高中数学必修一必修1总复习-ppt课件

合集下载

高中数学必修一必修1全章节ppt课件幻灯片

高中数学必修一必修1全章节ppt课件幻灯片
22
(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;

高中数学必修1-总复习课件(学生版)

高中数学必修1-总复习课件(学生版)
数集 自然 数集 正整 数集 整数 有理 集 数集 实数 集 复数
记法
N
N
Z
Q
R
C
空集 . 无限集 、______ (5)集合的分类:有限集 ______、______
2. 集合间的基本关系 (1)子集、真子集及其性质 B(或B__ A). ①对任意的x∈A,都有x∈B,则A___ ②若A⊆B,且在B中至少有一个元素x∈B,但x∉A, ). 则A____ B(或B____A A;A___ A; A⊆B,B⊆C⇒A_____ C. ③ ∅___ ④若A含有n个元素,则A的子集有___ 2n 个,A的非空 子集有______ 2n-1 个,A的非空真子集有_______ 2n-2 个.
变式训练 3
设全集是实数集 R,A={x|2x2-7x+3≤0},B={x|x2+a<0}. (1)当 a=-4 时,求 A∩B 和 A∪B; (2)若(∁RA)∩B=B,求实数 a 的取值范围.
集合中的新定义问题 题 型四 【例 4】在集合{a,b,c,d}上定义两种运算 和 如下:
那么 d (a c)等于 ( A.a
变式训练 4
) D.d
B.b
C.c
已知集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A 时,若有x-1∉A,且x+1∉A,则称x为A的一个“孤立元 素”,那么S中无“孤立元素”的4个元素的子集共有 ________ 个,其中的一个是____________.
易错警示
忽略空集致误
(1)(4 分)若集合 P={x|x2+x-6=0},S={x|ax+1 =0}, 且 S⊆P, 则由 a 的可取值组成的集合为__________.
1.集合与元素 确定性 、________ 互异性 、 (1)集合元素的三个特性:_______ 无序性 . _________ 不属于∉ 、 属于∈ 、________ (2) 元素与集合的关系: _______ 反映个体与整体之间的关系. 图示法 、 列举法 、_______ 描述法 、_______ (3)集合的表示法:_______ 区间法 . ________ (4)常用数集的记法

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件

人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件
(1)y=f(-x)的图象与y=f(x)的图象关于y轴对称; (2)y=-f(x)的图象与y=f(x)的图象关于x轴对称; (3)y=-f(-x)的图象与y=f(x)的图象关于原点对称; (4)奇函数的图象关于原点对称,偶函数的图象关于 y轴对称; (5)如果函数y=f(x)对定义域内的一切x值,都满足 f(a+x)=f(a-x),其中a是常数,那么函数y=f(x)的图象关
①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).

高中数学必修一全册课件(精校版)

高中数学必修一全册课件(精校版)
函数的表示方法
函数的表示方法主要有三种,即解析法、列表法和图象法。解析法是用数学表达式表示两个变 量之间的对应关系;列表法是通过列表给出部分自变量与函数的对应值;图象法是用图象表示 两个变量之间的对应关系。
函数的基本性质
函数的单调性
函数的奇偶性
函数的周期性
函数的单调性是指函数在某个 区间上的增减情况。如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x) 在区间I上是增函数;如果对于 区间I上的任意两个自变量的值 x1、x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x) 在区间I上是减函数。
,记作A=B。
空集
不含任何元素的集合叫做空集, 记作∅。空集是任何集合的子集 ,是任何非空集合的真子集。
集合的基本运算
01 并集
由所有属于集合A或属于集合B的元素所组成的集 合,叫做集合A与集合B的并集,记作A∪B。
02 交集
由所有既属于集合A又属于集合B的元素所组成的 集合,叫做集合A与集合B的交集,记作A∩B。
平面外一条直线与此平面内的一 条直线平行,则该直线与此平面 平行。
平面与平面平行的判定
一个平面内的两条相交直线与另 一个平面平行,则这两个平面平 行。
平行直线的性质
平行于同一直线的两条直线互相 平行;平行线间距离相等;平行 线间同位角、内错角相等。
直线与直线平行的判定
同位角相等,或内错角相等,或 同旁内角互补。
02
基本初等函数(Ⅰ)
指数函数
1 2ห้องสมุดไป่ตู้3
指数函数的概念
形如y=a^x(a>0且a≠1)的函数叫做指数函数 。

高一数学必修一全套课件 PPT课件 人教课标版1

高一数学必修一全套课件 PPT课件 人教课标版1
思考2:对于一个给定的集合A,那么某元素a与集合A 有哪几种可能关系?
思考3:如果元素a是集合A中的元素,我们如何用数 学化的语言表达? a属于集合A,记作 a A
思考4:如果元素a不是集合A中的元素,我们如何用 数学化的语言表达?
a不属于集合A,记作 a A
知识探究(四)
思考1:所有的自然数,正整数,整数,有理数,实 数能否分别构成集合?
题型1: 集合的概念 题型2: 元素与集合的关系 题型3: 集合中元素的特征
作业:
1、 P11 习题1.1 A组:1
2、 已 知 集 合 P 的 元 素 为 1, m ,m 23m3,
若 3P且 -1P,求 实 数 m 的 值 。
3、 预习集合的表示方法。

1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。
把研究的对象称为元素,通常用小写拉丁字母a,b, c,…表示;把一些元素组成的总体叫做集合,简称集, 通常用大写拉丁字母A,B,C,…表示.
思考3:组成集合的元素所属对象是否有限制?集合中 的元素个数的多少是否有限制?
知识探究(二)
任意一组对象是否都能组成一个集合?集合中的元 素有什么特征?
思考1:某单位所有的“帅哥”能否构成一个集合?由 此说明什么?
集合中的元素必须是确定的
思考2:在一个给定的集合中能否有相同的元素?由此 说明什么?
集合中的元素是不重复出现的
思考3:咱班的全体同学组成一个集合,调整座位后这 个集合有没有变化?由此说明什么?
集合中的元素是没有顺序的
知识探究(三)
思考1:设集合A表示“1~20以内的所有质数”,那 么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A 中?

高中数学必修一全册课件人教版(共99张PPT)

高中数学必修一全册课件人教版(共99张PPT)
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5

2

3

5

6

7

8

二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};

人教版高中数学必修1全套课件

人教版高中数学必修1全套课件

函数与方程
函数与方程的基本概念
包括函数定义、函数值、自变量、因 变量等概念的介绍。
函数的表示方法
解析法、列表法、图象法等表示方法 的特点和适用范围。
函数的性质
单调性、奇偶性、周期性等性质的定 义和判断方法。
方程与不等式的解法
一元一次方程、一元二次方程、分式 方程等方程和不等式的解法,以及函 数与方程的联系。
对数函数
对数函数的定义与性质
01
介绍对数函数的基本概念、性质,包括底数、对数的定义和运
算规则。
对数函数的图像与性质
02
通过图像展示对数函数的增减性、奇偶性、周期性等性质,帮
助学生直观理解函数特点。
对数函数的应用
03
列举对数函数在生活中的实际应用,如音量的分贝计算、地震
震级的计算等,培养学生运用数学知识解决问题的能力。
数列的项与通项公式
数列中的每一个数称为数列的项;表示数列第n项的公式称为数列 的通项公式。
数列的表示方法
列表法、图象法和通项公式法。
等差数列和等比数列
等差数列的定义与性质
从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列的定义与性质
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
正切函数、余切函数的图象和性质 三角函数的最值问题
三角恒等变换
两角和与差的正弦、余弦 公式
半角公式及其应用
二倍角公式及其应用 积化和差与和差化积公式
解三角形及其应用举例
01
正弦定理及其应用
02
余弦定理及其应用
03
解三角形的常用方法:面积法、正弦定理 法、余弦定理法等
04
解三角形的实际应用举例:测量、航海、 地理等问题

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

人教版(新教材)高中数学第一册(必修1)精品课件:第一章集合与常用逻辑用语章末复习课

【例1】 (1)设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中元
素的个数是( )
A.4
B.5
C.6
D.7
(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )
A.1
B.3
ቤተ መጻሕፍቲ ባይዱ
C.5
D.9
解析 (1)∵a∈A,b∈A,x=a+b,所以x=2,3,4,5,6,8,∴B中有6个元素, 故选C. (2)当x=0,y=0时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y =-2;当x=1,y=0时,x-y=1;当x=1,y=1时,x-y=0;当x=1,y=2时,x -y=-1;当x=2,y=0时,x-y=2;当x=2,y=1时,x-y=1;当x=2,y=2时, x-y=0.根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个. 答案 (1)C (2)C
【训练4】 (1)若p:x2+x-6=0是q:ax+1=0的必要不充分条件,则实数a的值为 ________. (2) 若 - a<x< - 1 成 立 的 一 个 充 分 不 必 要 条 件 是 - 2<x< - 1 , 则 a 的 取 值 范 围 是 ________.
解析 (1)p:x2+x-6=0,即x=2或x=-3. q:ax+1=0,当 a=0 时,方程无解;当 a≠0 时,x=-1a. 由题意知p q,q p,故a=0舍去;
当 a≠0 时,应有-1a=2 或-1a=-3,解得 a=-12或 a=13. 综上可知,a=-12或 a=13. (2)根据充分条件、必要条件与集合间的包含关系,应有{x|-2<x<-1} {x|-a<x< -1},故有a>2. 答案 (1)-12或13 (2)a>2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
x 变式: M = {y | y = 2 , x R} , N = x | y = 1 log3 x
{ 1, 2, 4}
B{1 }
C{1,2}
3.满足{1,2} A Ø {1,2,3,4}的集合A的个数 有 个 3
B的个数是___ 4
{

}
变式: 1,2,3} 的集合 1,2} ,则满足 A B = { 设集合 A = {
(,0)( 0,+)
递减(,0), (0,+)
递增(,0), (0,+)
二次函数 y = ax bx c
2
a>0
1、定义域 2、值域 .
4ac b 2 [ , ) 4a b b ( , ]减 , [- ,) 增 2a 2a
a<0
R.
4ac b 2 ( , ] 4a
变式: 设集合A={x∈R|ax2+2x+1=0}, 集合B={x|x<0},若 A B ,求实数a的 取值范围. (-∞,1]
6 设全集为R,集合 A = {x | 1 x 3} ,
B = {x | 2 x 4 x 2}
(1)求: A∪B,CR(A∩B); (2)若集合
一、知识结构
列举法 描述法 图示法 子集 真子集 交集 并集 补集
集合含义与表示
集合间关系
集合基本运算
集合
二、例题与练习
-1 1.集合A={1,0,x},且x2∈A,则x=_____
2 } 2.已知集合 M = { 集合 = = { N yy x , x M} - 1, 1, 2 , 则 M ∩ N是 ( B )
1 ( , 0) 3
2
(1, 2)
(0, 3]
例2. y = f ( x 2)的定义域为 {x|x 4},
求y=f(x )的定义域 2, 2 抽象函数的定义域:指自变量x的范围
求函数解析式的方法:
1, 已知 f ( x 1) = x 3 x 求f(x).
2, 已知f(x)是一次函数,且f[f(x)]=4x+3求f(x).
4.集合S,M,N,P如图所示,则图中阴 D 影部分所表示的集合是( ) (A) M∩(N∪P) (B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
5.设 A = {x x 4 x = 0}, B = {x x 2(a 1) x a 1 = 0} ,
1、分式的分母不为零.
2、偶次方根的被开方数不小于零.
3、零次幂的底数不为零.
4、对数函数的真数大于零.
5、指、对数函数的底数大于零且不为1.
6、实际问题中函数的定义域
例1 求函数
y=
1 log x 1 ( 2 x )
x
的定义域.
82 ; 变式: (1) f ( x ) = log 2 (3 x 1)
函数的概念
A x1 x2 x3
B C
x4
x5
A.B是两个非空的集合,如果按照 某种对应法则f,对于集合A中的 每一个元素x,在集合B中都有唯 一的元素y和它对应,这样的对 应叫做从A到B的一个函数。
y1 y2 y3 y4 y5
函数的三要素:定义域,值域,对应法则
y6
例: 已知集合A=(a,b,c},B={-1,0,1}, 映射f:A→B满足f(a)+f(b)=f(c),求这样 的映射共有多少个? f(a)=-1,f(b)=0,f(c)=-1; f(a)=0,f(b)=-1,f(c)=-1;
a
x
其中 a > 0且a 1
0<a<1
3、单调性 4、图象
在(0, )递增 y
R.
R+ 在(0, )递减 y
oபைடு நூலகம்
1
x
o
1
x
在同一平面直角坐标系内作出幂函数y=x,y=x2, y=x3,y=x1/2,y=x-1的图象:
幂函数的性质
函数 性质
y=x
R R 奇 增
y=x2 R [0,+∞) 偶
2 2 2
其中 x R ,如果 A
B = B,求实数a的取值范围
(-∞,-1]或1
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
的a取值范围。
2 [ , 4] 3
知识 结构 概念 三要素 函 数
大小比较
图象 性质
指数函数 对数函数
方程解的个数
应用
不等式的解
实际应用
函数
定义域
值域
单调性
奇偶性
图象
反比例函数
二次函数 幂函数 指数函数 对数函数
函数的复习主要抓住两条主线
1、函数的概念及其有关性质。
2、几种初等函数的具体性质。
f(a)=-1,f(b)=1,f(c)=0; f(a)=1,f(b)=-1,f(c)=0; f(a)=f(b)=f(c)=0; f(a)=1,f(b)=0,f(c)=1; f(a)=0,f(b)=1,f(c)=1.
反比例函数
k>0
1、定义域 2、值域 3、单调性 4、图象 .
k y= x
k<0
(, 0)( 0,+)
{x|x≥-1}; {x|x≥3或x<2};
C = {x | 2 x a 0} ,满足
{a|a>-4}
B C = C ,求实数a的取值范围。
7.设 A = {x | 3 x a}, B = {y | y = 3x 10, x A}
C = {z | z = 5 x, x A} ,且 B C = C ,求实数
( , b b ]增 ,[ ,) 减 2a 2a
3、单调性
4、图象
指数函数
a>1
1、定义域 2、值域 .
y = ax
R.
R+
(a > 0,a 1)
0<a<1
3、单调性 4、图象
在( ,)递增 y
1
在( , )递减 y
1
o
x
o
x
对数函数 y = log
a>1
1、定义域 2、值域 .
y=x3 R R 奇 增
(1,1)
y=x
1 2
y=x-1 {x|x≠0} {y|y≠0} 奇
定义域 值域 奇偶性 单调性
[0,+∞) [0,+∞)
非奇非 偶

(1,1)
[0,+∞)增 (-∞,0]减
(1,1)
(0,+∞)减 (-∞,0)减
(1,1)
公共点 (1,1)
使函数有意义的x的取值范围。
求 定 义 域 的 主 要 依 据
相关文档
最新文档