2 a b a b e e
+ a b a b e e c e 1 c e c e a b a b c a b a b c c a b c
2 2
2.在等式 d
= xa + yb + zc
两边分别与向量 b c 作点积,得
d, b, c = xa + yb + = x a,b,c .
同 理可得
z c, b , c = x a , b , c + y b , b , c + z c, b , c
X Y Y Y Z Z . Z
a ,b ,c
例1.6.2 已知点
X
(1.6.3)
X
A , B , C , D 的直角坐标为 A , B ,
C , D
, 求以它们为顶点的四面体体积和从顶 .四面体ABCD
1.6 向量的混合积
向量 a , b 的外积 a b 和向量 c 作内积 a b c ,所得的数叫 做三个向量 a ,b ,c 的混合积,记为 a ,b ,c 或 a b c ,即
a ,b ,c a b c. 下面来讨论混合积 a ,b ,c 的几何意义.
a b c a b c a b 题1.6.2,三向量 a ,b ,c 共面的充要条件是混 合积 a ,b ,c . 由(1.6.1)式知,
a a b c a b c
a ,b ,c
b c
e1 , e , e .
a ,b ,c b , c, a = c, a , b b , a , c c, b , a = a , c, b .
证明 (1) 当 a ,b ,c 共面时,结论显然成立. (2) 当 a ,b ,c 不共面时,轮换或对调因子, 混合积的绝对值都等于 以 a ,b ,c 为相邻棱的平行六面体体积.又因为轮换 a ,b ,c 的顺序,不会 改变右(左)手系,而对调任意两个因子的位置,右手系变为左手系, 左手系变成右手系,因此混合积要变号.
由于 d 是任取的,所以有
a+ b c
= a c + b c.
(利用习题1.4.第10题)
取仿射坐标系 O ; e 1 , e 2 , e 3 . 设向量 a , a , a , b , b , b , c , c , c . 利用公式(1.5.1),得
a d b d
(1.6.4)
(1.6.4)式称为拉格朗日(Lagrange)恒等式. 证明 a b c d
b c d a
= b d c b c d a = b d = a c b c
a ,b ,c .
这说明三个不共面的向量的混合积的绝对值等于以这三个
向量为相邻棱的平行六面体的体积.
而 a ,b ,c 的值可正可负,当
a b , c 是锐角,因而 a b c
a ,b ,c
依序成右手系时,
a ,b ,c
为正;当
依序成左
手系时, a b , c 是钝角, 因而 a b c 为负.因此混合积 是正或负取决于向量 a ,b ,c 依序成右手系或左手系, 这就是
又 e 1 , e 2 , e 3 ,所以 a ,b ,c 共面当且仅当(1.6.2)式成立.
在直角坐标系下,向量的混合积有更简单的形式. 命题1.6.5 设向量 a ,b ,c 在直角坐标系 O ; i , j , k 中的坐标分 别为 X , Y , Z , X , Y , Z , X , Y , Z ,则混合积
混合积 a ,b ,c 符号的几何意义.
命题1.6.1三个不共面向量 a ,b ,c 的混合积的绝对值等于以 a ,b ,c 为相邻棱的平行六面体的体积,并且当 a ,b ,c 依序组成右手系(左手 系)时,混合积是正数(负数). 命题1.6.2 三个向量 a , b , c 共面的充要条件是混合积 a ,b ,c . 命题1.6.3 轮换混合积的三个因子,不改变它的值;而对调任何 两个因子要改变符号,即
又 A B C 的面积
S AB AC 所以从顶点 D 所引的高的长度 h .
,
例1.6.3 证明:对任意四个向量
a , b , c, d ,有
,
a b c d
a c b c
a ,b ,c
a b
a b
c
a b
a
c e 1 e e b
e1 , e , e .
(1.6.1)
由此可见,只要知道 e 1 , e 2 , e 3 , 就可以由
的坐标算出
a ,b ,c .
命题1.6.4 设向量 a ,b ,c 在仿射坐标系 O ; e 1 , e 2 , e 3 中的 坐标分别为 a , a , a , b , b , b , c , c , c ,则a ,b ,c 共面的 充要条件是
首先求以三个向量 a , b , c 为相邻棱的 平行六面体的体积V (图1.35). 以 a , b 为邻边的平行四边形可看作平行 六面体的底面,其面积 底面上的高 h 可表示为
h c cos a b, c ,
S ab
.而对应于 图1.36
于是平行六面体的体积
V S h a b c cos a b, c a bc =
例1.6.1 利用混合积的性质证明外积满足右分配律,即证
a+ b c
证明 任取向量
d
= a c + b c.
,我们有
a + b c d = a + b, c, d
c, d, a + b
c, d, a + c, d, b = a, c, d + b, c, d a c d + b c d = a c + b c d.
中的诸系数
x , y , z.
答案: 1. ( a × b ,b × c ,c × a ) = [ ( a × b )×( b × c ) ] c × a ) (
= [ ( a b × c ) )b - b b × c ) )a ] c × a ) ( ( ( = ( b ,c ,a )b c × a ) = ( b ,c ,a ) = ( a ,b ,c ) . (