2020年全国及各地高考数学试题分类汇编

合集下载

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是.22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?参考答案与试题解析⼀.选择题(共15⼩题)1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)【解答】解:由x2﹣4x﹣5>0,得x<﹣1或x>5.令t=x2﹣4x﹣5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则需内层函数t=x2﹣4x﹣5在(a,+∞)上单调递增且恒⼤于0,则(a,+∞)⊆(5,+∞),即a≥5.∴a的取值范围是[5,+∞).故选:D.2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0是,y=f(x)>0,故排除B,故选:A.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3﹣,则f(﹣x)=﹣x3+=﹣f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=在(0,+∞)为减函数,y2=﹣在(0,+∞)为增函数,所以当x>0时,f(x)=x3﹣单调递增,故选:A.4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0【解答】解:⽅法⼀:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y﹣x>0,由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0.⽅法⼆:取x=﹣1,y=0,满⾜2x﹣2y<3﹣x﹣3﹣y,此时ln(y﹣x+1)=ln2>0,ln|x﹣y|=ln1=0,可排除BCD.故选:A.5.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.【解答】解:y=f(x)=x cos x+sin x,则f(﹣x)=﹣x cos x﹣sin x=﹣f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除C,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,故选:A.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]【解答】解:∵定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,f(x)的⼤致图象如图:∴f(x)在(0,+∞)上单调递减,且f(﹣2)=0;故f(﹣1)<0;当x=0时,不等式xf(x﹣1)≥0成⽴,当x=1时,不等式xf(x﹣1)≥0成⽴,当x﹣1=2或x﹣1=﹣2时,即x=3或x=﹣1时,不等式xf(x﹣1)≥0成⽴,当x>0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≥0,此时,此时1<x≤3,当x<0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≤0,即,得﹣1≤x<0,综上﹣1≤x≤0或1≤x≤3,即实数x的取值范围是[﹣1,0]∪[1,3],故选:D.7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减【解答】解:由,得x.⼜f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),∴f(x)为奇函数;由f(x)=ln|2x+1|﹣ln|2x﹣1|=,∵==.可得内层函数t=||的图象如图,在(﹣∞,)上单调递减,在(,)上单调递增,则(,+∞)上单调递减.⼜对数式y=lnt是定义域内的增函数,由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.故选:D.8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:a=30.7,b=()﹣0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.【解答】解:因为a log34=2,则log34a=2,则4a=32=9则4﹣a==,故选:B.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a=log 32=<=,b=log53=>=,c=,∴a<c<b.故选:A.11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵==log53•log58<=<1,∴a<b;∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8;∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b,综上,c>b>a.故选:A.12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;且f(a)<f(2b) a<2b;故选:B.13.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)【解答】解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意,当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1)在[0,)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)还有两个交点,即可,即x3=kx2﹣2x在(,+∞)还有两个根,即k=x+在(,+∞)还有两个根,函数y=x+≥2,(当且仅当x=时,取等号),所以,且k>2,所以k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故选:D.14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:把R0=3.28,T=6代⼊R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,两边取对数得0.38t=ln2,解得t=≈1.8.故选:B.15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69【解答】解:由已知可得=0.95K,解得e﹣0.23(t﹣53)=,两边取对数有﹣0.23(t﹣53)=﹣ln19,解得t≈66,故选:C.⼆.填空题(共6⼩题)16.(2020•北京)函数f(x)=+lnx的定义域是{x|x>0}.【解答】解:要使函数有意义,则,所以,所以x>0,所以函数的定义域为{x|x>0},故答案为:{x|x>0}.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是①②③.【解答】解:设甲企业的污⽔排放量W与时间t的关系为W=f(t),⼄企业的污⽔排放量W与时间t的关系为W=g(t).对于①,在[t1,t2]这段时间内,甲企业的污⽔治理能⼒为,⼄企业的污⽔治理能⼒为﹣.由图可知,f(t1)﹣f(t2)>g(t1)﹣g(t2),∴>﹣,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率⼩于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是﹣4.【解答】解:y=f(x)是奇函数,可得f(﹣x)=﹣f(x),当x≥0时,f(x)=x,可得f(8)=8=4,则f(﹣8)=﹣f(8)=﹣4,故答案为:﹣4.19.(2020•上海)若函数y=a•3x+为偶函数,则a=1.【解答】解:根据题意,函数y=a•3x+为偶函数,则f(﹣x)=f(x),即a•3(﹣x)+=a•3x+,变形可得:a(3x﹣3﹣x)=(3x﹣3﹣x),必有a=1;故答案为:1.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为[,+∞).【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【解答】解:根据条件(1)可得f(0)=0或f(1)=1,⼜因为关于x的⽅程f(x)=a⽆实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).三.解答题(共3⼩题)22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.【解答】解:(1)∵f(x)=﹣x为减函数,∴f(x)<f(x﹣1),∴f(x)=﹣x具有A性质;∵g(x)=2x为增函数,∴g(x)>g(x﹣1),∴g(x)=2x不具有A性质;(2)依题意,对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,∴为增函数(不可能为常值函数),由双勾函数的图象及性质可得a≥1,当a≥1时,函数单调递增,满⾜对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,综上,实数a的取值范围为[1,+∞).(3)∵D为整数集,具有A性质的函数均为常值函数,∴当t=﹣2,f(x)=f(x﹣2)恒成⽴,即f(2k)=p(k∈Z),f(2n﹣1)=q(n∈Z),由题意,p=q,则f(2k)=f(2n﹣1),当x=2k,f(x)=f(x+2n﹣2k﹣1),∴m=2n﹣2k﹣1(n,k∈Z),当x=2n﹣1,f(x)=f(x+2k﹣2n+1),∴m=2k﹣2n+1(n,k∈Z),综上,m为奇数.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.【解答】解:(1)∵v=,∴v越⼤,x越⼩,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最⼤为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代⼊v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,①当0<x<40时,令y=,则y'=,若0<x<<1,则y'>0,y单调递增,由于y>0,所以q=100x﹣135•<100;若<x<40,则y'<0,y单调递减,此时有q单调递增,所以q<100×40﹣135×≈4000>100.②当40≤x≤80时,q是关于x的⼆次函数,开⼝向下,对称轴为x=,此时q有最⼤值,为>4000.综上所述,⻋辆密度q的最⼤值为.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?【解答】解:(1)投放点ω1(120,0),ω2(60,0),f60(10)表示与B(10,0)距离最近的投放点(即ω2)的距离,所以f60(10)=|60﹣10|=50,同理分析,f60(80)=|60﹣80|=20,f60(95)=|120﹣95|=25,由题意得,f60(x)={|60﹣x|,|120﹣x|}min,则当|60﹣x|≤|120﹣x|,即x≤90时,f60(x)=|60﹣x|;当|60﹣x|>|120﹣x|,即x>90时,f60(x)=|120﹣x|;综上f60(x)=;(2)由题意得f t(x)={|t﹣x|,|120﹣x|}min,所以f t(x)=,则f t(x)与坐标轴围成的⾯积如阴影部分所示,所以S=t2+=t2﹣60t+3600,由题意,S<S(60),即t2﹣60t+3600<2700,解得20<t<60,即垃圾投放点ω2建在(20,0)与(60,0)之间时,⽐建在中点时更加便利.考点卡⽚1.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的⾃变量的取值范围.求解函数定义域的常规⽅法:①分⺟不等于零;②根式(开偶次⽅)被开⽅式≥0;③对数的真数⼤于零,以及对数底数⼤于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题⽅法点拨】求函数定义域,⼀般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的⾃变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如⻓度、⾯积必须⼤于零、⼈数必须为⾃然数等).(3)若⼀函数解析式是由⼏个函数经四则运算得到的,则函数定义域应是同时使这⼏个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同⼀对应法则f下的量“x”“x+a”“x﹣a”所要满⾜的范围是⼀样的;②函数g (x)中的⾃变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题⽅向】⾼考会考中多以⼩题形式出现,也可以是⼤题中的⼀⼩题.2.函数的图象与图象的变换【函数图象的作法】函数图象的作法:通过如下3个步骤(1)列表;(2)描点;(3)连线.解题⽅法点拨:⼀般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直⻆坐标系中,准确描点,然后连线(平滑曲线).命题⽅向:⼀般考试是以⼩题形式出现,或⼤题中的⼀问,常⻅考题是,常⻅函数的图象,有时结合函数的奇偶性、对称性、单调性知识结合命题.【图象的变换】1.利⽤描点法作函数图象其基本步骤是列表、描点、连线.⾸先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最⼤值点、最⼩值点、与坐标轴的交点等),描点,连线.2.利⽤图象变换法作函数的图象(1)平移变换:y=f(x)a>0,右移a个单位(a<0,左移|a|个单位) y=f(x﹣a);y=f(x)b>0,上移b个单位(b<0,下移|b|个单位) y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)A>1,伸为原来的A倍(0<A<1,缩为原来的A倍) y=Af(x).(3)对称变换:y=f(x)关于x轴对称 y=﹣f(x);y=f(x)关于y轴对称 y=f(﹣x);y=f(x)关于原点对称 y=﹣f(﹣x).(4)翻折变换:y=f(x)去掉y轴左边图,保留y轴右边图,将y轴右边的图象翻折到左边 y=f(|x|);y=f(x)留下x轴上⽅图将x轴下⽅图翻折上去y=|f(x)|.解题⽅法点拨1、画函数图象的⼀般⽅法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析⼏何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利⽤图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上⾯两种⽅法都失效时,则可采⽤描点法.为了通过描少量点,就能得到⽐较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.2、寻找图象与函数解析式之间的对应关系的⽅法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性⽅⾯,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利⽤上述⽅法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利⽤上述⽅法,排除错误选项,筛选正确选项.注意联系基本函数图象和模型,当选项⽆法排除时,代特殊值,或从某些量上寻找突破⼝.3、(1)利有函数的图象研究函数的性质从图象的最⾼点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的⾛向趋势,分析函数的单调性、周期性等.(2)利⽤函数的图象研究⽅程根的个数有关⽅程解的个数问题常常转化为两个熟悉的函数的交点个数;利⽤此法也可由解的个数求参数值.4、⽅法归纳:(1)1个易错点﹣﹣图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每⼀次的变换所得图象对应的解析式,这样才能避免出错.(2)3个关键点﹣﹣正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:①正确求出函数的定义域;②熟练掌握⼏种基本函数的图象,如⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、形如y=x+的函数;③掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常⽤的⽅法技巧,来帮助我们简化作图过程.(3)3种⽅法﹣﹣识图的⽅法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等⽅⾯来获取图中所提供的信息,解决这类问题的常⽤⽅法有:①定性分析法,也就是通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.3.函数单调性的性质与判断【知识点的认识】⼀般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个⾃变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这⼀区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题⽅法点拨】证明函数的单调性⽤定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利⽤函数的导数证明函数单调性的步骤:第⼀步:求函数的定义域.若题设中有对数函数⼀定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第⼆步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利⽤f′(x)=0的根和不可导点的x的值从⼩到⼤顺次将定义域分成若⼲个⼩开区间,并列表.第四步:由f′(x)在⼩开区间内的正、负值判断f(x)在⼩开区间内的单调性;求极值、最值.第五步:将不等式恒成⽴问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题⽅向】从近三年的⾼考试题来看,函数单调性的判断和应⽤以及函数的最值问题是⾼考的热点,题型既有选择题、填空题,⼜有解答题,难度中等偏⾼;客观题主要考查函数的单调性、最值的灵活确定与简单应⽤,主观题在考查基本概念、重要⽅法的基础上,⼜注重考查函数⽅程、等价转化、数形结合、分类讨论的思想⽅法.预测明年⾼考仍将以利⽤导数求函数的单调区间,研究单调性及利⽤单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能⼒.4.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常⻅的⼀般以两个函数的为主.【解题⽅法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题⽅向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.5.函数奇偶性的性质与判断【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题⽅法点拨】①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.⾮奇⾮偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题⽅向】函数奇偶性的应⽤.本知识点是⾼考的⾼频率考点,⼤家要熟悉就函数的性质,最好是结合其图象⼀起分析,确保答题的正确率.6.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,⼀般情况下也就是把它们并列在⼀起,所以说关键还是要掌握奇函数和偶函数各⾃的性质,在做题时能融会贯通,灵活运⽤.在重复⼀下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题⽅法点拨】参照奇偶函数的性质那⼀考点,有:①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x) a=1【命题⽅向】奇偶性与单调性的综合.不管出什么样的题,能理解运⽤奇偶函数的性质是⼀个基本前提,另外做题的时候多多总结,⼀定要重视这⼀个知识点.7.抽象函数及其应⽤【知识点的认识】抽象函数是指没有给出函数的具体解析式,只给出了⼀些体现函数特征的式⼦的⼀类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之⼀.【解题⽅法点拨】①尽可能把抽象函数与我们数学的具体模型联系起来,如f (x +y )=f (x )+f (y ),它的原型就是y =kx ;②可通过赋特殊值法使问题得以解决例:f (xy )=f (x )+f (y ),求证f (1)=f (﹣1)=0令x =y =1,则f (1)=2f (1) f (1)=0令x =y =﹣1,同理可推出f (﹣1)=0③既然是函数,也可以运⽤相关的函数性质推断它的单调性;【命题⽅向】抽象函数及其应⽤.抽象函数是⼀个重点,也是⼀个难点,解题的主要⽅法也就是我上⾯提到的这两种.⾼考中⼀般以中档题和⼩题为主,要引起重视.8.指数函数的图象与性质【知识点的认识】1、指数函数y =a x (a >0,且a ≠1)的图象和性质:y =a xa >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同⼀坐标系内分别作函数的图象,易看出:当a>l时,底数越⼤,函数图象在第⼀象限越靠近y轴;同样地,当0<a<l时,底数越⼩,函数图象在第⼀象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=a x与函数y=的图象关于y轴对称.3、利⽤指数函数的性质⽐较⼤⼩:若底数相同⽽指数不同,⽤指数函数的单调性⽐较:若底数不同⽽指数相同,⽤作商法⽐较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.9.对数的运算性质【知识点的认识】对数的性质:①=N;②log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.10.对数值⼤⼩的⽐较【知识点归纳】1、若两对数的底数相同,真数不同,则利⽤对数函数的单调性来⽐较.2、若两对数的底数和真数均不相同,通常引⼊中间变量(1,﹣1,0)进⾏⽐较3、若两对数的底数不同,真数也不同,则利⽤函数图象或利⽤换底公式化为同底的再进⾏⽐较.(画图的⽅法:在第⼀象限内,函数图象的底数由左到右逐渐增⼤)11.对数函数的图象与性质【知识点归纳】12.反函数【知识点归纳】【定义】⼀般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,⽤y 把x表示出,得到x=g(y).若对于y在中的任何⼀个值,通过x=g(y),x在A中都有唯⼀的值和它对应,那么,x=g(y)就表示y是⾃变量,x是因变量是y的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了⻆⾊(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是⼀⼀映射;(3)⼀个函数与它的反函数在相应区间上单调性⼀致;(4)⼤部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C。

2020高考数学全国试题分类解析(数列部分)

2020高考数学全国试题分类解析(数列部分)

1. (广东卷)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,则(B)(A)32(B)3(C)4(D)52. (福建卷)3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( A )A .15B .30C .31D .643. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =(B ) A .0B .3-C .3D .23 4. (湖南卷)已知数列{log 2(a n -1)}(n∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312lim 111(= (C )A .2B .23C .1D .215. (湖南卷)设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=(C ) A .sinxB .-sinxC .cos xD .-cosx6. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=(C )( A ) 33 ( B ) 72 ( C ) 84 ( D )1897. (全国卷II) 如果数列{}n a 是等差数列,则(B ) (A)1845a a a a +<+ (B)1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a =8. (全国卷II) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则(B) (A)1845a a a a >(B)1845a a a a <(C)1845a a a a +>+ (D) 1845a a a a =9. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于(C )(A )667 (B )668 (C )669 (D )67010. (上海)16.用n 个不同的实数a 1,a 2,┄a n 可得n!个不同的排列,每个排列为一行写成 1 2 3一个n!行的数阵.对第i 行a i1,a i2,┄a in ,记b i =- a i1+2a i2-3 a i3+┄+(-1)n na in , 1 3 2i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3是12,所以,b 1+b 2+┄+b 6=-12+2⨯12-3⨯12=-24.那么,在用1,2,3,4,5形成 2 3 1 的数阵中,b 1+b 2+┄+b 120等于3 1 23 2 1[答]( C )(A)-3600 (B) 1800 (C)-1080 (D)-72011. (浙江卷)limn →∞2123nn ++++=( C )(A) 2 (B) 4 (C)21(D)0 12. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题20不等式选讲(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:20 不等式选讲1.【2022年全国甲卷】已知a,b,c均为正数,且a2+b2+4c2=3,证明:(1)a+b+2c≤3;(2)若b=2c,则1a +1c≥3.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据a2+b2+4c2=a2+b2+(2c)2,利用柯西不等式即可得证;(2)由(1)结合已知可得0<a+4c≤3,即可得到1a+4c ≥13,再根据权方和不等式即可得证.(1)证明:由柯西不等式有[a2+b2+(2c)2](12+12+12)≥(a+b+2c)2,所以a+b+2c≤3,当且仅当a=b=2c=1时,取等号,所以a+b+2c≤3;(2)证明:因为b=2c,a>0,b>0,c>0,由(1)得a+b+2c=a+4c≤3,即0<a+4c≤3,所以1a+4c ≥13,由权方和不等式知1a +1c=12a+224c≥(1+2)2a+4c=9a+4c≥3,当且仅当1a =24c,即a=1,c=12时取等号,所以1a +1c≥3.2.【2022年全国乙卷】已知a,b,c都是正数,且a32+b32+c32=1,证明:(1)abc≤19;(2)ab+c +ba+c+ca+b≤2√abc;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.(1)证明:因为a >0,b >0,c >0,则a 32>0,b 32>0,c 32>0, 所以a 32+b 32+c 323≥√a 32⋅b 32⋅c 323,即(abc )12≤13,所以abc ≤19,当且仅当a 32=b 32=c 32,即a =b =c =√193时取等号.(2)证明:因为a >0,b >0,c >0,所以b +c ≥2√bc ,a +c ≥2√ac ,a +b ≥2√ab , 所以a b+c≤2√bc=a 322√abc,b a+c≤2√ac=b 322√abc,ca+b≤2√ab =322√abc a b +c +b a +c +ca +b ≤a 322√abc +b 322√abc c 322√abc=a 32+b 32+c 322√abc=12√abc当且仅当a =b =c 时取等号.3.【2021年甲卷文科】已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像; (2)若()()f x a g x +≥,求a 的取值范围. 【答案】(1)图像见解析;(2)112a ≥ 【解析】 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A ⎛⎫⎪⎝⎭时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<⎧=-=⎨-≥⎩,画出图像如下:34,231()232142,2214,2x g x x x x x x ⎧-<-⎪⎪⎪=+--=+-≤<⎨⎪⎪≥⎪⎩,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +≥,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A ⎛⎫⎪⎝⎭时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a ∴≥.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解. 4.【2021年乙卷文科】已知函数()3f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】 【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围. 【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法 当1a =时,()|1||3|f x x x =-++. 当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-; 当31x -<<时,(1)(3)6-++≥x x ,无解; 当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥. 综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞. (2)[方法一]:绝对值不等式的性质法求最小值 依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一. [方法三]:分类讨论+分段函数法 当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解. 当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-.综上,a 的取值范围为32a >-.[方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M ,由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法. 方法一采用几何意义方法,适用于绝对值部分的系数为1的情况, 方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.5.【2020年新课标1卷理科】已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 【答案】(1)详解解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.【解析】 【分析】(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出. 【详解】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.6.【2020年新课标2卷理科】已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.【解析】 【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号), ()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型. 7.【2020年新课标3卷理科】设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c }. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)方法一:由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)方法一:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c=-+-≥34,a ≥a【详解】(1)[方法一]【最优解】:通性通法()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. [方法二]:消元法由0a b c ++=得()b a c =-+,则()ab bc ca b a c ca ++=++()2a c ac =-++()22a ac c =-++223024c a c ⎛⎫=-+-≤ ⎪⎝⎭,当且仅当0a b c ===时取等号,又1abc =,所以0ab bc ca ++<. [方法三]:放缩法方式1:由题意知0,a ≠0,a b c ++=(),a c b =-+()222224a c b c b cb bc =+=++≥,又()ab bc ca a b c bc ++=++2a bc =-+224a a ≤-+2304a =-<,故结论得证.方式2:因为0a b c ++=,所以()22220222a b c a b c ab bc ca =++=+++++ ()()()22222212222a b b c c a ab bc ca ⎡⎤=++++++++⎣⎦()()122222232ab bc ca ab bc ca ab bc ca ≥+++++=++. 即0ab bc ca ++≤,当且仅当0a b c ===时取等号, 又1abc =,所以0ab bc ca ++<. [方法四]:因为0,1a b c abc ++==,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c ≤<<则(),a b c =-+()20ab bc ca bc a c b bc a ∴++=++=-<.[方法五]:利用函数的性质方式1:()6b a c =-+,令()22f c ab bc ca c ac a =++=---,二次函数对应的图像开口向下,又1abc =,所以0a ≠, 判别式222Δ430a a a =-=-<,无根, 所以()0f c <,即0ab bc ca ++<.方式2:设()()()()()31f x x a x b x c x ab bc ca x =---=+++-,则()f x 有a ,b ,c 三个零点,若0ab bc ca ++≥,则()f x 为R 上的增函数,不可能有三个零点, 所以0ab bc ca ++<.(2)[方法一]【最优解】:通性通法不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0,a >0,b <0,c <()()a b c =-+-≥则34,a a ≥≥.故原不等式成立. [方法二]:不妨设{}max ,,a b c a =,因为0,1a b c abc ++==,所以0a >,且,1,b c a bc a +=-⎧⎪⎨=⎪⎩则关于x 的方程210x ax a++=有两根,其判别式24Δ0a a =-≥,即a故原不等式成立. [方法三]:不妨设{}max ,,a b c a =,则0,a >(),b a c =-+1,abc =()1,a c ac -+=2210ac a c ++=,关于c 的方程有解,判别式()22Δ40a a =-≥,则34,a a ≥≥.故原不等式成立. [方法四]:反证法假设{}max ,,a b c0a b ≤<<1ab c =>a b c --=1132a b ---≥=={}max ,,a b c ≥证. 【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.。

2020高考数学全国真题及答案汇编

2020高考数学全国真题及答案汇编

2020 年普通高等学校招生全国统一考试 理科数学 I
本试卷 5 页, 23 题 (含选考题). 全卷满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答题前, 先将自己的姓名、准考证号填写在试卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定 位置. 2. 选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试卷、草稿纸和 答题卡上的非答题区域均无效. 3. 非选择题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题卡上的非 答题区域均无效. 4. 选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑. 答案写在答题卡上对应的答 题区域内, 写在试卷、草稿纸和答题卡上的非答题区域均无效. 5. 考试结束后, 请将本试卷和答题卡一并上交.
4
√ D: 5 + 1
2
题3图 4. 已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p =( ).
A: 2
B: 3
C: 6
D: 9
2020 年高考数学全国 I 卷理科真题
2
5. 某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: ◦C) 的关系, 在 20 个不同的温度条 件下进行种子发芽实验, 由实验数据 xi, yi (i = 1, 2, · · · , 20) 得到下面的散点图:
目录
2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20 2020 年高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151

2020高考数学全国真题及答案汇编

2020高考数学全国真题及答案汇编
目录
2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年全国及各地高考数学试题分类汇编
——集合、简易逻辑
一.选择题:
1.全国Ⅰ(理 文)
(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,
则下面论断正确的是
(A )Φ=⋃⋂
)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)
321S C S C S C I I I
(D )123I I S C S C S ⊆⋃()
2.全国Ⅱ(理 文)
(9)已知集合M={x ∣2x -3x -28 ≤0},N = {x|2x -x-6>0},则M∩N 为 (A ){x|- 4≤x< -2或3<x≤7} (B ){x|- 4<x≤ -2或 3≤x<7 }
(C ){x|x≤ - 2或 x> 3 } (D ){x|x<- 2或x≥≥3} 3.北京卷(理 文)
(1)设全集U =R ,集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是 (A )M =P (B )P M (C )M
P ( D )
U
M P =∅
4.北京卷(理 文) (2)“m =
2
1
”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的 (A )充分必要条件 (B )充分而不必要条件
(C )必要而不充分条件 (D )既不充分也不必要条件 5.上海卷(理 文)
(14)、已知集合{}R x x x M ∈≤-=,2|1||,⎭
⎬⎫
⎩⎨⎧
∈≥+=Z x x x P ,115|
,则P M 等于 A .{}Z x x x ∈≤<,30| B .{}Z x x x ∈≤≤,30| C .{}Z x x x ∈≤≤-,01| D .{}Z x x x ∈<≤-,01| 6.天津卷(理)(1)设集合{}
R x x x A ∈≥-=,914, ⎭
⎬⎫
⎩⎨⎧∈≥+=R x x x x B ,03,
则A ∩B=
(A)]2,3(-- (B) ]2
5
,0[]2,3(⋃-- (C) ),25[]3,(+∞⋃--∞
(D) ),2
5[)3,(+∞⋃--∞
7.天津卷(理)(4)设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 (A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,
(D) αβα⊥⊥⊥m n n ,,
8. 广东卷(1)若集合2
{|||2},{|30}M x x N x x x =≤=-=,则M ∩N= (A) {3} (B) {0} (C) {0,2} (D) {0,3}
9.(7)给出下列关于互不相同的直线l n m ,,和平面βα,的四个命题: ① ,,,m A A l m ∉=⊂点αα 则l 与m 不共面;
② l 、m 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③ 若m l m l //,//,//,//则βαβα;
④ 若ββαα//,//,,,m l A m l m l 点=⊂⊂ ,则βα// 其中为假命题的是
(A )① (B )② (C )③ (D )④ 10.福建卷(理 )
(4).已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥
⊥则m m
其中真命题的个数是 ( ) A .0 B .1
C .2
D .3
11.福建卷(理)(7).已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
12.江卷(理)(6).设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么
(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题
13. .浙江卷(理)(9).设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},
记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧

N
Q ∧)∪(Q ∧

N
P ∧
)=( )
(A) {0,3} (B){1,2} (C) (3,4,5) (D){1,2,6,7}
14.江苏卷(1)、设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =( ) A .{
}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,1 15. 江苏卷
(8)、设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则n m ||。

其中真命题的个数是( )
A .1
B .2
C .3
D .4 16.辽宁卷4).已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;
③若βαβα//,//,,则n m n m ⊂
⊂;
④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂
⊂。

其中真命题是( )
A .①和②
B .①和③
C .③和④
D .①和④
17.山东卷(理 文)
(10)设集合A 、B 是全集U 的两个子集,则A B ⊂是()U C A B U ⋃=的( ) (A )充分不必要条件 (B )必要不充分条件
(C )充要条件 (D )既不充分也不必要条件 18.江西卷(理 文)
(1).设集合⋃--==∈<=A B A Z x x x I 则},2,1,2{},2,1{},,3|||{(I C B )= ( )
A .{1}
B .{1,2}
C .{2}
D .{0,1,2}
19. 江西卷(理)(3). “a =b ”是“直线相切与圆2)()(22
2
=++-+=b y a x x y ”的( ) A .充分不必要条件 B .必要不充分条件
C .充分必要条件
D .既不充分又不必要条件
20.湖南卷(理)(8).集合A ={x |
1
1
+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( ) A .-2≤b <0
B .0<b ≤2
C .-3<b <-1
D .-1≤b <2
21.湖北卷(理 文)(1).设P 、Q 为两个非空实数集合,定义集合
P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( )
A .9
B .8
C .7
D .6
二.填空题:
22.全国Ⅱ(理 文)(16)下面是关于三棱锥的四个命题:
①,底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥。

②,底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥。

③,底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥。

④,侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥。

其中,真命题的编号是______________。

(写出所有真命题的编号) 23.重庆卷(理)(11).集合∈=<--∈=x B x x R x A {},06|{2
R| }2|2|<-x ,则
B A = .
24.江苏卷(13)、命题“若b a >,则122->b a ”的否命题为__________
25.辽宁卷(16).ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 .
26.山东卷(理 文)(16)已知m n 、是不同的直线,αβ、是不重合的平面,给出下列命题:
①若//,,,m n αβαβ⊂⊂则//m n ②若,,//,m n m αβ⊂则//αβ ③若,,//m n m n αβ⊥⊥,则//αβ
④,m n 是两条异面直线,若//,//,//,//m m n n αβαβ,则//αβ 27.江西卷(理 文)(16).以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线;
②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(2
1
OB OA OP +=则动点P 的轨迹为椭圆;
③方程02522
=+-x x 的两根可分别作为椭圆和双曲线的离心率;
④双曲线
135
192522
22=+=-y x y x 与椭圆有相同的焦点.
其中真命题的序号为 (写出所有真命题的序号)
欢迎访问 。

相关文档
最新文档