能量守恒定律及应用
能量守恒定律及其应用

能量守恒定律及其应用能量守恒定律是自然界中一条重要的基本规律,它指出能量在任何物理过程中都是不会减少或增加的,只会从一种形式转化为另一种形式。
这一定律在物理学、化学、生物学等领域都有广泛的应用。
一、能量守恒定律的基本原理能量守恒定律的基本原理可以用以下公式表示:能量的总量等于能量的输入减去能量的输出。
换句话说,能量的输入等于能量的输出加上能量的转化。
在物理学中,能量可以分为多种形式,如机械能、热能、电能、化学能等。
这些形式的能量可以相互转化,但总能量保持不变。
例如,当我们把一个物体从高处放下时,它的机械能会转化为动能,当它撞击地面时,动能又会转化为热能和声能。
总的来说,能量的转化过程是相互联系的,但总能量保持不变。
二、能量守恒定律的应用1. 机械能守恒机械能守恒是能量守恒定律在机械运动中的应用。
在没有外力和摩擦力的情况下,一个物体的机械能保持不变。
这可以用以下公式表示:机械能的初始值等于机械能的末值。
例如,当我们把一个弹簧压缩到一定程度后松开,弹簧的弹性势能会转化为物体的动能,当物体到达最高点时,动能会转化为重力势能,然后重力势能又会转化为动能,使物体回到原来的位置。
整个过程中,机械能保持不变。
2. 热能守恒热能守恒是能量守恒定律在热学中的应用。
根据热能守恒定律,热量在系统内部的转移不会增加或减少系统的总热能。
这意味着,系统内部的热量转移可以从一个物体转移到另一个物体,但总的热能保持不变。
例如,在一个封闭的容器中,当我们把一个热水袋放入冷水中时,热水袋的热能会转移给冷水,使冷水的温度升高,而热水袋的温度会降低。
整个过程中,热能守恒定律保证了热量的转移不会改变系统的总热能。
3. 化学能守恒化学能守恒是能量守恒定律在化学反应中的应用。
在化学反应中,化学能会转化为其他形式的能量,如热能、电能等。
根据能量守恒定律,化学反应中的能量转化过程是相互关联的,总的能量保持不变。
例如,在燃烧过程中,燃料的化学能会转化为热能和光能。
能量守恒定律:生活中的应用

能量守恒定律:生活中的应用能量守恒定律是物理学中的基本定律之一,它表明在一个封闭系统中,能量的总量是不变的。
这个定律在生活中有着广泛的应用,从日常生活到工业生产,都离不开能量守恒定律的应用。
本文将从几个方面介绍能量守恒定律在生活中的应用。
一、能量守恒定律在日常生活中的应用1. 烹饪过程中的能量守恒在烹饪过程中,能量守恒定律起着重要的作用。
以煮水为例,当我们将水放在火上加热时,火源提供的热能被传递给水分子,使其温度升高。
在这个过程中,火源释放的热能等于水吸收的热能,符合能量守恒定律。
同样,在烹饪其他食物的过程中,能量守恒定律也适用。
2. 交通工具的能量利用交通工具的能量利用也涉及到能量守恒定律。
例如汽车的能量转化过程,汽车燃烧燃料产生的化学能被转化为机械能,推动汽车前进。
在这个过程中,能量的转化符合能量守恒定律。
同样,电动车的能量转化过程也符合能量守恒定律。
3. 能源的利用与节约能量守恒定律也对能源的利用与节约起着指导作用。
在生活中,我们应该合理利用能源,避免能源的浪费。
例如,我们可以通过使用节能灯泡、合理调节室内温度等方式来减少能源的消耗,实现能源的节约。
二、能量守恒定律在工业生产中的应用1. 能源的转化与利用在工业生产中,能量守恒定律被广泛应用于能源的转化与利用。
例如,发电厂通过燃烧煤炭或核能等方式产生热能,然后将热能转化为机械能,最终转化为电能。
在这个过程中,能量的转化符合能量守恒定律。
2. 能源的传输与输送能量守恒定律也适用于能源的传输与输送过程。
例如,输电线路中的电能传输,能量的总量在传输过程中保持不变。
同样,石油管道输送石油的过程中,能量的总量也保持不变。
3. 能源的储存与利用能量守恒定律在能源的储存与利用中也起着重要的作用。
例如,电池储存化学能,当我们使用电池时,化学能被转化为电能,供给电子设备使用。
在这个过程中,能量的转化符合能量守恒定律。
三、能量守恒定律在环境保护中的应用能量守恒定律在环境保护中也有着重要的应用。
能量守恒定律:生活中的应用

能量守恒定律:生活中的应用能量守恒定律是物理学中的基本原理之一,表明在一个孤立系统内,能量既不会被创造也不会被消灭,只会从一种形式转换为另一种形式。
这一定律在许多科学领域中都有重要意义,特别是在工程学、化学和生物学中。
更重要的是,能量守恒定律在我们的日常生活中也有广泛的应用。
本文将探讨这一基本原理在生活各个方面的影响与应用,包括家庭、交通、运动及环境保护等领域。
一、家庭中的能量转化在我们的家庭生活中,能量守恒定律体现得尤为明显。
每一项家电的使用都涉及能量的转化与利用。
1. 家电的使用诸如冰箱、洗衣机、电热水器等家用电器,它们都依赖于电能进行工作。
例如,冰箱通过电力驱动制冷剂循环,从而实现食物保鲜。
这一过程将电能转化为机械能,使得分子运动扰动降低,从而实现了降温效果。
另外,洗衣机在工作时,将电能转化为机械能,使洗涤过程更为高效。
通过旋转与搅拌,通过物理手段达到清洗衣物的目的。
在这些过程中,电能并没有消失,而是被有效地转化成了我们可利用的其他能量形式,实现了能量的合理运用。
2. 供暖和制冷供暖和制冷设备的工作原理也充分体现了能量守恒定律的应用。
在冬季,取暖器通过电或燃气加热空气,将热能释放到房间中。
然而,这些设备的工作效率受其设计、材料及使用环境等因素的影响。
因此,在选择取暖方式时,我们不仅要考虑舒适性,还需评估能源使用的经济性与环保性。
同样,夏天我们所用的空调也是这样。
空调将热空气中的热能转移到外部环境中,同时使室内变得凉爽。
这里面涉及到热力学原理,但无论是冷却还是加热,都是通过改变能量形式完成的。
二、交通工具中的能量转化在现代交通工具的发展历程中,同样体现了能量守恒定律的重要性。
在我们的日常出行中,不同类型的交通工具都有其独特的能量转换机制。
1. 汽车与燃油经济性汽车利用燃油进行驱动,通过内燃机将化学能转化为机械能。
在这一过程中,不同型号及技术水平的汽车对于燃料利用率差异较大。
传统燃油汽车由于内燃机效率相对较低,大部分燃料化学能未被有效利用。
能量守恒定律:生活中的应用

能量守恒定律:生活中的应用能量守恒定律是物理学中的基本定律之一,它指出在一个封闭系统中,能量不能被创造或者消灭,只能从一种形式转化为另一种形式。
这个定律在自然界中无处不在,不仅在物理学领域有着广泛的应用,同时也在我们日常生活中有着重要的意义。
本文将探讨能量守恒定律在生活中的应用,并举例说明其在不同场景下的体现。
### 能量守恒定律在日常生活中的应用#### 1. 能源利用能量守恒定律告诉我们能量是宝贵的资源,需要合理利用。
在日常生活中,我们使用各种能源来满足生活和工作的需要,比如电能、热能、化学能等。
能源的转化和利用过程中,能量守恒定律起着至关重要的作用。
以电能为例,当我们使用电器时,电能被转化为热能、光能等形式,但总能量的大小保持不变。
因此,我们需要节约能源,避免能量的浪费,以实现能源的可持续利用。
#### 2. 交通工具的运行交通工具如汽车、火车、飞机等在运行过程中也遵循能量守恒定律。
以汽车为例,汽车的动力来自燃油的燃烧,化学能转化为机械能推动汽车前进。
在汽车行驶过程中,机械能转化为动能和热能,但总能量守恒。
因此,为了节约能源、减少污染,我们可以选择公共交通工具,减少个人汽车使用,从而更好地利用能量资源。
#### 3. 日常生活中的能量转化在日常生活中,我们经常会遇到能量的转化过程。
比如做饭时,将电能转化为热能烹饪食物;使用手机时,电能转化为光能和热能等。
这些都是能量守恒定律在生活中的具体应用。
我们可以通过合理安排生活,减少能量的浪费,更好地利用能源资源。
#### 4. 营养摄入与消耗人体的能量摄入与消耗也符合能量守恒定律。
食物中的化学能被人体吸收后转化为热能和机械能,维持身体正常运转。
如果能量摄入超过消耗,就会导致体重增加;反之,就会导致体重减轻。
因此,保持合理的饮食结构和适量运动是维持身体健康的重要因素。
### 能量守恒定律的重要性能量守恒定律的重要性不仅体现在物理学领域,更贯穿于我们的日常生活。
能量守恒定律:生活中的应用

能量守恒定律:生活中的应用能量守恒定律是物理学中的基本定律之一,它表明在一个封闭系统中,能量的总量是不变的。
这个定律在生活中有着广泛的应用,从日常生活到工业生产,都离不开能量守恒定律的应用。
本文将从几个方面介绍能量守恒定律在生活中的应用。
一、能源利用能量守恒定律告诉我们,能量不会凭空消失,也不会凭空产生,只会在不同形式之间转化。
在生活中,我们需要利用各种能源来满足我们的需求,如电能、热能、化学能等。
能量守恒定律告诉我们,我们需要合理利用能源,避免能量的浪费。
比如,我们可以通过使用高效节能的电器设备来减少电能的消耗,通过使用隔热材料来减少热能的散失,通过合理设计工艺流程来提高能源利用效率等等。
二、交通运输能量守恒定律在交通运输中有着重要的应用。
汽车、火车、飞机等交通工具都需要能源来提供动力。
能量守恒定律告诉我们,我们需要合理利用能源,减少能量的浪费。
比如,我们可以通过改进发动机设计,提高燃料的利用率,减少尾气排放;通过改善交通组织,减少交通拥堵,减少能源的消耗;通过推广公共交通工具,减少私家车的使用,减少能源的消耗等等。
三、建筑节能能量守恒定律在建筑节能中有着重要的应用。
建筑物的能耗在整个社会能耗中占据很大比例,因此合理利用能源,减少能量的浪费对于节能减排具有重要意义。
能量守恒定律告诉我们,我们可以通过改善建筑材料的隔热性能,减少建筑物的能量损失;通过合理设计建筑的朝向和窗户的位置,利用自然光和太阳能来减少照明和供暖的能量消耗;通过使用高效节能的设备和系统,减少建筑物的能耗等等。
四、环境保护能量守恒定律在环境保护中也有着重要的应用。
环境保护的核心是减少能源的消耗和减少能源的污染。
能量守恒定律告诉我们,我们需要合理利用能源,减少能量的浪费;同时,我们还需要减少能源的污染,避免对环境造成不可逆的损害。
比如,我们可以通过推广清洁能源的利用,减少化石能源的消耗和污染;通过改进工业生产工艺,减少能源的消耗和污染;通过加强环境监测和治理,减少能源的污染等等。
能量守恒定律在物理学中的应用

能量守恒定律在物理学中的应用介绍:在物理学中,能量守恒定律是一个非常重要的基本原理。
它指出在任何封闭系统中,能量的总量是不变的。
换言之,能量既不能被创造,也不能被消灭,只能从一种形式转换为另一种形式。
能量守恒定律在各个领域都有广泛的应用,下面将从热力学、动力学和电磁学三个方面来探讨能量守恒定律的应用。
一、热力学中的应用在热力学中,能量守恒定律被广泛应用于热能转换的过程。
例如热机、制冷机以及各种能量转换设备。
根据能量守恒定律,热机中的各个部分能量之和应当等于输入的热能减去输出的功。
这个原理被广泛应用于汽车、火车以及发电厂等热机系统中。
利用这个原理,工程师可以选择合适的热机参数,提高能量利用效率,减少能量的浪费。
二、动力学中的应用在动力学中,能量守恒定律被应用于描述物体的运动。
根据能量守恒定律,物体的动能和势能之和是一个常量。
例如在自由落体的过程中,物体的势能逐渐减少,而动能逐渐增加,但是它们的和保持不变。
这个原理不仅被应用于天体力学中描述天体运动,而且也被广泛用于工程力学中分析机械系统的运动。
三、电磁学中的应用在电磁学中,能量守恒定律通过麦克斯韦方程组得到了进一步的应用。
根据麦克斯韦方程组,电磁波的能量在空间中传播,并且总能量始终保持不变。
这个原理被应用于无线通信技术中的电磁波在空间中的传播,以及电磁场对物质的相互作用。
电磁学中的能量守恒定律也被用来解释电磁波的干涉、衍射和偏振等现象。
结论:能量守恒定律在物理学中的应用是十分广泛的。
从热力学中的能量转换到动力学中的物体运动,再到电磁学中的电磁波传播,能量守恒定律无处不在。
它为我们解释自然界中的各种现象和问题提供了一个有力的工具。
通过研究和应用能量守恒定律,我们不仅可以更好地理解自然界的规律,而且还可以在工程和技术领域中实现更加高效和节能的系统设计。
因此,对能量守恒定律的深入研究和应用对于推动科学技术的发展具有重要意义。
能量守恒定律:生活中的应用

能量守恒定律:生活中的应用能量守恒定律是物理学中的一个基本原理,它指出在一个封闭系统内,能量的总量是一个恒定值。
这意味着能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。
在我们日常生活中,能量守恒定律无处不在,贯穿着方方面面的事物和现象。
本文将就能量守恒定律在生活中的各种应用进行探讨,并举例说明其重要性。
1. 能量在食物链中的流动生态系统中的食物链是一个典型的能量转化过程,其中能量守恒定律得到充分体现。
植物通过光合作用将太阳能转化为化学能,而后被食草动物所摄入。
食草动物中储存的能量随着食肉动物的捕食而转移,随后又在食肉动物体内实现能量的再次转化。
这个过程中,无论是植物还是动物,都遵循着能量守恒原理。
任何一个环节中能量损失都会影响到整个生态系统的平衡。
2. 能源利用与节约在现代社会,我们对于各种形式的能源需求与消耗日益增加。
而在能源利用方面,也需要遵循能量守恒定律。
例如,在化石燃料燃烧过程中释放出的热能可以被转化为电能供给家庭和工业使用,但在转化的过程中会有一定比例的能量损失。
因此,有效地利用能源、提高能源利用效率、减少浪费是非常重要的。
只有在节约能源消耗、降低环境污染的基础上才能实现可持续发展。
3. 日常生活中的应用除了上述较为常见的领域外,实际上在我们日常生活的方方面面都有着能量守恒定律的应用。
比如,在做饭过程中,将燃气或电能转化为热量煮食;在家里开灯使用电能照明;人体内新陈代谢产生的热量维持体温等等,这些看似简单却无时不刻地体现着能量守恒定律。
结语总而言之,在我们每一个细小的日常行为和大到生态环境可持续发展问题上,都可以看到能量守恒定律这一基本原理的应用。
了解并遵循这一规律有助于我们更好地利用资源、减少浪费,并保护好我们赖以生存的环境。
希望大家都能意识到这一定律带给我们的启示,并付诸实践,共同建设一个更加美好、可持续发展的世界。
能量守恒定律应用

能量守恒定律应用能量守恒定律是自然界中的一条重要定律,它指出在一个封闭系统中,能量不会凭空消失或产生,只会从一种形式转化为另一种形式。
这一定律在各个领域都有广泛的应用,包括物理学、化学、生物学等。
本文将重点介绍能量守恒定律在各个领域的应用。
一、物理学中的应用在物理学中,能量守恒定律是最基本的定律之一,几乎适用于所有的物理现象。
其中最典型的应用莫过于机械能守恒定律。
机械能守恒定律是由能量守恒定律推导出来的,在没有外力和非弹性碰撞的情况下,系统的总机械能保持不变。
例如,当一个物体从一定高度下落时,其重力势能转化为动能,相当于在机械能守恒的基础上应用了能量守恒定律。
另一个物理学中常见的应用是热力学系统的能量守恒。
根据热力学第一定律,一个封闭系统的能量守恒可以表示为ΔU = Q - W,其中ΔU表示系统内部能量的变化,Q表示传递给系统的热量,W表示系统对外做功。
这一定律被广泛应用于热力学实验和工程设计中,例如蒸汽发动机、热交换器等。
二、化学中的应用能量守恒定律在化学领域中常常用于分析和解释各种化学反应的能量变化。
根据热力学的观点,化学反应的能量变化可以通过焓变来描述。
焓(H)是系统内能和对外做的功的总和,与能量守恒定律密切相关。
化学反应的焓变可以直接测量或通过计算来确定。
例如,当发生燃烧反应时,燃料的化学能转化为热能和光能,根据能量守恒定律可以计算出反应释放的能量。
类似地,吸热反应的能量变化也可以根据能量守恒定律进行分析。
三、生物学中的应用能量守恒定律在生物学中也有许多应用。
生物体通过新陈代谢从外界获取能量,并将其转化为可用的能量形式。
能量守恒定律可以用来解释生物体内能量的流动和转化。
在生物体代谢过程中,能量转化通常伴随着热量的释放。
根据能量守恒定律,通过测量热量的变化可以推测生物体代谢活动的能量变化。
这在生理学和营养学研究中有重要意义。
此外,生物体内能量守恒定律还可以应用于生态学研究。
生物体之间通过食物链相互作用,能量从一个物种转移到另一个物种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量守恒定律及使用【本讲教育信息】一、教学内容:能量守恒定律及使用二、考点点拨能的转化和守恒定律是自然界最普遍遵守的守恒定律,它在物理学中的重要地位是无可替代的,而用能的转化和守恒定律的观点解决相关问题是高中阶段最重要的内容之一,是历年高考必考和重点考查的内容。
三、跨越障碍(一)功和能功是能量转化的量度,即做了多少功就有多少能量转化,而且能的转化必通过做功来实现。
功能关系有:1. 重力做的功等于重力势能的减少量,即P G E W ∆-=2. 合外力做的功等于物体动能的增加量,即K E W ∆=∑3. 重力、弹簧弹力之外的力对物体所做的功等于物体机械能的增加量,即E W ∆=其它4. 系统内一对动摩擦力做的功等于系统损失的机械能,等于系统所增加的内能,即相对动内s f Q E E ⨯==∆=∆(二)能的转化和守恒定律1. 内容:能量既不能凭空产生,也不会凭空消失。
它只能从一个物体转移到另一个物体或从一种形式转化为另一种形式,而能的总量不变。
2. 定律可以从以下两方面来理解:(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等。
(2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等。
这也是我们使用能量守恒定律列方程式的两条基本思路。
(三)用能量守恒定律解题的步骤1. 分清有多少种形式的能(如动能、势能、内能、电能等)在变化。
2. 分别列出减少的能量减E ∆和增加的能量增E ∆的表达式。
3. 列恒等式减E ∆=增E ∆例1:如图所示,质量为m 的小铁块A 以水平速度0v 冲上质量为M 、长为l 、置于光滑水平面C 上的木板B 。
正好不从木板上掉下。
已知A 、B 间的动摩擦因数为μ,此时长木板对地位移为s 。
求这一过程中:(1)木板增加的动能;(2)小铁块减少的动能;(3)系统机械能的减少量;(4)系统产生的热量分析:在此过程中摩擦力做功的情况:A 和B 所受摩擦力分别为F 、F ',且F =mg μ,A 在F 的作用下减速,B 在F '的作用下加速,当A 滑动到B 的右端时,A 、B 达到一样的速度A 就正好不掉下(1)根据动能定理有:mgs s f E B KB μ=⨯=∆(2)滑动摩擦力对小铁块A 做负功,根据功能关系可知)(l s mg s f E A KA +=⨯=∆μ(3)系统机械能的减少量mgl mv mv mv E E E μ=+-=-=∆)2121(212220末初(4)m 、M 相对位移为l ,根据能量守恒mgl s f Q μ=⨯=相对动例2:物块质量为m ,从高为H 倾角为θ的斜面上端由静止开始沿斜面下滑。
滑至水平面C 点处停止,测得水平位移为x ,若物块和接触面间动摩擦因数相同,求动摩擦因数。
分析:以滑块为研究对象,其受力分析如图所示,根据动能定理有0)cot (sin cos =---θμθθμH x mg H mg mgH即0=-x H μ x H =μ例3:某海湾共占面积7100.1⨯2m ,涨潮时平均水深20m ,此时关上水坝闸门,可使水位保持在20 m 不变。
退潮时,坝外水位降至18 m (如图所示)。
利用此水坝建立一座水力发电站,重力势能转化为电能的效率为10%,每天有两次涨潮,该发电站每天能发出多少电能?(g =210m )分析:打开闸门后,坝内的水流出,但和外面相比,水量太小,可以认为外面的水位不升高,所以水位下降(20-18)=2m减少的重力势能(要用重心下降的高度)JVgh mgh E P 11731021102100.1100.1⨯=⨯⨯⨯⨯⨯⨯===∆ρ转化为电能J E E P 10102%10⨯=⨯∆=∆电每天有两次涨潮,故J E E 101042⨯=⨯∆=∆电电总例4:如图所示,水平长传送带始终以v =3 m/s 的速度匀速运动。
现将一质量为m =1 kg 的物块放于左端(无初速度)。
最终物体和传送带一起以3 m/s 的速度运动,在物块由速度为零增加至v =3 m/s 的过程中,求:(1)由于摩擦而产生的热量(2)由于放了物块,带动传送带的电动机消耗多少电能?分析:(1)2/5.1/s m g m F a ===μ 相对滑动时间 s a v t 25.13===物体对地的位移 m at s 325.1212122=⨯⨯==摩擦力对物体做的功 J mv W f 5.431212122=⨯⨯==物体对传送带的相对路程 m s vt s 3323=-⨯=-=相对 产生的热量 J s f Q 5.4=⨯=相对(2)由功能关系得,电动机消耗的电能J Q W E f 9=+=例5:如图所示为一皮带运输机,现在令皮带上只允许有一袋水泥,人将一袋水泥无初速度的放到皮带底端,水泥袋在运行过程中和皮带达到共速,最后上升到最高点,已知一袋水泥质量为m ,皮带运行速度为v ,皮带斜面的倾角为θ,水泥袋和皮带间动摩擦因数为μ,水泥袋从底端上升到最高点总高度为H ,总时间为t ,带动皮带转动的电动机功率为P ,取重力加速度为g 。
我们认为①在这一物理过程中电动机要消耗的电能为1E ;②一袋水泥机械能的增加量为2E ;③摩擦生热为Q ;④用于其他消耗的能量为3E 。
要求你根据能的转化和守恒定律写出3E 和1E 、2E 及Q 的定量关系,用题中所给的物理量来表示。
分析:消耗的电能1E =P t 增加的动能为0212-mv ,增加的势能为mgH ,故2E =mgH +0212-mv摩擦生热Q =L f ∆⨯(L ∆为相对皮带滑行的距离)滑动摩擦力为θμcos mg f =水泥加速度为 θθμθθμsin cos sin cos g g m mg ms a -=-=水泥速度达到v ,用时θθμsin cos g g vt -=此时水泥的位移)sin cos (221221θθμg g v at s -== 此时皮带的位移θθμsin cos 22g g v vt s -== 相对位移12s s L -=∆=)sin cos (22θθμg g v -产生的热量Q =L f ∆⨯=)sin cos (2cos 2θθμθμ-mv由能量守恒定律得: 3E =1E -2E -Q =P t -mgH -221mv -)sin cos (2cos 2θθμθμ-mv四、小结我们在解决能量的相关问题时,要特别注意功是能量转化的量度的关系,它是解决能量问题的基本方式;注意使用能量守恒定律的两条基本思路:(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量相等:增减E E ∆=∆,(2)某个物体的能量减少,一定存在另一物体的能量增加,且减少量和增加量相等:增减B A E E ∆=∆。
【模拟试题】(答题时间:60分钟)1. 下列说法正确的是 ( )A. 如果物体(或系统)所受到的合外力为零,则机械能一定守恒B. 如果合外力对物体(或系统)做功为零,则机械能一定守恒C. 物体沿光滑曲面自由下滑过程中,机械能一定守恒D. 做匀加速运动的物体,其机械能可能守恒2. 如图所示,木板OA 水平放置,长为L ,在A 处放置一个质量为m 的物体,现绕O 点缓慢抬高到A '端,直到当木板转到和水平面成α角时停止转动.这时物体受到一个微小的干扰便开始缓慢匀速下滑,物体又回到O 点,在整个过程中( )A. 支持力对物体做的总功为αsin mgLB. 摩擦力对物体做的总功为零C. 木板对物体做的总功为零D. 木板对物体做的总功为正功3. 静止在粗糙水平面上的物块A 受方向始终水平向右、大小先后为F 1、F 2、F 3的拉力作用做直线运动,t =4s 时停下,其速度—时间图象如图所示,已知物块A 和水平面间的动摩擦因数处处相同,下列判断正确的是( )A. 全过程中拉力做的功等于物块克服摩擦力做的功B. 全过程中拉力做的功等于零C. 一定有F 1+F 3=2F 2D. 可能有F 1+F 3>2F 24. 质量为m 的物体,由静止开始下落,由于空气阻力,下落的加速度为g 54,在物体下落h 的过程中,下列说法正确的是 ( )A. 物体的动能增加了mgh 54B. 物体的机械能减少了mgh 54C. 物体克服阻力所做的功为mgh 51D. 物体的重力势能减少了mgh5. 如图所示,木板质量为M ,长度为L ,小木块的质量为m ,水平地面光滑,一根不计质量的轻绳通过定滑轮分别和M 和m 连接,小木块和木板间的动摩擦因数为μ.开始时木块静止在木板左端,现用水平向右的力将m 拉至右端,拉力至少做功为 ( )A. mgL μB. 2mgL μC. 2mgLμ D. gL m M )(+μ6. 如图所示,一轻弹簧左端固定在长木板2m 的左端,右端和小木块1m 连接,且1m 和2m 及2m 和地面之间接触面光滑,开始时1m 和2m 均静止,现同时对1m 、2m 施加等大反向的水平恒力1F 和2F ,从两物体开始运动以后的整个过程中,对1m 、2m 和弹簧组成的系统 (整个过程中弹簧形变不超过其弹性限度),正确的说法是 ( )A. 由于1F 、2F 等大反向,故系统机械能守恒B. 由于1F 、2F 分别对1m 、2m 做正功,故系统动能不断增加C. 由于1F 、2F 分别对1m 、2m 做正功,故系统机械能不断增加D. 当弹簧弹力大小和1F 、2F 大小相等时,1m 、2m 的动能最大7. 如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B 点停下.已知斜坡、水平面和滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者经过AB 段的过程中,摩擦力所做的功( )A. 大于mgL μB. 小于mgL μC. 等于mgL μD. 以上三种情况都有可能8. 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则 ( )A. 加速过程中拉力的功一定比匀速过程中拉力的功大B. 匀速过程中拉力的功一定比加速过程中拉力的功大C. 两过程中拉力的功一样大D. 上述三种情况都有可能9. 如图所示,在不光滑的平面上,质量相等的两个物体A 、B 间用一轻弹簧相连接,现用一水平拉力F 作用在B 上,从静止开始经一段时间后,A 、B 一起做匀加速直线运动,当它 们的总动能为E k 时撤去水平力F ,最后系统停止运动,从撤去拉力F 到系统停止运动的过程中,系统 ( )A. 克服阻力做的功等于系统的动能E kB. 克服阻力做的功大于系统的动能E kC. 克服阻力做的功可能小于系统的动能E kD. 克服阻力做的功一定等于系统机械能的减少量10. 一物体悬挂在细绳下端,由静止开始沿竖直方向向下运动,运动过程中,物体的机械能和位移的关系图象如图所示,其中0~s 1过程的图象为曲线,s 1~s 2过程的图象为直线,根据该图象,下列说法正确的是( )A. 0~s 1过程中物体所受拉力一定是变力,且不断减小B. s 1~s 2过程中物体可能在做匀变速直线运动C. s 1~s 2过程中物体可能在做变加速直线运动D. 0~s 2过程中物体的动能可能在不断增大11. 如图所示,倾角为θ的直角斜面体固定在水平地面上,其顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端接质量为m 2的物块B ,物块B 放在地面上且使滑轮和物块间的细绳竖直,一端连接质量为m 1的物块A ,物块A 放在光滑斜面上的P 点保持静止,弹簧和斜面平行,此时弹簧具有的弹性势能为E p .不计定滑轮、细绳、弹簧的质量,不计斜面、滑轮的摩擦,已知弹簧劲度系数为k ,P 点到斜面底端的距离为L .现将物块A 缓慢斜向上移动,直到弹簧刚恢复原长时的位置,并由静止释放物块A ,当物块B 刚要离开地面时,物块A 的速度即变为零,求:(1)当物块B 刚要离开地面时,物块A 的加速度;(2)在以后的运动过程中物块A 最大速度的大小.12. 如图所示,光滑弧形轨道下端和水平传送带吻接,轨道上的A 点到传送带的竖直距离和传送带到地面的距离均为h=5m ,把一物体放在A 点由静止释放,若传送带不动,物体滑上传送带后,从右端B 水平飞离,落在地面上的P 点,B 、P 的水平距离OP 为x=2m ;若传送带按顺时针方向转动,传送带速度大小为v =5m/s ,则物体落在何处?这两次传送带对物体所做的功之比为多大?13. 质量为m 的小物块A ,放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停下.已知A 、B 间的动摩擦因数为1μ,B 和地面间的动摩擦因数为2μ,且12μμ>,求x 的表达式.【试题答案】1. 答案:CD分析:如果物体受到的合外力为零,机械能不一定守恒,如在光滑水平面上物体做匀 速直线运动,其机械能守恒。