中考数学专题第七章 图形的变换
北师大版中考数学复习《图形的变换》

Day7 图形的变换一、几何变换(轴对称、平移、旋转、折叠)1、图形的平移:2、图形的轴对称:对称,如图直线L是这两个图形的对称轴,点A和点E是对称点★记忆:简单来说就是能使得两个图形重合的直线就是对称轴。
要区分“对称轴”和“轴对称图形”。
“对称轴”是一条直线,“轴对称图形”是两个全等的图形如图,两个▲关于直线L对称,直线L是对应点B和点F连线BF的垂直平分线如图▲ABC和▲EFG是以直线L为对称轴的轴对称图形如图,两个▲关于直线L对称,直线L是对应点B和点F连线BF的垂直平分线3、图形的翻折翻折前后图形全等(对应线段和对应角都分别相等)4、图形的旋转转动一个角度,’、5、中心对称(特殊的旋转)二、视图、展开图、位似作图1、投影用光线照射物体,在某个平面上得到的影子叫做物体的投影.由一点(光源)(位似变换),2、三视图:主视图、俯视图、左视图①看得见的部分画成实线,被遮挡而看不见的部分画成虚线3、展开图有些立体图形是由一些平面图形围成的,将这些立体图形的表面剪开可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
注意:不是所有的立体图形都有平面展开图,如球体就不能展开。
4、位似作图(1)几何作图:对应点到位似中心的距离之比等于位似比★记忆:位似即位置相似,位置距离成比例位似又分为同侧位似和异侧位似★注意:位似比,即位似图形的相似比,指的是题目要求画的新图形与参照的原图形的相似比,所以以不同的图形为参照图,所得的位似比不同。
如上面左图同侧位似中,如果题目的意思是“以▲ABC为参照的原图,▲DEF为新图形,求出位似比”,则此时的位似比=DOAO= 95;而如果题目的意思是“以▲DEF为参照的原图,▲ABC为新图形,求出位似比”则此时的位似比=AODO= 59总之位似比总是原图形的数值作分母,口诀:位似比即旧分之新(位似比=新旧)(2)代数作图:如果以原点为位似中心,位似比为k,则原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(一kx,一ky)★记忆:如果是同侧位似则位似对应点的坐标是(kx,ky),如果是异侧位似则位似对应点的坐标是(一kx,一ky)。
人教版中考数学第一轮复习第七章图形与变换

第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。
中考数学复习 第七章 视图与变换 7.3 图形的对称、平移与旋转课件

(1)平移前后的对应线段、对应角分别①相等。 (2)平移前后的对应点所连线段②平行且相等。
(3)平移变换不改变图形的形状和大小,平移前后的两个图形③全等。
【提分必练】
1.下面哪一个选项的右边图形可由左边图形平移得到( )
重难突破(tūpò) 强化
重难点1 利用对称的性质(xìngzhì)求最值(难点)
例1 (2018·西安雁塔区校级模拟)如图,等腰三角形ABC的底边BC的长为4 cm,面积是12 cm2,
腰AB的垂直平分线EF交AC于点F,交AB于点E。若D为BC边上的中点,M为线段EF上一动点,
则△BDM周长的最小值为
C
12/9/2021
第二页,共十三页。
陕西考点(kǎo diǎn)解读
考点(kǎo diǎn)2 旋转
中考说明: 1.通过具体实例认识平面图形关于旋转中心的旋转。
2.探索旋转的基本(jīběn)性质:一个图形和它经过旋转所得到的图形中,对应 点到旋转中心的距离相等,两组对应点分别与旋转中心连线所成的角相等。
1.图形成轴对称与轴对称图形
(1)把一个图形沿着某条直线折叠,如果它与另一个图形能够完全重合,那么称这两个图形⑨成 (2)把一个图形沿某条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形叫作⑩轴对称图形
2.轴对称图形的性质
(1)对称轴两边的两部分图形全等。 (2)对应点的连线被对称轴垂直平分。
陕西考点(kǎo diǎn)解读
【知识(zhī shi)延伸】
确定旋转中心的方法(fāngfǎ):分别作两组对应点所连线段的垂直平分线,其交点即为 旋转中心。旋转中心可以在图形上,也可以在图形外。
【中考一轮复习】图形的变换---轴对称与中心对称课件

5.如图,将△ABC折叠,使点A与BC边中点D重合,
折痕为MN,若AB=9,BC=6,则△DNB的周长为( A )
A.12 B.13
C.14
D.15
A
C
Mቤተ መጻሕፍቲ ባይዱ
D
N
B
当堂训练
6.如图,Rt△ABC中,AB=9,BC=6,∠B=90º,将△ABC折叠,使A点与
BC的中点D重合,折痕为MN,则线段BN的长为( C )
是( C ) A.12厘米 B.16厘米 C.20厘米 D.28厘米
考点聚焦---轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合, 轴对称 那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称
轴,折叠后重合的点是对应点,叫做对称点.
轴对称 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重 图形 合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
人教版中考数学第一轮总复习
第七单元 图形的变化
§7.3 轴对称与中心对称
目录
01 轴对称与轴对称图形 02 中心对称与中心对称图形
典型例题
【例1-1】下列四个图案中,不是轴对称图案的是( B )
A.
B.
C.
D.
解:A有3条对称轴,是轴对称图形,故本选项错误;
B没有对称轴,不是轴对称图形,故本选项正确;
△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐
标为( A )
A.(2,2) C.(2,5)
B.(2,-2) D.(-2,5)
y
A
D
A
x
B
C
做关于对称中心的对称点.
中考数学第一轮复习 第7章第24讲 图形的变换(共38张PPT)

变式运用►3.若点A(a-2,3)和点B(-1, b+5)关于y轴对称,则点C(a,b)在( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
变式运用►4.如图,在平面直角坐标系中有三个点A(2,3),B(1, 1),C(4,2). (1)连接A,B,C三点,请在如图中作出△ABC关于x轴对称的图形 △A′B′C′并直接写出各对称点的坐标. (2)求△ABC的面积. (3)若M(x,y)是△ABC内部任意一点,请直接写出点M在 △A′B′C′内部的对应点M′的坐标.
考点2 尺规作图
基本作图
步骤
①先作一条射线A′C′;②再以
作一线段等于已 A′为圆心,以AB长为半径画弧交
知线段 AB′;②以O为圆心,
以任意长为半径画弧,交OA于点C,
交OB于点D;③以O′为圆心,以OD
作一个角等于已 的长为半径画弧,交O′B′于点
【思路分析】(1)分别作出点A、B、D、C向左平移1个单位,再向上 平移4个单位得到的对应点,顺次连接即可;(2)分别作出点A、B、 C沿着直线MN翻折后得到的对应点,顺次连接即可,再根据勾股定 理可得D1A2的长度.
【自主解答】 (1)如图,四边形A1B1D1C1即为所求.
技法点拨►解答这类问题,熟知图形平移不变性的性质和轴对称性 质,抓住图形中的关键点(图形的顶点、拐点、交点等)作出图形即 可.
解:(1)如图所示,△A′B′C′即为所求,A′(2,-3),B′(1, -1),C′(4,-2).
类型3 旋转
【例3】 [2018·安徽模拟]如图,已知△ABC的三个顶点的坐标分别 为A(-2,3),B(-6,0),C(-1,0). (1)尺规作图:在y轴上确定一个点P,使PA=PB;(要求保留作图痕 迹) (2)请以A,B,C为其中三个顶点画平行四边形;(只需画一个即可) (3)将△ABC绕坐标原点O顺时针旋转90°,画出图形,直接写出点A 的对应点的坐标.
中考数学专题复习第七章图形与变换平移与旋转

回归教材
考点聚焦
第二十二页,共二十九页。
考向探究
┃平移(pínɡ yí)与旋转
探究4 平移(pínɡ yí)、旋转与其他知识的综合运用 例 4 【2016·贵州改编】如图 31-11,已知△ABC 中,AB=AC, 把△ABC 绕 A 点沿顺时针方向旋转得到△ADE,连接 BD,CE 交于 点 F. (1)求证:∠CAE=∠BAD; (2)求证:△AEC≌△ADB; (3)若 AB=2,∠BAC=45°,当四边形 ADFC 是菱形时,求 BF 的长.
第2课时(kèshí) 平移与旋转
第一页,共二十九页。
┃平移(pínɡ yí)与旋转
回归教材
1.[九上 P62 习题 23.1 第 4 题] 分别画出△ABC 绕点 O 逆时针 旋转 90°和 180°后的图形.
图 31-1
回归教材
考点聚焦
第二页,共二十九页。
考向探究
┃平移与旋转
解:如图所示.
回归教材
图 31-3 A.16 cm B.18 cm C.20 cm D.21 cm
回归教材
考点聚焦
第九页,共二十九页。
考向探究
┃平移与旋转
解 析 ∵△ABE 向右平移 2 cm 得到△DCF,
∴EF=AD=2 cm,AE=DF,
∵△ABE 的周长为 16 cm,
∴AB+BE+AE=16 cm, ∴四边形 ABFD 的周长=AB+BE+EF+DF+AD=AB +BE+AE+EF+AD=16+2+2=20(cm). 故选 C.
(1)对应点到旋转中心的距离__相__等____;
旋转的 (2)对应点与旋转中心所连线段的夹角等
性质
于__旋__转___角_;
中考数学一轮复习第七章图形的变化第2节图形的平移与旋转课件
练习2 在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋 转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作 DF⊥AC于点F. (1)如图①,若点F与点A重合,求证:AC=BC;
练习2题图①
(2)若∠DAF=∠DBA, ①如图②,当点F在线段CA的延长线上时,判断线段AF与线 段BE的数量关系,并说明理由; ②当点F在线段CA上时,设BE=x,请用 含x的代数式表示线段AF.
要素:⑥ 旋__转__中__心_ 、旋转方向和旋转角
温馨提示①解决旋转问题,首先应确定图形中的旋转角,再抓住
旋转图形对应点到旋转中心的距离相等,将旋转前后图形的形状
和大小不变的性质加以灵活运用.②解决复杂的几何图形问题,可
通过图形的线段或三角形等图形的旋转,将分散的已知条件集中 到同一图形中,使问题简单化
返回
对称
作图 的基 本步 骤
1.找出原图形的关键点
2.作轴对称图形时,利用对应点到对称轴的距离相 等(轴对称),作出关键点关于对称轴的对应点;作 中心对称图形时,利用对应点连线过对称中心,且 到对称中心的距离相等,作出关键点关于对称中心 的对应点
3.按照原图形依次连接得到的各关键点的对应点, 得到对称后的图形
要素:平移方向和②_平_移__距__离_
温馨提示 平移是一种全等变换,只改变图形的位置,不改变图形
的形状和大小
返回
定义:把一个平面图形绕着平面内某一点O转动一定角度,
叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角
旋转
性质
1.对应点到旋转中心的距离③_相__等____ 2.对应点与旋转中心所连线段的夹角等于④_旋__转__角__ 3.旋转前后的图形⑤_全__等____
中考数学第七章图形的变化
考点4 立体图形的展开与折叠 1.常见几何体的展开图
考点4 立体图形的展开与折叠
2.正方体展开图的常见类型及相对面 (1)“一四一”型:
考点4 立体图形的展开与折叠 (2)“一三二”型:
考点4 立体图形的展开与折叠 (3)“二二二”型:
(4) “三三”型:
(注:相同颜色表示相对的面)
考点4 立体图形的展开与折叠
轴对称
如果一个平面图形沿一条直线折叠 把一个图形沿着某一条直线折叠,如
定义
,直线两旁的部分能够互相重合,这 个图形就叫做①轴对称图形,这条
果它能够与另一个图形重合,那么就 说这两个图形③ 关于这条直线对称,
直线就是它的② 对称轴 .
这条直线叫做④ 对称轴 .
图示
考点1 图形的对称
轴对称图形
轴对称
对应线段 相等
命题角度 2 与对称相关的计算
提分技法
2.找出隐含的折叠前后的位置关系(平行或垂直)和数量关系(相等); 3.一般运用全等三角形、勾股定理、相似三角形等知识及方程思想,设出恰当 的未知数,解方程来求线段长. 当折叠问题中涉及分类讨论时,应注意以下问题: (1)要先考虑分哪些情况,画出各种情况所对应的图形,再作出适当的辅助线,根 据题中的等量关系,通过勾股定理、相似三角形等列出方程,求得答案;
提分技法
找正方体展开图中相对面的一般方法
1.同一行或同一列有三个面及以上相连的,隔着一面的两个面必定是相
对的面,可归纳为“上下隔一行,左右隔一列”,如:
.
2.不在同一行的,找Z字形,如:
Z字形两端的面一定是相对的面.
考点4 立体图形的展开与折叠
提分技法
正方体表面展开图的记忆口诀
中间四个面,上下各一面;中间三个面,一二隔河见;中间两个面,楼梯天
专题七+图形的变换+第六节+尺规作图同步练习+2023年中考数学一轮复习
专题七图形的变换第六节尺规作图一.选择题1.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 2.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 3.(2022•鄂尔多斯)下列尺规作图不能得到平行线的是()A.B.C.D.4.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.5.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC大小关系的是()A.B.C.D.6.(2022•内蒙古)如图,在△ABC中,AB=BC,以B为圆心,适当长为半径画弧交BA 于点M,交BC于点N,分别以M,N为圆心,大于MN的长为半径画弧,两弧相交于点D,射线BD交AC于点E,点F为BC的中点,连接EF,若BE=AC=4,则△CEF 的周长是()有A.8B.2+2C.2+6D.2+2二.填空题(共6小题)7.(2022•丹东)如图,在Rt△ABC中,∠B=90°,AB=4,BC=8,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于点P和点Q,直线PQ与AC交于点D,则AD的长为.8.(2022•通辽)如图,依据尺规作图的痕迹,求∠α的度数°.9.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.10.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC 长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.11.(2020•邵阳)如图,线段AB=10cm,用尺规作图法按如下步骤作图.(1)过点B作AB的垂线,并在垂线上取BC=AB;(2)连接AC,以点C为圆心,CB为半径画弧,交AC于点E;(3)以点A为圆心,AE为半径画弧,交AB于点D.即点D为线段AB的黄金分割点.则线段AD的长度约为cm.(结果保留两位小数,参考数据:≈1.414,≈1.732,≈2.236)12.(2022•天津)如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明).有三.解答题(共6小题)13.(2022•贵港)尺规作图(保留作图痕迹,不要求写出作法): 如图,已知线段m ,n .求作△ABC ,使∠A =90°,AB =m ,BC =n .14.(2022•陕西)如图,已知△ABC ,CA =CB ,∠ACD 是△ABC 的一个外角. 请用尺规作图法,求作射线CP ,使CP ∥AB .(保留作图痕迹,不写作法)15.(2022•南通)【阅读材料】 老师的问题:已知:如图,AE ∥BF .求作:菱形ABCD ,使点C ,D 分别在BF ,AE 上.小明的作法:(1)以A 为圆心,AB 长为半径画弧,交AE 于点D ; (2)以B 为圆心,AB 长为半径画弧,交BF 于点C ; (3)连接CD .四边形ABCD 就是所求作的菱形.【解答问题】请根据材料中的信息,证明四边形ABCD 是菱形.16.(2022•烟台)如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC 的长.17.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.18.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)专题七图形的变换第六节尺规作图参考答案一.选择题1.C.2.C.3.D.4.C.5.D.6.D.二.填空题7.2.8.60.9.18°.10.10°或100°.11.6.18.12.解:(Ⅰ)EF==.故答案为:;(Ⅱ)如图,点M,N即为所求.步骤:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM交⊙O 于点G,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求.故答案为:连接AC,与网格线交于点O,取格点Q,连接EQ交PD于点M,连接BM 交⊙O于点G,连接GO,延长GO交⊙O于点H,连接BH,延长BH交PF于点N,则点M,N即为所求三.解答题13.解:如图,△ABC为所作.14.解:如图,射线CP即为所求.15.证明:由作图可知AD=AB=BC,∵AE∥BF,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形.16.解:(1)如图,切线AD即为所求;(2)过点O作OH⊥BC于H,连接OB,OC.∵AD是切线,∴OA⊥AD,∴∠OAD=90°,∵∠DAB=75°,∴∠OAB=15°,∵OA=OB,∴∠OAB=∠OBA=15°,∴∠BOA=150°,∴∠BCA=∠AOB=75°,∵∠ABC=45°,∴∠BAC=180°﹣45°﹣75°=60°,∴∠BOC=2∠BAC=120°,∵OB=OC=2,∴∠BCO=∠CBO=30°,∵OH⊥BC,∴CH=BH=OC•cos30°=,∴BC=2.17.解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).18.解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.。
中考数学总复习 第七章 图形的变化数学课件
12/11/2021
PART 01
考点(kǎo 帮 diǎn)
考点1 尺规作图 考点2 投影 考点3 三视图 考点4 立体图形的展开与折叠
第四页,共三十八页。
考点帮 尺规作图
考点(kǎo diǎn)1 考点(kǎo diǎn)2
考点3 考点4
12/11/2021
M,N
大于1 MN
2
O'
OP或OQ
考点1 图形的对称 考点2 图形的平移与旋转 考点3 图形变换与点的坐标的关系
第二十六页,共三十八页。
考点帮
图形(túxíng)的对称
考点(kǎo diǎn)1
考点2
考点3
12/11/2021
轴对称图形 对称轴
AC CD
∠C
∠CAD ∠ADC
△ACD
对称轴
关于这条直线对称
A'B' A'C' B'C'
C
12/11/2021
第二十三页,共三十八页。
方法 (fāngfǎ)帮
命题角度 3 立体(lìtǐ)图形的展开与折叠
C
12/11/2021
第二十四页,共三十八页。
第二节 图形的对称(duìchèn)、平移与旋转
12/11/2021
第二十五页,共三十八页。
12/11/2021
PART 01
考点 帮 (kǎo diǎn)
考点2
考点3
考点4
立体(lìtǐ)图形的展开与折叠
12/11/2021
第十二页,共三十八页。
考点帮
考点(kǎo diǎn)1
考点2
考点3
考点4
立体(lìtǐ)图形的展开与折叠
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 图形的变换 第23讲 尺规作图(时间50分钟 满分65分)一、选择题(每小题4分,共24分)1.(2017·宜昌)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是(C)A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF 2.(2017·衢州)下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,则对应选项中作法错误的是(C)A .①B .②C .③D .④3.(2017·深圳)如图,已知线段AB ,分别以A 、B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至M ,求∠BCM 的度数为(B)A .40°B .50°C .60°D .70°(导学号 35694212),第3题图) ,第4题图)4.(2017·南宁)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是(D)A .∠DAE =∠B B .∠EAC =∠CC .AE ∥BCD .∠DAE =∠EAC5.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,要说明∠D′O′C′=∠DOC ,需要证明△D′O′C′≌△DOC ,则这两个三角形全等的依据是(A)A .边边边B .边角边C .角边角D .角角边,第5题图) ,第6题图)6.(2017·河池)如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG ,若AD =5,DE =6,则AG 的长是(B)A .6B .8C .10D .12 二、填空题(每小题3分,共12分) 7.(2017·绍兴)以Rt △ABC 的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D.若∠ADB =60°,点D 到AC 的距离为2,则AB 的长为.8.(2017·济宁)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点P(a ,b),则a 与b 的数量关系是__a +b =0__.,第8题图) ,第9题图)9.(2017·河北)如图,依据尺规作图的痕迹,计算∠α=__56__°. 10.(2017·北京)下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图①,Rt △ABC ,∠C =90°,求作Rt △ABC 的外接圆. 作法:如图②.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O.⊙O 即为所求作的圆.请回答:该尺规作图的依据是__到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径__.三、解答题(共4小题,满分39分)11.(7分)(2017·天津)如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(1)AB 的长等于;(2)在△ABC 的内部有一点P ,满足S △PAB ∶S △PBC ∶ S △PCA =1∶2∶3,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的(不要求证明)________________________________________________________________________.,第11题图) ,第11题答图)解:(2)如解图,AC 与网格相交,得到点D 、E ,取格点F ,连接FB 并且延长,与网格相交,得到M ,N ,G.连接DN ,EM ,DG ,DN 与EM 相交于点P ,点P 即为所求. 理由:平行四边形ABME 的面积∶平行四边形CDNB 的面积∶平行四边形DEMG 的面积=1∶2∶3,△PAB 的面积=12平行四边形ABME 的面积,△PBC 的面积=12平行四边形CDNB 的面积,△PAC 的面积=△PNG 的面积=12△DGN 的面积=12平行四边形DEMG 的面积,∴S △PAB ∶S △PBC ∶S △PCA =1∶2∶3.12.(6分)如图,Rt △ABC 中,∠C =90°,用直尺和圆规在边BC 上找一点D ,使D 到AB 的距离等于CD.(保留作图痕迹,不写作法)(导学号 35694213)解:如解图,点D 即为所求:13.(8分)已知圆O ,(1)求作圆O 的内接正六边形ABCDEF ;(要求尺规作图,保留作图痕迹) (2)若圆O 的半径为2,计算弦AB 与弧AB ︵所形成的面积.解:(1)如解图,先作半径OA ,再以OA 为半径在⊙O 上依次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=FA ︵,然后顺次连接AB 、BC 、CD 、DE 、EF 、FA 即可;(2)∵六边形ABCDEF 是正六边形, ∴∠AOB =360°6=60°,∵OA =OB ,∴△OAB 为等边三角形,∴弦AB 与弧AB ︵所形成的面积=S 扇形AOB -S △AOB =60·π·22360-34·22=23π- 3.14.(8分)如图,在△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC ,交AB 于点D.(1)作△ACD 外接圆⊙O(尺规作图,保留作图痕迹,不写作法); (2)判断直线BC 与⊙O 的位置关系,并证明你的结论.解:(1)如解图,⊙O 即为所求作圆; (2)BC 与⊙O 相切.证明如下:连接CO ,如解图,∵∠A =∠B =30°, ∴∠COB =2∠A =60°,∴∠COB +∠B =30°+60°=90°, ∴∠OCB =90°, ∴OC ⊥BC ,又BC 经过半径OC 的外端点C , ∴BC 与⊙O 相切.第24讲视图与投影(时间50分钟满分75分)一、选择题(本大题共13小题,每小题4分,共52分)1.(2017·吉林)如图是一个正六棱柱的茶叶盒,其俯视图为(B)2.(2017·济宁)下列几何体中,主视图、俯视图、左视图都相同的是(B)3.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是(导学号35694214)(D)4.(2017·贵港)如图是一个空心圆柱体,它的左视图是(B)5.(2017·北京)如图是某个几何体的展开图,该几何体是(A)A.三棱柱B.圆锥C.四棱柱D.圆柱6.(2017·烟台)如图所示的工件,其俯视图是(B)7.(2017·嘉兴)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利第7题图第8题图8.(2017·丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同9.(2017·连云港)由6个大小相同的正方体搭成的几何体如图所示,比较它的主视图,左视图和俯视图的面积,则(C)A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小,第9题图),第10题图)10.(2017·长沙)某几何体的三视图如图所示,因此几何体是(导学号35694215)(B) A.长方形B.圆柱C.球D.正三棱柱11.(2016·山西)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是(A)12.(2017·乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是(B)A.πB.2πC.4πD.5π,第12题图),第13题图)13.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子(B)A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长二、填空题(本大题共5小题,每小题3分,共15分)14.(2017·江西)如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是__8__.第14题图第15题图15.(2017·青岛)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.(导学号35694216)16.(2017·宁夏)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是__22__.17.如图是一个包装盒的三视图,则这个包装盒的体积是__2000π__.第17题图第18题图18.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则x-2y=__6__.三、解答题(本大题共1小题,共8分)19.(8分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图;(2)根据三视图,请你求出这个组合几何体的表面积(包括底面积).解:(1)这个几何体的主视图和左视图如解图所示:(2)几何体的表面积为(3+4+5)×2=24.第25讲图形的对称、平移、旋转及位似(时间60分钟满分80分)一、选择题(本大题共11小题,每小题4分,共44分)1.(2017·江西)下列图形中,是轴对称图形的是(C)2.(2017·深圳)观察下列图形,其中既是轴对称又是中心对称图形的是(D)3.下列函数中,其图象关于原点对称的是(B)A.y=x2B.y=-x3C.y=|x| D.y=x+14.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有(B)A.4个B.3个C.2个D.1个第4题图第5题图5.(2017·成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为(导学号35694217)(A) A.4∶9B.2∶5C.2∶3 D.2∶ 36.(2017·大连)在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,-1),则点B′的坐标为(B) A.(4,2) B.(5,2) C.(6,2) D.(5,3)7.如图,已知D,E分别为△ABC的边AC,BC的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=48°,则∠APD等于(B)A.42°B.48°C.52°D.58°8.(2017·天津)如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是(C )A .∠ABD =∠EB .∠CBE =∠C C .AD ∥BC D .AD =BC第8题图第9题图9.(2017·广州)如图,E ,F 分别是▱ABCD 的边AD 、BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC ′D ′,ED ′交BC 于点G ,则△GEF 的周长为(C )A .6B .12C .18D .24 10.(2017·贵港)如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM .若BC =2,∠BAC =30°,则线段PM 的最大值是(B )A .4B .3C .2D .1第10题图第11题图11.(2017·内江)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为(A )A .(32,323)B .(2,323)C .(323,32)D .(32,3-323)二、填空题(本大题共6小题 ,每小题3分,共18分) 12.(2017·宜宾)如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB =15°,则∠AOD 的度数是__60°__.第12题图第13题图13.(2017·长沙)如图,△ABO 三个顶点的坐标分别为A (2,4),B (6,0),O (0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A ′B ′O ,已知点B ′的坐标是(3,0),则点A ′的坐标是__(1,2)__.14.(2017·百色)如图,在正方形OABC 中,O 为坐标原点,点C 在y 轴正半轴上,点A 的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标为__(1,3)__.第14题图第15题图15.(2017·海南)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__35__.(导学号35694218)16.(2017·黄冈)已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm.将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__1.5__cm.第16题图第17题图17.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于__75__.(导学号 35694219)三、解答题(本大题共2小题,共18分) 18.(9分)(2017·金华)如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为A (-2,-2),B (-4,-1),C (-4,-4).(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)作出点A 关于x 轴的对称点A ′,若把点A ′向右平移a 个单位长度后落在△A 1B 1C 1的内部(不包括顶点和边界),求a 的取值范围.解:(1)解图略;(2)∵点A ′坐标为(-2,2),∴若要使向右平移后的A ′落在△A 1B 1C 1的内部,最少平移4个单位,最多平移6个单位,即4<a <6.19.(9分)如图,△ABC 各顶点的坐标分别是A (-2,-4),B (0,-4),C (1,-1).(1)在图中画出△ABC 关于原点对称的△A 1B 1C 1; (2)在图中画出△ABC 绕原点O 逆时针旋转90°后的△A 2B 2C 2; (3)在(2)的条件下,AC 边扫过的面积是__92π__.解:(1)(2)解图略;(3)OC=2,OA=22+42=25,AC边扫过的面积为S扇形OAA2-S扇形OCC2=90π×(25)2360-90π×(2)2360=92π.第七章 图形的变换自我测试(时间60分钟 满分95分)一、选择题(本大题共11小题 ,每小题4分,共44分) 1.(2017·成都)下列图标中,既是轴对称图形,又是中心对称图形的是(D )2.(2017·安顺)如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为(C )3.在函数y =x ,y =1x ,y =x 2-1,y =(x -1)2中,其图象是轴对称图形且对称轴是坐标轴的共有(D )A .4个B .3个C .2个D .1个4.如图是某个几何体的三视图,该几何体是(B ) A .正方体 B .圆柱 C .圆锥 D .球第4题图第5题图5.(2017·青岛)如图,若将△ABC 绕点O 逆时针旋转90°,则顶点B 的对应点B 1的坐标为(B )A .(-4,2)B .(-2,4)C .(4,-2)D .(2,-4)6.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是(B )7.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =4,则AE 的长为(B )A.7 B .27 C .37 D .47第7题图第8题图8.(2017·菏泽)如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连接AA ′,若∠1=25°,则∠BAA ′的度数是(C )A .55°B .60°C .65°D .70°9.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为(A )A .(3,3)B .(4,3)C .(3,1)D .(4,1)第9题图第10题图10.(2017·淮安)如图,在矩形纸片ABCD 中,AB =3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC =∠ECA ,则AC 的长是(B )A .3 3B .6C .4D .511.(2017·聊城)如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B ′处,此时,点A 的对应点A ′恰好落在BC 边的延长线上,下列结论错误的(C )A .∠BCB ′=∠ACA ′ B .∠ACB =2∠BC .∠B ′CA =∠B ′ACD .B ′C 平分∠BB ′A ′二、填空题(本大题共6小题 ,每小题3分,共18分)12.(2017·滨州)如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为__12+15π__.,第12题图),第13题图) 13.已知,如图,AB和DE是直立在地面上的两根立柱,AB=4 m,某一时刻AB在阳光下的投影BC=3 m,同一时刻测得DE影长为4.5 m,则DE=__6__m.14.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为__3__.(导学号35694220) 15.(2017·眉山)△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是__120°__.(导学号35694221)16.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),点B(-4,-1)的对应点D的坐标为__(1,2)__.17.(2017·威海)如图,A点的坐标为(-1,5),B点的坐标为(3,3),C点的坐标为(5,3),D点的坐标为(3,-1),小明发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是__(1,1)或(4,4)__.三、解答题(本大题共4小题,共33分)18.(8分)(2017·泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.(导学号35694222)解:(1)如解图所示,射线CM即为所求;(2)∵∠ACD =∠ABC ,∠CAD =∠BAC , ∴△ACD ∽△ABC ,∴AD AC =AC AB ,即AD 6=69,∴AD =4.19.(8分)(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F (保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. (1)如解图①,⊙O 即为所求;(2)如解图②,连接OD , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°, ∴∠DOE =140°,∴∠EFD =70°.20.(8分)(2017·南宁)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (-1,-2),B (-2,-4),C (-4,-1).(1)把△ABC 向上平移3个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1并写出点B 1的坐标; (2)已知点A 与点A 2(2,1)关于直线l 成轴对称,请画出直线l 及△ABC 关于直线l 对称的△A 2B 2C 2,并直接写出直线l 的函数解析式.解:(1)解图略,B1(-2,-1);(2)解图略,直线l的函数解析式为y=-x.21.(9分)(2017·黑龙江)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标;(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.解:(1)解图略,A1的坐标为(-2,2);(2)解图略,此时A2的坐标为(4,0);(3)解图略,A3的坐标为(-4,0).。