高中数学人教A版选修2-3课后导练:1.1.1分类加法计数原理和分步乘法计数原理一 Word版含解析

合集下载

人教A版选修2-3 1.1 第1课时 分类加法计数原理与分步乘法计数原理 作业

人教A版选修2-3 1.1 第1课时 分类加法计数原理与分步乘法计数原理 作业

1.1 第1课时分类加法计数原理与分步乘法计数原理[A 基础达标]1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为( )A.13 B.16C.24 D.48解析:选A.由分类加法计数原理可知,不同的走法种数为8+2+3=13(种).2.(2019·郑州高二检测)如图,一条电路从A处到B处接通时,可构成线路的条数为( )A.8 B.6C.5 D.3解析:选B.从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B 处接通时,可构成线路的条数为2×3=6(条),故选B.3.(2019·西安高二检测)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.4.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.5.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分三类情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15(个).6.十字路口来往的车辆,如果不允许回头,则不同的行车路线有________种.解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线.答案:127.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:78.(2019·海口高二检测)已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数个数为________.解析:若y=ax2+bx+c为二次函数,则a≠0,要完成该事件,需分步进行:第一步,对系数a有4种选法;第二步,对系数b有5种选法;第三步,对系数c有5种选法.所以共有4×5×5=100(个)不同的二次函数.答案:1009.现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(2019·长沙高二检测)已知集合A={a,b,c},集合B={-1,0,1}.(1)从集合A到B能构造多少个不同的函数?(2)满足f(a)+f(b)+f(c)=0的函数有多少个?解:(1)每个元素a,b,c都可以有3个数和它对应,故从A到B能构造3×3×3=27(个)不同的函数.(2)列表如下:从表中可知满足f(a)+f(b)+f(c)=0的函数有7个.[B 能力提升]11.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小关系.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13(个).故选B.13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400(种)结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.因此共有不同结果17 400+11 400=28 800(种).14.(选做题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?解:法一:(直接法)若黄瓜种在第一块土地上,则有3×2×1=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2×1=6种不同的种植方法.故不同的种植方法共有6×3=18(种).法二:(间接法)从4种蔬菜中选出3种种在三块土地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).。

1.1分类加法计数原理与分步乘法计数原理(课后习题详解)

1.1分类加法计数原理与分步乘法计数原理(课后习题详解)

人教A 版,高中数学,选修2-31.1分类加法计数原理与分步乘法计数原理课本第6页,练习1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是 。

(2)从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同路线的条数是 。

【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)分步乘法计数原理要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6。

2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,问:(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)分步乘法计数原理要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60。

3.在例1中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择种数为6410+=。

这种算法有什么问题?【解析】因为要确定的是这名同学的专业选择,并不要考虑学校的差异,所以应当是6+4-1=9(种)可能的专业选择。

课本第10页,练习1.乘积12312312345()()()a a a b b b c c c c c ++++++++展开后共有多少项?【解析】分步乘法计数原理要完成的“一件事情”是“得到展开式的一项”。

由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法。

人教版高中数学选修2-3 第一章 1-1-1分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3 第一章 1-1-1分类加法计数原理与分步乘法计数原理

栏目导引
知识梳理
一、分类加法计数原理 1.完成一件事有两类不同的方案,在第一类方案中有 m种不同的方法,在第二类方案中有n种不同的方法,那么完 成这件事共有N= m+n 种不同的方法. 2.如果完成一件事情有n类不同方案,在第一类方案中 有m1种不同的方法,在第二类方案中有m2种不同的方法,… 在第n类方法中有mn种不同的方法,则完成这件事情共有N= m1+m2+…+mn 种不同的方法.
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
【错因】 错解一忽视数字0不能在首位的约束,按此 排法有可能为“0134”这种不符合要求的情况.
错解二忽视了题目“无重复数字的四位数”的约束,按 此排法有可能为“2032”,不符合条件.
若先排首位,应考虑排的是1,3,5还是2,4,6,因它直接关 系到第2步排个位的选取;
方法二(枚举法):因为只取一人,这样设三个年级的优 秀 班 干 部 分 别 为 A1 , A2 , A3 , A4 , A5 ; B1 , B2 , B3 , B4 , B5,B6,B7;C1,C2,C3,C4,C5,C6,C7,C8,从以上20 种情况中选一人有20种选法.
工具
人教A版数学选修2-3 第一章 计数原理
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
[问题] 此委员这一天从济南到北京共有多少种快捷途 径?
[提示] 3+4=7.此委员这一天从济南到北京共有7种快 捷途径.
工具
人教A版数学选修2-3 第一章 计数原理
栏目导引
2.现有6名同学去听同时进行的5个课外知识讲座,每 名同学可自由选择其中的一个讲座.
栏目导引
解析: 方法一(定义法):由于要从三个年级的优秀班 干部中选出一人,故可分为三类:第一类从高一的5名优秀 班干部中选取一人,有5种选法;第二类从高二的7名优秀班 干部中选取一人,有7种选法;第三类从高三的8名优秀班干 部中选取一人,有8种选法.又根据分类加法计数原理知, 共有5+7+8=20种不同的选法.

高中数学人教A版选修2-3优化练习:第一章 1.1 分类加法计数原理与分步乘法计数原理 Word版含解析

高中数学人教A版选修2-3优化练习:第一章 1.1 分类加法计数原理与分步乘法计数原理 Word版含解析

[课时作业][A组基础巩固]1.若x∈{1,2,3},y∈{5,7,9},则x·y的不同值个数是()A.2 B.6C.9 D.8解析:求积x·y需分两步取值:第1步,x的取值有3种;第2步,y的取值有3种,故有3×3=9个不同的值.答案:C2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10解析:分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;第2类,直线b与直线a上5个点可以确定5个不同的平面.故可以确定8+5=13个不同的平面.答案:C3.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有()A.3种B.6种C.7种D.9种解析:分3类:买1本好书,买2本好书和买3本好书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).答案:C4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:第一步,取b,有6种方法;第二步,取a,也有6种方法,根据分步乘法计数原理得,共有6×6=36种方法,即虚数有36个.答案:C5.如图所示,用四种不同的颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种解析:先涂A,D,E三个点,共有4×3×2=24种涂法,然后按B,C,F的顺序涂色,分为两类;一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法;另一种是B与E和D均不同色,共有1×(1×1+1×2)=3种涂法.所以涂色方法共有24×(8+3)=264种.答案:B6.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5、6、4,由分步乘法计数原理知,选法总数为N=5×6×4=120.答案:1207.某班委会由4名男生与3名女生组成,现从中选出2名参加校学生会的竞选,其中至少有1名女生当选的选法种数是________.解析:至少有1名女生当选有两种可能:(1)参加竞选的有1名女生,有4×3=12种选法;(2)参加竞选的有2名女生,有3种不同选法.因此至少有1名女生当选的选法为12+3=15(种).答案:158.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的种植方法共有________种.解析:分两步:第一步,先选垄,共有6种选法.第二步:种植A、B两种作物,有2种选法.因此,由分步乘法计数原理,不同的选垄种植方法有6×2=12(种).答案:129.设椭圆的方程为x2a2+y2b2=1(a>b>0),a∈{1,2,3,4,5,6,7},b∈{1,2,3,4,5},这样的椭圆共有多少个?解析:依题意按a,b的取值分为6类,第一类:a=2,b=1;第二类:a=3,b=1, 2;第三类:a=4,b=1,2,3;第四类:a=5,b=1,2,3,4;第五类:a=6,b=1,2,3,4,5;第六类:a=7,b=1,2,3,4,5.由分类加法计数原理得:这样的椭圆共有1+2+3+4+5+5=20个.10.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每个年级选1人成为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解析:(1)分三类:第一类,从高一年级选一人,有5种选法;第二类,从高二年级选一人,有6种选法;第三类,从高三年级选一人,有4种选法.由分类加法计数原理得,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选法;第二步,从高二年级选一人,有6种选法;第三步,从高三年级选一人,有4种选法.由分步乘法计数原理得,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法.由分类加法计数原理得,共有30+20+24=74种选法.[B组能力提升]1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.答案:B2.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A、B的值,则形成的不同直线有()A.18条B.20条C.25条D.10条解析:第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.答案:A3.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的4种颜色中任选1种着色.根据分步乘法计数原理得,共有6×5×4×4=480种着色方案.答案:4804.三边长均为整数,且最大边长为11的三角形有________个.解析:另两边长用x,y表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x=1,2,3,…,11,可有11个三角形;当y取10时,x=2,3,…,10,有9个三角形;……当y取6时,x=6,有1个三角形.所以,所求三角形的个数为11+9+7+5+3+1=36.答案:365.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞赛中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的选择?解析:分两类情况:(1)幸运之星在甲箱中抽,先确定幸运之星,再在两箱中各确定一名幸运伙伴有30×29×20=17 400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.6.7名学生中有3名会下象棋但不会下围棋,有2名学生会下围棋但不会下象棋,另2名既会下象棋又会下围棋,现从中选出会下象棋和会下围棋的各1人参加比赛,共有多少种不同的选法?解析:第一类:从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,由分步乘法计数原理得N1=3×2=6(种).第二类:从3名只会下象棋的学生中选1名参加象棋比赛,同时从2名既会下象棋又会下围棋的学生中选1名参加围棋比赛,由分步乘法计数原理得N2=3×2=6(种).第三类:从2名既会下象棋又会下围棋的学生中选1名参加象棋比赛,同时从2名只会下围棋的学生中选1名参加围棋比赛,由分步乘法计数原理得N3=2×2=4(种).第四类:从2名既会下象棋又会下围棋的学生中各选1名参加象棋比赛和围棋比赛,有N4=2种.综上,由分类加法计数原理可知,不同选法共有N=N1+N2+N3+N4=6+6+4+2=18(种).。

人教版高中数学选修2-3知识讲解,巩固练习(教学资料):专题1.1 分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3知识讲解,巩固练习(教学资料):专题1.1 分类加法计数原理与分步乘法计数原理

第一章计数原理1.1 分类加法计数原理与分步乘法计数原理知识一、分类加法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N= 种不同的方法.2.分类加法计数原理的推广完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……在第n类方案中有m n种不同的方法,那么完成这件事共有N= 种不同的方法.【注】分类加法计数原理的特点是各类中的每一个方法都可以完成要做的事情.二、分步乘法计数原理1.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N= 种不同的方法.2.分步乘法计数原理的推广完成一件事需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N= 种不同的方法.【注】分步乘法计数原理的特点是每一步中都要使用一个方法才能完成该步要做的事情.可以用下图表示分步乘法计数原理的原理:3.两个计数原理的联系与区别分类加法计数原理分步乘法计数原理联系分类加法计数原理和分步乘法计数原理解决的都是关于完成一件事情的不同方法的种数问题.区别(1)完成一件事共有n类方法,关键词是“分类”.(2)各类方法都是互斥的、并列的、相互独立的.(3)每类方法都能完成这件事.(1)完成一件事共分n个步骤,关键词是“分步”.(2)每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有每个步骤都完成了,才能完成这件事.(3)各步之间是互相关联的、互相依存的.三、两个计数原理的应用1.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析——需要分类还是需要分步.应用分类加法计数原理时,要注意“类”与“类”之间的独立性和并列性,各类中的每个方法都能独立的将这件事情完成;应用分步乘法原理时,要注意“步”与“步”之间是连续的,做一件事需分成若干个互相联系的步骤,所有步骤依次相继完成,这件事才算完成.2.分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.3.分步要做到“步骤完整”,步与步之间要相互独立,最后根据分步乘法计数原理,把完成每一步的方法数相乘得到总数.知识参考答案:一、1.m+n2.m1+m2+···+m n二、1.m×n2.m1×m2×···×m n重点重点分类加法计数原理、分步乘法计数原理难点两个计数原理的应用易错混淆分步、分类致误或分步、分类时考虑不全致误1.分类加法计数原理的应用对分类加法计数原理的理解注意点:(1)明确问题中所指的“完成一件事”是指什么,怎样才算是完成这件事,然后根据问题的特点确定一个分类标准,在这个标准下进行分类.(2)“完成一件事有n类不同方案”是指完成这件事的所有方法可分为n类,即任何一类中的任何一种方法都可以完成任务,而不需要再用到其他方法;每一类没有相同的方法,且完成这件事的任何一种方法都在某一类中.简单地说,就是应用分类加法计数原理时要做到“不重不漏”.【例1】从甲地到乙地一天之中有三次航班、两趟火车,某人利用这两种交通工具在当天从甲地赶往乙地的方法有A.2种B.3种C.5种D.6种【答案】C【例2】把3枚相同的纪念邮票和4枚相同的纪念币作为礼品送给甲、乙两名学生,要求全部分完且每人至少有一件礼品,则不同的分法共有种.【答案】18【解析】以甲分得的礼品数为标准分类(用(a,b)表示甲分得纪念邮票a枚,纪念币b枚),可分为6类:第1类,甲分得1件礼品有2种分法:(1,0),(0,1);第2类,甲分得2件礼品有3种分法:(2,0),(1,1),(0,2);第3类,甲分得3件礼品有4种分法:(3,0),(2,1),(1,2),(0,3);第4类,甲分得4件礼品有4种分法:(3,1),(2,2),(1,3),(0,4);第5类,甲分得5件礼品有3种分法:(3,2),(2,3),(1,4);第6类,甲分得6件礼品有2种分法:(3,3),(2,4).根据分类加法计数原理,不同的分法共有2+3+4+4+3+2=18种.【名师点睛】本题的分类标准并不明显,根据题意,这些礼品要全部分完且每人至少有一件礼品,因此可以将甲、乙这两人中一人分得的礼品数作为分类标准,本题从甲分得的礼品数考虑,也可以从两类礼品的角度考虑,分两个步骤完成,应用分步乘法计数原理解决.2.分步乘法计数原理的应用对分步乘法计数原理的理解注意点:(1)明确问题中所指的“完成一件事”是指什么,怎样才算是完成这件事,然后根据问题的特点确定分步标准,标准不同,分步的步骤也会不同.(2)“完成一件事需要n个步骤”是指完成这件事的任何一种方法,都要分成n个步骤,在每一个步骤中任取一种方法,然后相继完成所有这些步骤就能完成这件事.即各步骤是相互依存的,只有每个步骤都完成才能完成这件事.简单地说,就是应用分步乘法计数原理时要做到“步骤完整”.【例3】某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有A.180种B.360种C.720种D.960种【答案】D【解析】分五步完成,第i步取第i个号码由分步乘法计数原理,可得车牌号码共有种.【例4】(1)用数字1,2,3可以组成多少个三位数?(2)用数字1,2,3可以组成多少个没有重复数字的三位数?【答案】(1)27;(2)6.【解析】(1)要完成“组成三位数”这件事,需分以下3步:第一步:确定个位数字,1,2,3三个数字都可以选择,有3种选法;第二步:确定十位数字,1,2,3三个数字都可以选择,有3种选法;第三步:确定百位数字,1,2,3三个数字都可以选择,有3种选法.根据分步乘法计数原理,可以组成的三位数有3×3×3=27个.(2)要完成“组成没有重复数字的三位数”这件事,需分以下3步:第一步:确定个位数字,1,2,3三个数字都可以选择,有3种选法;第二步:确定十位数字,第一步选过的数字不能选择,因此有2种选法;第三步:确定百位数字,只有1种选法.根据分步乘法计数原理,知可以组成的三位数有3×2×1=6个.【规律总结】(1)应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.(2)利用分步乘法计数原理解题的一般思路.①分步:将完成这件事的过程分成若干步;②计数:求出每一步中的方法数;③结论:将每一步中的方法数相乘得最终结果.3.两个计数原理的综合应用应用两个计数原理解题时的策略:(1)确定计数原理:要分清涉及的问题从大的方面看是利用分类加法计数原理还是分步乘法计数原理,还是两种原理综合应用解题.(2)处理好类与步的关系:对于较为复杂的题目,在某一类中需要分步计算所用的方法,而在某一步中又可能分类计算所用的方法,两者要有机结合.(3)注意不重不漏:做到分类类不重,分步步不漏.【例5】编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?【例6】集合A={1,2,-3},B={-1,-2,3,4}.现从A,B中各取一个元素作为点P(x,y)的坐标.(1)可以得到多少个不同的点?(2)在这些点中,位于第一象限的有几个?【解析】(1)一个点的坐标由x,y两个元素确定,若它们有一个不同,则表示不同的点,可分为两类:第一类:选A中的元素为x,B中的元素为y,有3×4=12(个)不同的点;第二类:选A中的元素为y,B中的元素为x,有4×3=12(个)不同的点.由分类加法计数原理得不同点的个数为12+12=24(个).(2)第一象限内的点,即x,y必须为正数,从而只能取A,B中的正数,同样可分为两类.由分类加法计数原理得适合题意的不同点的个数为2×2+2×2=8(个).4.分类或分步时考虑不全致误【例7】有红、黄、蓝旗各3面,每次升1面、2面、3面在某一旗杆上纵向排列,表示不同的信号,顺序不同也表示不同的信号,共可以组成多少种不同的信号?【错解】每次升一面旗可组成3种不同的信号;每次升2面旗可组成3×2=6种不同信号;每次升3面旗可组成3×2×1=6种不同的信号,根据分类加法计数原理知,共有不同信号3+6+6=15种.【错因分析】每次升起2面或3面旗时,颜色可以相同.【正解】每次升1面旗可组成3种不同的信号;每次升2面旗可组成3×3=9种不同的信号;每次升3面旗可组成3×3×3=27种不同的信号.根据分类加法计数原理得,共可组成:3+9+27=39种不同的信号.【易错警示】审题时要细致,把题意弄清楚.本题中没有规定升起旗子的颜色不同,故既要考虑升起旗子的面数,又要考虑其颜色,不可偏废遗漏.【例8】甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况有种.【错解】错解1:分四步完成这件事.第1步,第1名同学去夺3门学科的冠军,有可能1个也没获得,也可能获得1个或2个或全部,因此,共有4种不同情况;同理,第2,3,4步分别由其他3名同学去夺这3门学科的冠军,都各自有4种不同情况.由分步乘法计数原理知,共有4×4×4×4=44=256种不同的冠军获得情况.错解2:分四步完成这件事.第1步,第1名同学去夺3门学科的冠军,有3种不同情况;同理,第2,3,4步分别由其他3名同学去夺这3门学科的冠军,都各自有3种不同情况.由分步乘法计数原理知,共有3×3×3×3=34=81种不同的冠军获得情况.【错因分析】要完成的“一件事”是“争夺3门学科知识竞赛的冠军,且每门学科只有1名冠军产生”.但错解1、2中都有可能出现某一学科冠军被2人、3人,甚至4人获得的情形,另外还可能出现某一学科没有冠军产生的情况.【正解】可先举例说出其中的一种情况,如数学、物理、化学3门学科知识竞赛的冠军分别是甲、甲、丙,可见研究的对象是“3门学科”,只有3门学科各产生1名冠军,才完成了这件事,而4名同学不一定每人都能获得冠军,故完成这件事分三步.第1步,产生第1个学科冠军,它一定被其中1名同学获得,有4种不同的获得情况;第2步,产生第2个学科冠军,因为夺得第1个学科冠军的同学还可以去争夺第2个学科的冠军,所以第2个学科冠军也是由4名同学去争夺,有4种不同的获得情况;第3步,同理,产生第3个学科冠军,也有4种不同的获得情况.由分步乘法计数原理知,共有4×4×4=43=64种不同的冠军获得情况.【答案】64【易错警示】此类问题是一类元素允许重复选取的计数问题,可以用分步乘法计数原理来解决,关键是明确要完成的一件事是什么.也就是说,用分步乘法计数原理求解元素可重复选取的问题时,哪类元素必须“用完”就以哪类元素作为分步的依据.基础训练1.某学生去书店,发现2本不同的好书,决定至少买其中一本,则购买方式共有A.1种B.2种C.3种D.4种2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,则不同的选法共有A.24种B.30种C.54种D.720种3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有A.12种B.7种C.14种D.49种4.在一次才艺展示活动中,甲、乙、丙三位同学欲报名“朗诵比赛”、“歌唱比赛”,但学校规定每位同学限报其中的一个,且乙知道自己唱歌不如甲,若甲报唱歌比赛乙就报朗诵比赛,则他们三人不同的报名方法有A.3种B.6种C.7种D.8种5.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为A.2 B.4C.6 D.86.在所有的两位数中,个位数字大于十位数字的两位数共有A.12 B.24C.36 D.407.若4名学生报名参加数学、计算机、航模兴趣小组,每人选报1项,则不同的报名方式有_______种. 8.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,则共有________种不同的推选方法.9.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续....固定相邻的2个螺栓,则不同的固定螺栓方式的种数是________.10.现从高一四个班的学生中选取34人,其中一、二、三、四班分别选取7人、8人、9人、10人,他们自愿组成数学课外小组.(1)每班选一名组长,有多少种不同的选法?(2)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?能力提升11.把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有A.120种B.1024种C.625种D.5种12.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有A.6种B.36种C.63种D.64种13.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有A.50 种B.49 种C.48 种D.47 种14.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这5个数字中任取2个不同的数字,则方程所表示的不同直线有A .5条B .7条C .12条D .14条15.如图所示给五个区域涂色,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同涂色方法种数为A .24种B .48种C .72种D .96种16.已知a ∈{3,4,6},b ∈{2,5,7,8},则方程x 2a +y 2b=1可表示________个不同的椭圆.17.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为______ 18.我们把个位数比十位数小的两位数称为“和谐两位数”,则1,2,3,4四个数组成的两位数中,“和谐两位数”有________个.19.用n 种不同的颜色为下列两块广告牌(如图甲、乙)着色,要求A ,B ,C ,D 四个区域中相邻(有公共边界)的区域用不同的颜色.(1)若n =6,求为甲图着色时共有多少种不同的方法; (2)若为乙图着色时共有120种不同方法,求n .真题练习20.(新课标全国Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A .24B .18C .12D .921.(2019新课标全国Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个22.(2019福建模拟)满足a ,b ∈{−1,0,1,2},且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 A .14 B .13 C .12D .1023.(2019山东模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为A .243B .252C .261D .27924.(2019安徽模拟)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有A .24对B .30对C .48对D .60对参考答案1 2 3 4 5 6 11 12C D D B D C D C13 14 15 20 21 22 23 24B DC B C B B C 1.【答案】C【解析】分两类:买1本书、买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种.2.【答案】D【解析】第一步,从30名男生中选出1人,有30种不同的选法;第二步,从24名女生中选出1人,有24种不同的选法.根据分步乘法计数原理得,共有30×24=720种不同的选法.3.【答案】D【解析】要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法,第二步出门也有4+3=7种方法,由分步乘法计数原理知,进、出的方案有7×7=49种.4.【答案】B【解析】从甲着手分析,分两类:若甲报唱歌比赛,则乙报朗诵比赛,丙可任选,有2种报名方法;若甲报朗诵比赛,则乙、丙均可任选,有2×2=4种报名方法.所以共有2+4=6种不同的报名方法.5.【答案】D【解析】分两类:第1类,公差大于0,有①1,2,3,②2,3,4,③3,4,5,④1,3,5,共4个等差数列;第二类,公差小于0,也有4个.根据分类加法计数原理可知,共有4+4=8个不同的等差数列.【名师点睛】完成这件事,只要两位数的个位、十位确定了,这件事就算完成了,因此可考虑按十位上的数字情况或按个位上的数字情况进行分类.应用分类加法计数原理解题时要注意以下三点:(1)明确题目中所指的“完成一件事”指的是什么事,怎样才算是完成这件事.(2)完成这件事的n类办法中的各种方法是互不相同的,无论哪类办法中的哪种方法都可以单独完成这件事.(3)确立恰当的分类标准,这个“标准”必须满足:①完成这件事情的任何一种方法必须属于其中的一个类;②分别在不同两类中的两种方法不能相同.即不重复,无遗漏.7.【答案】81【解析】4名学生报名参加数学、计算机、航模兴趣小组,每人选报1项,则每人有3种报名方法,则4人共有3×3×3×3=81种方法.8.【答案】31【解析】分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理有3×5=15种选法;第二类,甲班选一名,丙班选一名,根据分步乘法计数原理有3×2=6种选法;第三类,乙班选一名,丙班选一名,根据分步乘法计数原理有5×2=10种选法.综合以上三类,根据分类加法计数原理,共有15+6+10=31种不同选法.9.【答案】60【解析】第一步任意选取一个螺栓,有6种方法;第二步,按照要求以此固定,不妨第一次固定螺栓1,则有如下的固定方法:1,3,5,2,4,6;1,3,5,2,6,4;1,3,6,4,2,5;1,5,2,4,6,3;1,5,3,6,2,4;1,5,3,6,4,2;1,4,2,6,3,5;1,4,2,5,3,6;1,4,6,3,5,2;1,4,6,2,5,3,共有10种方法,所以总共有种方法,故答案是60.10.【解析】(1)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N=7×8×9×10=5040(种).(2)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).11.【答案】D【解析】由于4张同样的参观券分给5个代表,每人最多分一张,每次分完只有一个代表队得不到,所以共有5种不同的分法.故选D.12.【答案】C【解析】每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.13.【答案】B【解析】按分类加法计数原理做如下讨论:①当A中最大的数为1时,B可以是{2,3,4,5}的非空子集,即有24-1=15种方法;②当A中最大的数为2时,A可以是{2}或{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14种方法;③当A中最大的数为3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4×(22-1)=12种方法;④当A中最大的数为4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B可以是{5},即有8×1=8种方法.故共有15+14+12+8=49种方法.14.【答案】D【解析】方法一(直接法):本题中有特殊数字0,所以,以A,B中是否有数字0为标准进行分类,可分两类:第1类,当A,B中有一个为0时,表示直线x=0或y=0,共2条不同直线.第2类,当A,B都不为0时,确定直线Ax+By=0需要分两步完成:第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条不同直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.方法二(间接法):分两步:第1步,确定A的值,有5种不同的方法;第2步,确定B的值,有4种不同的方法.由分步乘法计数原理知,可以确定5×4=20条直线.在这20条直线中,A=0,B=1,2,3,5,以及B=0,A=1,2,3,5各表示一条直线,即有6条直线是重复计数的,因此,符合条件的不同直线共有20−6=14条.【名师点睛】间接法体现了“正难则反”的思想.若问题从正面考虑的话情况比较多,而问题的反面情况较少,且容易计数,则宜采用间接法,即先求出方法总数,再减去不符合条件的方法数或重复计数的方法数. 15.【答案】C【解析】解法1:分两种情况:①A、C不同色,先涂A有4种,C有3种,E有2种,B、D有1种,由分步乘法计数原理知有4×3×2=24种.②A、C同色,先涂A有4种,E有3种,E有2种,B、D各有2种,由分步乘法计数原理知有4×3×2×2=48种.由分类加法计数原理知,共有72种,故选C.解法2:先涂A,有4种涂法,再涂B、D,①若B 与D 同色,则B 有3种,E 有2种,C 有2种,共有4×3×2×2=48种;②若B 与D 不同色,则B 有3种,D 有2种,E 有1种,C 有1种,共有4×3×2×1×1=24种, 由分类加法计数原理知,共有不同涂法48+24=72种. 故选C .【名师点睛】这是一个有限制条件的计数问题,解决方法是:特殊位置、特殊元素优先安排的原则.本题是先分类再分步,而分类的标准是两个特殊位置,这样,在分类时才能做到“不重不漏”.应用两个计数原理解题时的策略:(1)确定计数原理:要分清涉及的问题从大的方面看是利用分类加法计数原理还是分步乘法计数原理,还是两种原理综合应用解题.(2)处理好类与步的关系:对于较为复杂的题目,在某一类中需要分步计算所用的方法,而在某一步中又可能分类计算所用的方法,两者要有机结合. (3)注意不重不漏:做到分类类不重,分步步不漏. 16.【答案】12【解析】∵a ∈{3,4,6},b ∈{2,5,7,8},∴x 2a +y 2b =1可表示不同的椭圆个数为3×4=12个.17.【答案】49【解析】黑白两个球随机放入编号为的三个盒子中,每个球都有三种放法,故共有种放法,黑白两球均不在一号盒,都有两种放法,共有,所以黑白两球均不在一号盒的概率为49,故答案为49. 【名师点睛】计数原理与其他知识交汇命题,常以“个数”或“概率”形式出现,计数常采用列举数数、树状图、表格等方法.解答时,先依据其他知识转化,将所求问题归结为计数问题,再按计数原理进行计算.19.【解析】(1)对区域A ,B ,C ,D 按顺序着色,共有6×5×4×4=480种不同的方法.(2)对区域A,B,C,D按顺序着色,依次有n种、n−1种、n−2种和n−3种,由分步乘法计数原理,不同的着色方法共有n(n−1)(n−2)(n−3)=120,整理得(n2−3n)(n2−3n+2)=120,(n2−3n)2+2(n2−3n)−120=0,n2−3n−10=0或n2−3n+12=0(舍去),解得n=5.【名师点睛】(1)由题意知本题考查的是分步乘法计数原理,对区域A,B,C,D按顺序着色,第一块有6种方法,第二块就不能选第一块的颜色,有5种结果,以此类推,根据分步计数原理得到结果.(2)利用分步乘法计数原理得到不同的染色方法有n(n−1)(n−2)(n−3)种,再根据共有120种结果,列出等式,解关于n的方程,即可得到结果.对于着色问题的两种典型现象:一是平面图涂颜色:先涂接触区域最多的一块;二是立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举.20.【答案】B【解析】由题意可知E→F共有6种走法,F→G共有3种走法,由乘法计数原理知,则共有6×3=18种走法,故选B.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.21.【答案】C【解析】由题意,得必有10a=,81a=,则具体的排法列表如下:0 00 1 1 11 10 1 110 11 010 1 110 11 01 00 11 010 1 1 10 1 1 0 10 1 1由上表知,不同的“规范01数列”共有14个,故选C.【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到岀奇制胜的效果. 22.【答案】B【解析】当0a =时,关于x 的方程为20x b +=,此时有序数对()()()0,10,00,102),(-,,,均满足要求; 当0a ≠时,440ab ∆=-≥,所以1ab ≤,此时满足要求的有序数对为()()(1,11,01,11,2)()-----,,,,()()()111,01,1212,0()()--,,,,,,.综上,共有13个满足要求的有序数对. 23.【答案】B【解析】十个数排成不重复数字的三位数的求解方法是: 第1步,排百位数字,有9种方法(0不能作首位); 第2步,排十位数字,有9种方法; 第3步,排个位数字,有8种方法,根据乘法原理,共有9×9×8=648个没有重复数字的三位数. 可以组成所有三位数的个数有9×10×10=900(个), 所以可以组成有重复数字的三位数的个数为900−648=252. 24.【答案】C【解析】如图,在上底面中选11B D ,四个侧面中的面对角线都与它成60°,共8对,同样11A C 对应的也有8对,下底面也有16对,共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.。

人教版高中数学选修2-3练习:1.1.1分类加法计数原理与分步乘法计数原理

人教版高中数学选修2-3练习:1.1.1分类加法计数原理与分步乘法计数原理

学业分层测评(建议用时: 45 分钟 )[ 学业达标 ]一、选择题1.如图 1-1-1 所示为一个电路图,从左到右可通电的线路共有()图 1-1-1A.6 条B.5 条C.9 条D.4 条2 条.由【分析】从左到右通电线路可分为两类:从上边有 3 条;从下边有分类加法计数原理知,从左到右通电的线路共有 3+2=5 条.【答案】B2.有5 列火车停在某车站并排的 5 条轨道上,若火车A 不可以停在1 道上,第则 5 列火车的泊车方法共有()A.96 种B.24 种C.120 种D.12 种【分析】先排第 1 道,有 4 种排法,第2,3,4,5 道各有4,3,2,1 种,由分步乘法计数原理知共有4×4×3×2×1=96 种.【答案】A()3.将5 封信投入 3 个邮筒,不一样的投法共有A.53种B.35种C.8 种D.15 种5 封信投完,共有【分析】每封信均有 3 种不一样的投法,因此挨次把3×3×3×3×3=35种投法.【答案】B4.假如 x,y∈N,且 1≤x≤3,x+ y<7,则知足条件的不一样的有序自然数对的个数是 ()A.15B.12C.5D.4【分析】利用分类加法计数原理.当 x=1 时, y=0,1,2,3,4,5,有 6 个;当 x= 2 时, y=0,1,2,3,4,有 5 个;当x=3 时, y= 0,1,2,3,有 4 个.据分类加法计数原理可得,共有6+5+4=15 个.【答案】A5.从会合 {1,2,3,4,5} 中任取B 的值,则形成的不一样直线有(A.18 条C.25 条2 个不一样的数,作为方程Ax+By= 0 的系数) 【导学号: 97270002】B.20 条D.10 条A,【分析】取法,此中当第一步,取A=1,B=2A 的值,有 5 种取法;第二步,取B 的值,有 4 种时与 A=2,B=4 时是同样的方程;当A=2,B=1时与A=4,B=2 时是同样的方程,故共有5×4- 2=18 条.【答案】A二、填空题x2y26.椭圆 m+ n =1 的焦点在y 轴上,且m∈{1,2,3,4,5} , n∈ {1,2,3,4,5,6,7} ,则知足题意的椭圆的个数为________.【分析】由于焦点在y 轴上,因此 0<m<n,考虑 m 挨次取 1,2,3,4,5 时,切合条件的 n 值分别有 6,5,4,3,2 个,由分类加法计数原理知,知足题意的椭圆的个数为 6+ 5+4+3+2=20 个.【答案】207.某班 2016 年元旦晚会原定的 5 个节目已排成节目单,开演前又增添了 2 个新节目,假如将这两个节目插入原节目单中,那么不一样的插法的种数为 ______.【分析】将第一个新节目插入 5 个节目排成的节目单中有 6 种插入方法,再将第二个新节目插入到刚排好的6 个节目排成的节目单中有7 种插入方法,利用分步乘法计数原理,共有插入方法: 6×7=42(种).【答案】428.如图1-1-2,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标明的数字表示该段网线单位时间内能够经过的最大信息量,现从结点 B 向结点 A 传达信息,信息能够分开沿不一样的路线同时传达,则单位时间内传达的最大信息量为 ________.图1-1-2【分析】依题意,第一找出 B 到A 的路线,一共有 4 条,分别是BCDA,信息量最大为3;BEDA,信息量最大为4;BFGA,信息量最大为6;BHGA,信息量最大为 6.由分类加法计数原理,单位时间内传达的最大信息量为3+ 4+ 6+6=19.【答案】19三、解答题9.有不一样的红球 8 个,不一样的白球7 个.(1)从中随意拿出一个球,有多少种不一样的取法?(2)从中随意拿出两个不一样颜色的球,有多少种不一样的取法?【解】(1)由分类加法计数原理,从中任取一个球共有8+7=15(种).(2)由分步乘法计数原理,从中任取两个不一样颜色的球共有8×7= 56(种 ).10.某单位员工义务献血,在体检合格的人中,O 型血的共有 28 人, A 型血的共有 7 人, B 型血的共有 9 人, AB 型血的共有 3 人.(1)从中任选 1 人去献血,有多少种不一样的选法;(2)从四种血型的人中各选 1 人去献血,有多少种不一样的选法?【解】从 O 型血的人中选 1 人有 28 种不一样的选法;从 A 型血的人中选 1 人有 7 种不一样的选法;从 B 型血的人中选 1 人有 9 种不一样的选法;从AB 型血的人中选1 人有3 种不一样的选法.(1)任选1 人去献血,即不论选哪一种血型的哪一个人,“任选1 人去献血”这件事情都能够达成,因此用分类加法计数原理.有 28+ 7+ 9+ 3=47 种不一样的选法.(2)要从四种血型的人中各选 1 人,即从每种血型的人中各选出 1 人后,“各选 1 人去献血”这件事情才达成,因此用分步乘法计数原理.有 28×7×9×3=5 292 种不一样的选法.[ 能力提高 ]1.一植物园观光路径如图1-1-3 所示,若要所有观光而且路线不重复,则不同的观光路线种数共有 ()图 1-1-3A.6 种C.36 种B.8 种D.48 种【分析】由题意知在 A 点可先观光地区1,也可先观光地区 2 或3,每种选法中能够按逆时针观光,也能够按顺时针观光,因此第一步能够从 6 个路口任选一个,有 6 种走法,观光完第一个地区后,选择下一步走法,有 4 种走法,参观完第二个地区后,只剩下最后一个地区,有 2 种走法,依据分步乘法计数原理,共有 6×4×2=48 种不一样的观光路线.【答案】D2.某市汽车牌照号码 (由 4 个数字和 1 个字母构成 )能够上网自编,但规定从左到右第二个号码只好从字母 B,C, D 中选择,其余四个号码能够从 0~9这十个数字中选择( 数字能够重复 ).某车主第一个号码(从左到右 )只想在数字3,5,6,8,9 中选择,其余号码只想在1,3,6,9 中选择,则他的车牌号码所有可能的情况有 ()【导学号:97270003】A.180 种C.720 种B.360 种D.960 种【分析】分五步达成,第 i 步取第 i 个号码 (i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960 种.【答案】D3.直线方程 Ax+By=0,若从 0,1,3,5,7,8 这 6 个数字中每次取两个不一样的数作为 A, B 的值,则可表示 ________条不一样的直线.【分析】若 A 或B 中有一个为零时,有 2 条;当AB≠0时有5×4=20 条,故共有20+2=22 条不一样的直线.【答案】224.已知会合M= { - 3,- 2,- 1,0,1,2} , P(a, b)表示平面上的点 (a, b∈M),(1)P 能够表示平面上的多少个不一样点?(2)P 能够表示平面上的多少个第二象限的点?(3)P 能够表示多少个不在直线y=x 上的点?【解】 (1)达成这件事分为两个步骤: a 的取法有 6 种,b 的取法有 6 种.由分步乘法计数原理知, P 能够表示平面上的 6×6= 36(个 )不一样点.(2)依据条件需知足a<0,b>0.达成这件事分两个步骤: a 的取法有 3 种, b 的取法有 2 种,由分步乘法计数原理知, P 能够表示平面上的 3×2=6(个)第二象限的点. (3)由于点 P 不在直线 y=x 上,因此第一步 a 的取法有 6 种,第二步 b 的取法有 5 种,依据分步乘法计数原理可知, P 能够表示 6×5=30(个)不在直线 y= x 上的点.。

高中数学 1.1分类加法计数原理与分步乘法计数原理同步练测 新人教A版选修2-3

1.1 分类加法计数原理与分步乘法计数原理同步练测一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( ) A .48 B .18 C .24 D .362.某中学组织三个班级去学校附近的甲、乙、丙、丁四个村进行社会实践,除其中甲村必须有班级去实践外,每个班去哪个村可以由他们自行选择,则不同的分配方案共有( ) A .37种 B .48种 C .16种 D .18种3.某单位有7个连在一起的车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空位连在一起,则不同的停放方法共有( )A .16种B .18种C .24种D .32种4.所有边长均为整数,且最大边长为11的三角形的个数为( )A .36B .37C .25D .265.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A .3B .4C .6D .86.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A .8种B .9种C .10种D .11种7.十字路口来往的车辆,如果不允许回头,共有( )种行车路线.A .24B .16C .12D .108.某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( )A .9×8×7×6×5×4×3B .8×96C .9×106D .81×105二、填空题(本大题共4小题,每小题5分,共20分)9.用红、黄、蓝三种颜色之一去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.10.从1到10的正整数中,任意抽取两个相加,所得和为奇数的不同情形有__________种. 11.72的正约数(包括1和72)共有__________个. 12.从-1,0,1,2这四个数中选三个不同的数作为函数的系数,可组成不同的二次函数共有_____________个,其中不同的偶函数共有_____________个.(用数字作答)三、解答题(本大题共2小题,每小题20分,共40分)13. 编号为A ,B ,C ,D ,E 的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A 球不能放在1,2号,B 球必须放在与A 球相邻(有公共边)的盒子中,求不同的放法有多少种.14.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?1.1 分类加法计数原理与分步乘法计数原理同步练测答题纸得分:一、选择题二、填空题9. 10. 11. 12.三、解答题13.14.1.1 分类加法计数原理与分步乘法计数原理同步练测答案一、选择题1.D 解析:第1类,当平面为正方体的一个面时,此平面与两顶点确定的直线构成4个“正交线面对”,正方体共有6个面,∴ 可得6×4=24个“正交线面对”.第2类,当平面为正方体的一个对角面时,此平面与两个顶点确定的直线构成2个“正交线面对”,正方体共有6个对角面,∴ 可得6×2=12个“正交线面对”. ∴ 共有24+12=36个正交线面对,选D.2.A 解析:三个班级去四个村,则有43种方案,若他们都不去甲村,则有33种方案,则不同的分配方案共有43-33=37种.3.C 解析:第一类:前4个车位空,有种停法; 第二类:第2,3,4,5个车位空,有种停法; 第三类:第3,4,5,6个车位空,有种停法; 第四类:第4,5,6,7个车位空,有种停法. ∴ 共有4=24种停放方法.4.A 解析:假设另两边长分别为),不妨设≤≤11,要构成三角形,必有+≥12,因此≥6.当=11时,可取1,2,3,…,11;当=10时,可取2,3,…,10;…;当=6时,只能是6.故所有三角形的个数为11+9+7+5+3+1=36.5.D 解析:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.6.B 解析:分四步完成,共有3×3×1×1=9种.7.C 解析:起点有4种可能性,终点有3种可能性,因此,行车路线共有4×3=12种.8.D 解析:电话号码是六位数字时,该城市可安装电话9×105部,同理升为七位时可安装电话9×106部.∴ 可增加的电话部数是9×106-9×105=81×105. 二、填空题9. 108 解析:对1,5,9三个位置涂色有三种方法,对2和6两个小正方形涂色,若颜色相同,则有两种方法,此时3也有两种方法; 若2和6颜色不相同,则有两种方法,此时3只有一种涂色方法,所以涂2,3,6三个小正方形共有6种方法,同理涂4,7,8三个小正方形也有6种方法,故总的涂色方法有3×6×6=108(种). 10.25 解析:当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25种. 11.12 解析:72=23×32.N )都是72的正约数.的取法有4种,的取法有3种,由分步乘法计数原理得72的正约数共3×4个.12.18,6 解析:一个二次函数对应着的一组取值,的取法有3种,的取法有3种,的取法有2种,由分步乘法计数原理,知共有二次函数个.若二次函数为偶函数,则同上共有个.三、解答题13. 解:根据A 球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,有3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E,则根据分步乘法计数原理得,有3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C、D、E,有6种不同的放法,根据分步乘法计数原理得,有3×3×2×1=18种不同的放法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.14.解:(1)5名学生中任一名均可报其中的任一项,因此每个学生都有4种报名方法,5名学生都报了项目才能算完成这一事件.故报名方法种数为4×4×4×4×4=45种.(2)每个项目只有一个冠军,每一名学生都可能获得其中的一项获军,因此每个项目获冠军的可能性有5种.故有=5×5×5×5=54种.。

高中数学选修2-3人教A:全册精品教案导学案 1.1分类加法计数原理和分步乘法计数原理

1. 1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪第一课时引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有N+=nm种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解:从总体上看,如,蚂蚁从顶点A 爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类, m1 = 1×2 = 2 条第二类, m2 = 1×2 = 2 条第三类, m3 = 1×2 = 2 条所以, 根据加法原理, 从顶点A 到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条练习1.填空:( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有 n m N ⨯=种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,第一步, m1 = 3 种,第二步, m2 = 2 种,第三步, m3 = 1 种,第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去C 村,不同( 2 )从3 个年级的学生中各选1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。

人教版数学高二A版选修2-3课后导练分类加法计数原理和分步乘法计数原理(三)

课后导练基础达标1.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( )A.8B.15C.125D.243解析:每名大学生有3种不同的分配方式,所以共有35种不同的分配方式.故选D.2.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A ,B ,C ,D ,E ,F ,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有( )A.6种B.36种C.63种D.64种答案:C3.某班一天上午排语、数、外、体四门课,其中体育课不能排一、四节,则不同排法的种数为( )A.24B.22C.20D.12解析:先排体育课,只能排在二、三节,有两种排法;第二步排语文,有3种方法;第三步排数学,有2种方法;第四步排外语,只有1种方法,故共有N=2×3×2×1=12种排法,故 选D.4.用1,5,9,13中任意一个数作为分子,4,8,12,16中任意一个数作为分母,可构造________个不同的真分数.解析:设构造的真分数为nm ,其中m ∈{1,5,9,13},n ∈{4,8,12,16},且m <n ,若m=1,则n 有4种选法;若m=5,则n 有3种选法;若m=9,则n 有2种选法;若m=13,则n 有1种选法,故可构造的真分数个数为4+3+2+1=10种.综合运用5.某演出队有8名歌舞演员,其中6人会表演舞蹈节目,有5人会表演歌唱节目,今从这8人中选出2人,一人表演舞蹈,一人表演歌唱,则选法共有( )A.24种B.27种C.28种D.36种解析:设会表演舞蹈节目的6人组成集合A ,会表演歌唱节目的5人组成集合B ,则A∩B 中的元素个数为3个,把这三个称为“全能选手”.若按入选的选手中含有n 个“全能选手”可分三大类:含0个,含1个,含2个.第1类的选法种类为3×2=6个;第2类的选法种数为3×2+3×3=15个;第3类的选法种数为3×2=6种.由加法原理可得选法共有N=6+15+6=27种,故选B.6.已知:m ∈{2,5,8,9},n ∈{1,3,4,7},则方程ny m x 22 =1表示的焦点在x 轴上的不同椭圆个数为( )A.12B.16C.8D.10解析:由题意m >n ,可用分类计数原理求得共有N=1+3+4+4=12个,选A.7.由n×n 个边长为1的正方形拼成的正方形棋盘中,由若干个小方格能拼成的所有正方形的数目是( )A.nB.n 2C.61.(n+1).(2n+1).n D.n.(n-1).(n-2).....3.2.1 解析:边长分别为1,2,...,n 的正方形的数目分别是n 2,(n-1)2,...,12个,故 由加法原理可得所有正方形的数目为n 2+(n-1)2+ (12)61n(n+1)(2n+1), 故选C.拓展探究8.设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动.那么这只青蛙从开始到停止,可能出现的不同跳法共有多少种?解析:如图所示,(1)青蛙经过3次从A 点跳到D 点,有且只有2种情况,即有2种跳法.(2)青蛙跳完5次停止跳动,说明它在跳到第3次时没有到达D 点.又每次跳动不分方向,有2种方向可能.所以前3次有2×2×2=8种跳法.由(1)知应减去2种到达D 点的跳法,故前3次的跳法是8-2=6种;后两次(显然是分步)共有2×2=4种跳法.故跳5次停跳的方法有6×4=24种.综上,这只青蛙从开始到停止,可能出现的不同跳法共有26种.备选习题9.电子计算机的输入纸带每排8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排最多可产生___________种不同信息.解析:产生一种信息需分8步,每步有两种选择方法,由分步计数原理可得共可产生N=28=256(种)不同信息.10.圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为___________. 解析:把和圆心三点共线的两个顶点视为一组,共可分为n 组,每组顶点和剩余的任一个 顶点均可构成一个直角三角形,共可形成2(n-1)个直角三角形,由分类计数原理可得所求直 角三角形的个数共有:N=n·2(n-1)=2n(n-1)(个)11.若直线方程ax+by=0中的a 、b 可以从0,1,2,3,4这五个数中任取两个不同的数字,则该方程表示的不同的直线共有多少条?解析:可按a 、b 是否为0进行分类:第一类,a 或b 中有一个取0时,方程表示不同直线为x=0或y=0,共2条.第二类,a ,b 都不取0时,确定a 的取值有4种方法,确定b 的取值有3种方法,共有4×3=12(种).但是,当a=1,b=2与a=2,b=4时,方程表示同一直线;类似地,还有a=2,b=1与a=4,b=2的情况.综上所述,方程表示的不同的直线共有2+12-2=12(条).12.我国使用的明码电报号码是用4个数字(从0到9)代表一个汉字的,问一共可以表示多少个不同的汉字?解析:4个数字均可从0到9这10个数字中任取一个.由分步计数原理,能够表示不同的汉字有104=10 000(个).13.用红、黄、绿3种颜色的纸做了3套卡片,每套卡牛中写上A、B、C、D、E字母的卡片各一张,若从这15张卡片中,每次取出5张,要求字母不同且3色齐全的取法有多少种? 解析:取出5张卡片字母不同的取法有35=243(种);取出5张卡片字母不同且至少缺一种颜色的取法共有3×25=96(种).至少缺一种颜色,不妨以至少缺红色为例:因为所选的5张卡片字母不同,颜色可从黄绿中任选,故选出的卡片有缺红、黄或缺红、绿两种可能.同样,在至少缺黄色时,存在缺黄、红或黄、绿两种可能;在至少缺绿色时,存在缺绿、红或绿、黄两种可能.这样,在排除至少缺一种颜色的取法时,将同时缺两种颜色的3种情况,排除了两次,应再加上.故取出5张卡片字母不同且颜色齐全的取法共有N=243-96+3=150(种).。

高二数学人教A版数学选修2-3导学案:1.1分类加法计数原理与分步乘法计数原理

11 分类加法计数原理与分步乘法计数原理
1.1. 两个原理
课前预习学案
一、预习内容
分类计数原理:完成一件事 , 有 n 类方式 , 在第一类方式 , 中有 m1 种不同的方法 , 在第二类方式 , 中有 m2 种
不 同 的 方 法 , ……, 在 第 n 类 方 式 , 中 有 mn 种 不 同 的 方 法 . 那 么 完 成 这 件 事 共 有 N=
A
B
(1)
A
பைடு நூலகம்
B
( 2)
例 3、为了确保电子信箱的安全 , 在注册时通常要设置电子信箱密码 . 在网站设置的信箱中 ,
( 1)密码为 4 位 , 每位均为 0 到 9 这 10 个数字中的一个数字 , 这样的 密码共有多少个 ?
( 2)密码为 4 位 , 每位是 0 到 9 这 10 个数字中的一个 , 或是从 A 到 Z 这 26 个英文字母中的 1 个 , 这样的密
课后练习与提高
一、选择题
1.将 5 封信投入 3 个邮筒,不同的投法共有(
).
A. 种
B. 种 C. 种 D. 种
2.将 4 个不同的小球放入 3 个不同的盒子,其中每个盒子都不空的放法共有(
).
A. 种
B. 种 C.18 种 D. 36 种
3.已知集合

,从两个集合中各取一个元素作为点的坐标,则这样的坐
种不同的方法 .
分步计数原理:完成一件事 , 需要分成 n 个
,做第 1 步有 m1种不同的方法,做第 2 步有 m2
种不同的方法, ……,做第 n 步有 mn 种不同的方法 , 那么完成这件事共有
N=
种不同的方法。
课内探究学案
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础达标
1.如果x,y ∈N *,且1≤x≤3,x+y <7,则满足条件的不同的有序正整数对(x,y)的个数是( )
A.15
B.12
C.5
D.4
解析:由x 的取值可分三类:x=1时,y 有1,2,3,4,5五个可取的数;
x=2时,y 有1,2,3,4四个可取的数;
x=3时,y 有1,2,3三个可取的数.
由分类计数原理可知共有N=5+4+3=12(个)
答案:B
2.三边长均为整数,且最大边长为11的三角形的个数为( )
A.25
B.26
C.36
D.37
解析:另两边边长由x 、y 表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12. 当y 取值11时,x=1,2,3, …,11,可有11个三角形.
当y 取值10时,x=2,3, …,10,可有9个三角形.
……
当y 取值6时,x 也只能取6,只有一个三角形.
∴所求三角形的个数为11+9+7+5+3+1=36.
答案:C
3.有不同颜色的上衣5件,裤子3条,从中选一样送给某人,共有___________种不同的选法.
解析:从5件上衣,3条裤子中任选一种,共有5+3=8种不同的选法.
4.大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6抛掷这两个玩具,则向上的面标着的两个数字之积不小于20,不同的积共有___________种.
解析:第1个正方体向上的面标有的数字必大于等于4.如果是3,则3与第二个正方体面上标有数字.最大者6的积3×6=18<20,
4×⎩⎨⎧==,246,205 5×⎪⎩⎪⎨⎧===,306,255,204 6×⎪⎩
⎪⎨⎧===.366,305,244 以上积的结果共有20,24,25,30,36五种.
5.如右图所示为一电路图,从A 到B 共有_______________条不同的线路可通电
.
解析:∵按上、中、下三条线路可分为三类:从上线路中有3种;中线路中有一种;下线路中有2×2=4种.根据分类计数原理,共有3+1+4=8(种).
答案:8
6.设某市拟成立一个由6名大学生组成的社会调查小组,并准备将这6个名额分配给本市的3所大学,要求每所大学都有学生参加,则不同的名额分配方法共有_______________种(用数字作答).
解析:名额分配有3类:1,1,4;1,2,3;2,2,2.然后具体到学校,得3+6+1=10.
答案:10
7.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传递信息,信息可以分别沿不同路线同时传递,则单位时间内传递的最大信息量为( )
A.26
B.24
C.20
D.19
解析:要完成的这件事是“从A向B传递信息”,完成这件事有4种办法:12→5→3,12→6→4,12→6→7,12→8→6.因此,可按这四种办法把传递信息量这件事分成四类,用分类计数原理可解,答案为D.
答案:D
8.某仪表显示屏上有四个可显示数字的小窗.每个小窗可显示数字“0”或“1”.
(1)这个显示屏共能显示出几种由四个数字组成的信号.
(2)将题目中的“四”改为“n”,其结论又如何.
分析:由于“四”数字比较小,可采用枚举法,一一写出来.
显示信号是
0,0,0,0; 0,0,0,1; 0,0,1,0; 0,0,1,1;
0,1,0,0; 0,1,0,1; 0,1,1,0; 0,1,1,1;
1,0,0,0; 1,0,0,1; 1,0,1,0; 1,0,1,1;
1,1,0,0; 1,1,0,1; 1,1,1,0; 1,1,1,1;
共计16种.
如果从“第一个数显示”,“第二个数显示”,“第三个数显示”,“第四个数显示”的阶段来看,则可用乘法计数.容易看出:每阶段显出数字的方法数都是2.因此共有24=16种信号,按这种考虑,不难看出:把“四”换成“n”后,共能显示出2n种信号.
9.从0到99这100个数中,数字6出现多少次?
解析:按照数字6出现的次数可分两类:出现两次,只有66;出现一次.出现一次的情况按6出现的位置又分为两类:第一类出现在个位上,共有9个,即6,16,…,56,76,86,96;第二类是6出现在十位上,共有9个,即60,61,62,…,65,67,68,69.由分类加法计数原理,数字6出现的次数是N=1+(9+9)=19(次).
拓展探究
10.在任意两个正整数m、n间定义某种运算(用⊗表示运算符号).当m、n都为正偶数或都为正奇数时,m⊗n=m+n,如4⊗6=4+6=10;3⊗7=3+7=10.当m、n中一个为正奇数,另一个为正偶数时,m⊗n=mn,如3⊗4=3×4=12;4⊗3=4×3=12,则上述定义下,集合M={(a,b)|a⊗b=36,a、b∈N*}中元素的个数为_____________.
解析:可分三类:第一类:a,b全为正偶数,则(a,b)可以是(34,2),(32,4),(30,6),…,(2,34),共计17个;
第二类:a,b全为正奇数,则(a,b)可以是(35,1),(33,3),…,(1,35)共计18个;第三类:a,b中一个正奇数,一个正偶数,则(a,b)可以是(4,9),(9,4),(12,3),(3,12),(36,1),(1,36)共计6个;
由加法原理可知集合中共有元素:N=17+18+6=41(个).
备选习题
11.从1,2,3,4四个数中任意取数(不重复取)作和,则取出这些数的不同的和共有( )
A.8个
B.9个
C.10个
D.5个
提示:按加数的个数分类,除去和相同的结果即可.
答案:A
12.把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有( )
A.4种
B.5种
C.6种
D.7种
解析:设这三堆苹果个数分别为x 个,y 个,z 个则
⎪⎩
⎪⎨⎧∈≤≤=++*,,5,,110N z y x z y x z y x
于是分法有:x=1,y=4,z=5
x=2,y=4,z=4
x=3,y=3,z=4
x=3,y=5,z=2
(这里x=3,y=5,z=2和x=3,y=2,z=5视为相同的分法,其他同此)
∴共有4种分法,选A.
13.从1,2,3,…,100这100个自然数中,每次取出两个不同的数相乘,积是5的倍数的取法种数为____________.
解析:从1到100的整数中,共有5的倍数20个.取两数积为5的倍数的取法有两类,第一类为两个数都是从这20个数中选取,有380种;另外一类为从这20个数中取一个,再从另外80个数中取一个相乘得到,共有80×20=1 600种取法,所以共有1 600+380=1 980种不同的方法.
14.欲将一张10元人民币换成零钱,现有足够多的1元、2元、5元的人民币,问共有多少种不同的换法?
解析:换法数就是x+2y+5z=10(x,y,z ∈N )的解的组数,对z 进行分类即可,答案是10种.
15.用2005,2006,2007,2008四个数,可以构造出多少个各项均不相同且项数是4的数列? 解析:依据数列的定义,按一定顺序排列的一列数叫数列,故2005,2006,2007,2008与2006,2005,2007,2008是两个不同的数列,所以四个数2005,2006,2007,2008的顺序不同时,表示的便是符合条件的不同数列.按照数列的首项的值分别不同可分四类,构成的数列依次表示为:
首项为2006,2007,2008时,同理可得均可构成6个符合条件的数列,故总共有:N=6+6+6+6=24个符合条件的数列.
16.王刚同学衣服上左、右各有一个口袋,左边口袋装有30个英语单词卡片,右边口袋装有20个英语单词卡片,这些英语单词卡片各不相同,问从两个口袋里任取一个英语单词卡片,有多少种不同的取法?
解析:由分类计数原理得,共有N=30+20=50(种)不同取法.。

相关文档
最新文档