复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法
基于裂纹扩展的两级加载下的疲劳 蠕变寿命预测

± t m ± t m
虑疲劳 与 蠕 变 的 交 互 作 用 时, 裂纹扩展速率表达式
9 ] 为[ : m d a / d N =C ( J J ) = Δ 1 P +Δ c 2 m C [ 2 Y a ( WP +Δ Wc ) π Δ 1
+ Wm =2 σ ( t ) d t Δ ε c 0
+ t m
图 2中, 一个周期的迟滞回线图形外围轮廓线面积 等于该周期中材料吸收的应变能密度增量, 其中仅拉应 力作用的正值面积才是使裂纹扩展的有效面积 Δ Wt , 图 2中绿色部分面积为纯疲劳的 Δ Wp , 灰色部分面积为蠕 Wc , 若零应力点 O的位置 Δ 0-σ 则 变的 Δ σ o= m i n不同, 有效面积值不同。 1 2 纯疲劳的有效应变能密度增量 纯疲劳的有效应变能密度增量值即图 2中的绿色 部分的面积。该面积的轮廓线 O- e 段为加载的弹性变 形段, e - 2段非弹性变形段, 非弹性应变计算式为: ( ) / K ′ ] Δ ε σ p =[ m a x -σ e
V o l 2 7 N o 4 A u g 2 0 1 4
文章编号: 1 6 7 3 1 5 4 9 ( 2 0 1 4 ) 0 4 0 0 2 4 0 5
D O I : 1 0 . 1 1 8 6 3 / j . s u s e . 2 0 1 4 . 0 4 . 0 7
∫
∫
( 1 5 )
设第二级载荷稳定循环的有效应变 初始长度 a 0到 a 1; 能密度为 Δ Wt , 循环次数为 N , 裂纹长度从 a 2 2 1 到临界 断裂长度 a 分离变量后: f;
P91钢蠕变-疲劳交互作用应变特征与寿命预测

应变影响 了蠕变一 疲劳交互寿命 ,其增速率 随着材料寿命 的减小而增大 。寿命 预测结 果与试 验结果吻合较
好 ,9 %的 数据 点 落 于 2倍 误 差带 范 围 之 内 。研 究结 果 为 P 1 5 9 钢蠕 变 疲 劳寿 命 预 测提 供 了 理论 和 实 验基 础 。 关键 词 :P 1 ;蠕 变 一 劳 ;寿 命 预 测 :应 变 特 征 ;试 验 9钢 疲
验 . 前 大 都 采 用 应 变 控 制 … 和 应 力 控 制 2种 方 目
式 Go wa s ml不 S i i a a 只 1 —M o V 、 . 5 —M o、 口 rn v s n 于 Cr — 1 2 Cr
22 C Mo 9 r Mo 和 3 6 钢 采 用 应 变 加 载 方 式 .5 、C — 1L 研 究 了 应 变 幅 和 保 持 时 间 对 材 料 蠕 变 疲 劳 性 能 的 影 响 J 对 于 应 力 控 制 下 的 蠕 变 一 劳 试 验 . 国 疲 陈
能 研 究 和 寿 命 预 测 做 了 较 为 深 入 研 究 1 . 们 考 虑 2他 ] 了 拉 伸 保 持 时 间 . 保 载 阶 段 的 应 力 松 弛 和 试 验 过 程
的氧 化 因 素 等 对 P 91钢 的 蠕 变 疲 劳 的 影 响 其 他 方 面关 于 应 力控 制 下 P 91钢 蠕 变 一 劳 交 互 作 用 下 的 疲 应 力 应 变 性 能 研 究 . 以 及 寿 命 预 测 的 方 面 文 献 并 未 多 见 因 此 . 中 基 于 应 力 下 的 P l钢 蠕 变 疲 劳 试 文 9
压力容器疲劳寿命预测与控制研究

压力容器疲劳寿命预测与控制研究压力容器是工业中常见的设备,在许多生产领域都有广泛的应用。
由于压力容器要承受内部介质的高压力,因此其材料必须具有优异的力学性能和强度。
然而,即使是最优秀的材料,在长时间的使用过程中也容易出现变形和疲劳,这会极大地威胁到生产安全和工作效率。
因此,研究压力容器疲劳寿命的预测和控制方法变得尤为重要。
1. 压力容器疲劳破坏机理压力容器的疲劳破坏机理是由于容器内外介质的压力变化引起的。
在容器受到压力加载时,材料会发生应力的集中和变形。
随着压力的变化,这种应力集中和变形会反复发生,使得材料在这样的交替应力下逐渐疲劳,最终导致疲劳破坏。
因此,了解和预测压力容器的疲劳寿命,需要深入探究上述机理。
2. 压力容器疲劳寿命预测的方法由于压力容器的经验性和非线性特性,对其疲劳寿命的准确预测十分有挑战。
因此,研究人员开发出了各种方法来预测疲劳寿命。
2.1 菲利普斯法则菲利普斯法则是一种常用的预测疲劳寿命的方法。
该方法基于最大应力原理,考虑到疲劳断裂前的裂纹扩展,假设其中任何一个瞬间,裂纹的尺寸均以速率da/dN扩展,而a为裂纹有效长度。
因此,根据裂纹尖端应力集中系数、裂纹深度和材料的常数,可以得出菲利普斯方程式来预测疲劳寿命。
2.2 贝尔曼方程贝尔曼方程是一种基于概率统计的预测方法。
该方法根据疲劳断裂模型,将材料的疲劳寿命视为一个随机事件,由贝尔曼方程表达。
在此基础上,可以利用统计学方法,通过分析裂纹的扩展、应力水平和疲劳载荷循环次数等参数,预测压力容器的寿命。
2.3 有限元法有限元法是一种在计算机上进行疲劳分析的方法。
该方法将材料抽象为无数个微小元素,然后对其进行数学建模,利用计算机模拟这些微小元素的变形和破裂,从而预测材料的疲劳寿命。
该方法可以对不同形状和大小的压力容器进行数值模拟,具有高度准确性和实际意义。
3. 压力容器疲劳寿命控制的方法为了延长压力容器的寿命,需要对其进行有效的控制。
金属材料 蠕变-疲劳损伤评定与寿命预测方法-2023最新国标

目次目次 (I)前言.............................................................................................................................................................. I I 引言 (III)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 符号和说明 (3)5 原理 (4)6 基础试验 (4)7 蠕变-疲劳损伤评定图基本步骤 (5)8 高温结构蠕变-疲劳损伤评定和寿命预测程序 (9)附录A(资料性)应变能密度耗散蠕变-疲劳寿命预测模型参数拟合方法 (15)附录B(资料性)非弹性分析 (17)参考文献 (20)I金属材料蠕变-疲劳损伤评定与寿命预测方法1 范围本文件规定了金属材料蠕变-疲劳损伤评定与寿命预测方法相关的术语和定义、符号和说明、原理和基础试验,给出了蠕变-疲劳损伤评定图建立的基本步骤,确定了高温结构蠕变-疲劳损伤评定和寿命预测的程序。
本文件适用于大气环境下承受蠕变-疲劳载荷的无宏观缺陷金属材料以及裂纹萌生临界区域的高温结构。
2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有修订单)适用于本文件。
GB/T 2039 金属材料单轴拉伸蠕变试验方法GB/T 15248 金属材料轴向等幅低循环疲劳试验方法GB/T 26077 金属材料疲劳试验轴向应变控制方法GB/T 38822 金属材料蠕变-疲劳试验方法3 术语和定义GB/T 38822界定的下以及列术语和定义适用于本文件。
3.1循环周次number of cycle在加载过程中,试验控制变量应变随试验时间变化的不可重复拆分的最小波形单元为一个循环周次,见图1a)。
基于ANSYS的压力容器疲劳分析与寿命预测

基于ANSYS的压力容器疲劳分析与寿命预测压力容器是工业生产中常见的设备之一,用于贮存和运输气体、液体或固体,承受着巨大的压力。
然而,由于长期的工作环境和作用力的影响,压力容器会出现疲劳现象,而疲劳失效可能导致严重事故甚至生命危险。
为了确保安全运行和提高使用寿命,进行压力容器疲劳分析与寿命预测是至关重要的。
压力容器的疲劳分析与寿命预测是一个复杂的工程问题,涉及多学科的知识。
在传统的方法中,工程师们通常依赖经验公式和试验数据进行分析,但这种方法存在一些不足之处。
首先,准确度受限于实验条件和试验数据的局限性。
其次,由于压力容器结构的复杂性,传统的方法难以考虑到各种工况变化以及应力分布的不均匀性。
因此,利用计算机辅助工程(CAE)软件进行压力容器的疲劳分析与寿命预测具有重要意义。
ANSYS作为一种强大的CAE软件,在压力容器疲劳分析的应用上已经被广泛认可。
它提供了多种分析模块,如有限元分析(FEA)、疲劳分析和寿命预测等,能够模拟复杂的结构和加载条件。
通过ANSYS的建模和分析工具,工程师们可以更加全面地了解压力容器的应力状态,并准确评估疲劳寿命。
在使用ANSYS进行压力容器疲劳分析时,首先需要进行几何建模和网格划分。
通过建模软件,可以创建一个精确的三维几何模型,并对其进行网格划分以获取一个合适的离散化模型。
然后,根据实际情况设置边界条件、加载条件和材料参数等。
在设定完成后,进行有限元分析,求解得到压力容器的应力分布。
接下来,进行疲劳分析和寿命预测。
ANSYS提供了多种疲劳分析模块,如低周疲劳、高周疲劳和疲劳寿命预测等。
根据所需分析的类型选择相应的模块,并输入相应的参数,如材料的SN曲线、载荷历程等。
通过对应力历程和SN曲线的相互作用进行计算,可以预测压力容器的疲劳寿命。
此外,还可以基于不同的疲劳损伤准则,如线性累积损伤准则、短模拟疲劳准则等,对容器的疲劳寿命进行评估和预测。
除了以上提到的分析方法,ANSYS还提供了一些辅助工具来进行压力容器的疲劳分析与寿命预测。
高温部件蠕变-疲劳寿命预测方法

高温部件蠕变-疲劳寿命预测方法赵雷;宋恺;徐连勇;郑相锋;林正根【期刊名称】《电力科技与环保》【年(卷),期】2023(39)1【摘要】近10年来,火电、燃机等发电机组面临调峰运行,机组的运行模式将逐步从恒定载荷状态向间歇载荷状态发生转变。
间歇载荷模式下机组结构件不仅要承受高温蠕变损伤,同时还会承受由温度、应力波动产生的高温疲劳损伤。
因此,研究蠕变-疲劳载荷条件下材料的交互损伤规律,开发准确的蠕变-疲劳寿命预测模型,探索不同控制模式下的蠕变-疲劳试验方法是该领域研究的热点问题之一。
考虑机组部件的实际工况,应变控制模式下的蠕变-疲劳试验被广泛采用。
同时,介绍了一种新型应变-应力混合控制模式下的蠕变-疲劳试验方法。
该方法通过控制保载阶段的应力以及时间,可以更好的研究蠕变损伤在蠕变-疲劳交互作用中的影响。
时间分数法、延性耗散法、应变能密度耗散法以及基于上述三种方法的修正模型已经被广泛用于蠕变-疲劳寿命预测领域。
在这些寿命预测方法中,材料在保载阶段产生的应力松弛行为也是研究的重点内容。
通过对预测结果进行对比,讨论了不同应力松弛模型的优势与不足。
【总页数】9页(P26-34)【作者】赵雷;宋恺;徐连勇;郑相锋;林正根【作者单位】天津大学材料科学与工程学院;天津市现代连接技术重点实验室;国能锅炉压力容器检验有限公司;国家能源集团科学技术研究院有限公司【正文语种】中文【中图分类】TG407【相关文献】1.镍基高温合金疲劳-蠕变寿命预测的临界面损伤方法2.汽轮机转子钢高温蠕变疲劳寿命预测方法3.电站高温部件蠕变寿命预测方法现状4.一种TiAl合金的高温疲劳-蠕变交互力学行为与寿命预测方法5.金属材料高温疲劳-蠕变寿命预测方法研究进展因版权原因,仅展示原文概要,查看原文内容请购买。
复杂机械结构的疲劳寿命评估与预测

复杂机械结构的疲劳寿命评估与预测引言随着科技的不断进步,复杂机械结构在各个领域的应用日益广泛。
然而,由于长时间的运行和外部环境条件的变化,机械结构容易出现疲劳破坏。
因此,对复杂机械结构的疲劳寿命进行评估与预测显得尤为重要。
本文将探讨疲劳寿命评估与预测的方法、挑战以及未来的发展趋势。
疲劳寿命评估的方法1. 实验方法实验方法是目前疲劳寿命评估的主要手段之一。
通过在实验室中对机械结构进行加荷试验,可以模拟实际工况下的负荷情况,从而得出结构的疲劳寿命。
这种方法的优点是准确性高,能够获取可靠的数据。
然而,实验方法也存在一些限制,如成本高、周期长和难以覆盖全部工况等。
2. 数值模拟方法数值模拟方法基于有限元分析的原理,通过仿真计算机械结构在不同工况下的应力、应变分布,进而预测其疲劳寿命。
相对于实验方法,数值模拟方法具有成本低、速度快和对不同工况的适应性强等优点。
然而,数值模拟方法也存在一定的局限性,如模型精度、材料参数的获取以及边界条件的确定等问题。
疲劳寿命预测的挑战1. 多因素耦合现实中复杂机械结构的疲劳破坏往往受到多种因素的耦合作用,如载荷、温度、工作介质等。
这些因素的相互作用会使疲劳行为变得十分复杂,因此疲劳寿命的预测具有一定的挑战性。
2. 材料的不均匀性由于材料的不均匀性,如晶粒尺寸、夹杂物等,机械结构在疲劳过程中会出现的应力集中效应导致局部破坏。
而这些局部破坏往往是疲劳破坏的源头,因此对材料的不均匀性进行准确的建模成为疲劳寿命预测的难点之一。
未来的发展趋势1. 多尺度模型针对复杂机械结构疲劳寿命的评估与预测,未来的发展趋势之一是多尺度模型的构建。
通过将宏观力学模型与细观材料模型相结合,可以更准确地描述材料的疲劳行为,提高疲劳寿命预测的精度。
2. 人工智能与大数据近年来,人工智能与大数据的快速发展,为疲劳寿命评估与预测提供了新的思路。
通过对大量的实验数据进行分析和挖掘,结合机器学习等算法,可以建立更为精确的模型,实现对复杂机械结构疲劳寿命的预测。
金属材料的疲劳寿命预测方法

金属材料的疲劳寿命预测方法随着科技的进步和应用范围的不断扩大,金属材料的质量和性能也受到越来越多的关注。
在工业生产和机械制造等领域,金属材料的疲劳寿命是一个非常重要的问题。
疲劳是材料的强度下降和塑性增加的结果,如果不及时发现和修复疲劳损伤,将会导致设备的损坏、事故的发生等严重后果。
因此,如何预测金属材料的疲劳寿命成为了一个非常关键的问题。
金属材料的疲劳寿命是指材料在受到周期性载荷作用下,能够承受多少次循环载荷后失效。
在预测金属材料的疲劳寿命时,需要考虑到材料固有的疲劳性能、载荷的类型和大小、应力状态等因素。
目前广泛应用的预测方法主要包括经验公式法、应变控制法、损伤累积法等。
经验公式法是一种简单易用的预测方法,在实践中得到了广泛的应用。
这种方法基于试验数据和统计分析技术进行预测,通常需要铸造出一批样品进行试验,以获取材料的疲劳性能数据。
通过对试验数据进行处理,可以得到不同载荷下的疲劳极限、疲劳强度指数等参数,从而预测金属材料在一定载荷下的疲劳寿命。
虽然经验公式法比较简单易用,但是其缺点也比较明显,因为其基于试验数据进行预测,所以预测结果的可靠性和精度会受到影响。
应变控制法是应用比较广泛的一种预测方法。
这种方法是通过控制材料的应变状态来进行预测的。
通常采用交变应变控制方式,即施加一个正应变和一个负应变交替作用在试样上,从而掌握材料的疲劳性能。
通过对试验数据进行分析,可以得到疲劳生命余弦函数曲线和应力应变幅值曲线等数据,从而预测疲劳寿命。
与经验公式法相比,应变控制法可以更好地反映材料的实际应力状态,预测结果更可靠。
损伤累积法是一种比较复杂的预测方法,其基础是构建材料疲劳损伤和循环次数之间的关系模型。
因为材料在循环载荷的作用下会发生疲劳损伤,损伤会逐渐积累,直到积累到一定程度后就会导致材料失效。
损伤累积法需要考虑到材料的疲劳性能、载荷历史、疲劳损伤机制等因素,其预测结果更加精细和可靠。
然而,进行此类预测需要获取大量数据,设备昂贵,复杂度比较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第45卷第2期2009年2月机械工程学报JOURNAL OF MECHANICAL ENGINEERINGVol.45N o.2Feb. 2009DOI:10.3901/JME.2009.02.081复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法*陈学东范志超江慧丰董杰(合肥通用机械研究院国家压力容器与管道安全工程技术研究中心合肥 230031)摘要:针对多轴应力状态,探讨压力容器典型用钢16MnR缺口试样的高温疲劳与循环蠕变交互作用行为,在延性耗竭理论和损伤力学基础上,建立一种半寿命平均位移速率寿命预测模型,采用该方法对不同缺口半径试样的高温疲劳寿命进行了较好的预测。
针对多级加载条件,研究316L钢的循环变形行为,探讨疲劳蠕变与动态应变时效之间的耦合作用,在延性耗竭理论基础上,建立非线性损伤演化模型,考虑多级加载时的载荷历程效应,提出一种新的损伤累积准则,采用该方法对二级加载条件下的疲劳蠕变寿命进行了较好的预测。
关键词:多轴多级疲劳蠕变损伤寿命预测中图分类号:O346.2 TG142.33Creep-fatigue Life Prediction Methods of Pressure Vessel Typical Steelsunder Complicated Loading ConditionsCHEN Xuedong FAN Zhichao JIANG Huifeng DONG Jie(National Engineering Technology Research Center on PVP Safety,Hefei General Machinery Research Institute, Hefei 230031)Abstract:With emphasis on complicated loading conditions, i.e. multi-axial loading condition and multi-step loading condition, creep-fatigue behavior and life prediction methods are investigated for typical steels of pressure vessels. As to multi-axial loading condition, the interaction behavior between high temperature fatigue and cyclic creep is discussed for 16MnR notched specimens and a mean displacement rate life prediction method is proposed on the basis of ductility exhaustion theory and damage mechanics. By this method, high temperature fatigue lives are well predicted for specimens with different notch radiuses. As to multi-step loading condition, cyclic deformation behavior is investigated for 316L steel and creep-fatigue interaction coupled with dynamic strain aging effect is also discussed. Based on the ductility exhaustion theory, a nonlinear damage evolution model is developed. Moreover, a new damage cumulated rule is proposed with the load history effect taken into account. By using this model, 2-step creep-fatigue lives are well predicted.Key words:Multi-axis Multi-step Creep-fatigue Damage Life prediction0 前言高温环境下长期服役的压力容器在设计和安全评定时除了要考虑疲劳损伤、蠕变损伤及疲劳蠕变交互作用损伤外,还要考虑多轴载荷、多级载荷* “十一五”国家科技支撑计划专题(2006BAK02B02-02)和安徽省优秀青年基金(08040106827)资助项目。
20081118收到初稿,20081225收到修改稿等复杂条件对承压设备寿命的影响。
本课题组在“十五”科技攻关期间,主要针对压力容器典型材料开展了高温疲劳及疲劳蠕变交互作用行为研究[1-3],分别从能量、韧性、延性角度提出了几种高温疲劳蠕变寿命预测和损伤评估方法[4]。
但前期研究并没有考虑复杂应力状态和复杂加载历史对疲劳及疲劳蠕变行为的影响,而实际承压设备的缺口或应力集中部位始终是整个结构的薄机械工程学报第45卷第2期82弱环节,是影响结构寿命的关键因素。
虽然目前有很多高温多轴疲劳寿命预测方法,如等效应变法、能量法[5]、临界平面法[6]等,但大都要涉及到材料精确的本构关系,若此时高温疲劳过程中还伴随着循环蠕变现象,则其本构模型更为复杂,目前建立的各种本构模型尚无法对其进行很好描述[7-8]。
因此研究多轴载荷下常用材料的疲劳蠕变行为及便于应用的寿命预测方法非常重要。
此外,复杂的温度和载荷波动将引入载荷历程效应,此时若采用工程上常用的线性寿命分数法[9],寿命预测结果误差往往较大,要么偏于危险,要么过于保守。
而连续损伤力学可用非线性的方式累积疲劳蠕变损伤,从而能够计及载荷历程效应,因而在常温变幅疲劳及高温常幅疲劳蠕变寿命预测等方面得到了一定应用[10-12],但针对高温变幅载荷下的疲劳蠕变寿命预测方面的研究还很少。
因此,针对复杂加载情况,研究发展基于非线性连续损伤力学的疲劳蠕变寿命预测方法具有重要意义。
本文针对多轴应力状态,通过不同缺口半径试样的高温疲劳试验,研究了疲劳与循环蠕变共同作用下的循环行为,在延性耗竭理论和损伤力学有效应力概念基础上,建立了一种半寿命平均位移速率寿命预测模型;针对多级加载条件,开展了316L 钢单级和两级疲劳蠕变试验,探讨了疲劳蠕变与动态应变时效之间的耦合作用,在延性耗竭理论基础上,建立了一种非线性损伤演化模型,并考虑载荷历程效应,提出了一种新的损伤累积准则,采用该方法对二级加载条件下的疲劳蠕变寿命进行了较好的预测。
1 多轴应力状态1.1缺口及光滑试样的循环蠕变行为材料为热轧态16MnR钢,其化学成分(质量分数)为:0.14C、0.27Si、1.32Mn、0.004S、0.012P、0.07Ni、0.06Cr、0.018Ti,Fe为基体金属。
沿轧制方向取样,制成光滑试样和不同半径的半圆形缺口试样,在MTS-809试验机上进行高温疲劳试验,温度为420 ℃,环境为实验室大气。
试验方式为应力控制、脉动循环(应力比R=0)、正弦波加载。
机加工后的缺口试样不可避免地会偏离原来设计尺寸,为提高寿命预测精度,对各试样缺口实际半径、缺口偏心距进行了测量。
同时为简化起见,以16MnR钢420 ℃时的单调拉伸应力应变关系代替复杂的应力-循环蠕变本构关系,并采用ANSYS 有限元软件计算缺口根部的应力分布。
光滑试样和缺口试样的高温疲劳试验结果如下表所示。
试验得到典型的应力位移迟滞回线如图1所示,可以看出,迟滞回线在整个寿命期间内不封闭、不稳定,而且发生了循环蠕变现象。
表缺口及光滑试样高温疲劳试验参数及结果试样编号n 缺口根部设计半径R D/mm缺口根部实际半径R/mm缺口偏心距e/mm名义最大应力σNmax/MPa名义最小应力σNmin/MPa加载频率f /Hz缺口根部最大轴向应力σy/MPa平均位移速率ms&/(10–9m/周)疲劳寿命N f /周1 1.25 1.28 0.12 280 0 3.0 561 11.90 18953 2 1.50 1.55 0.23 260 0 3.0 539 5.67 29838 3 1.50 1.59 0.26 250 0 3.0 538 2.79 43566 4 1.75 1.95 0.38 230 0 3.0 512 6.06 29741 5 1.75 1.80 0.19 220 0 3.0 504 0.31 134819 6 2.00 2.05 0.23 210 0 3.0 536 2.10 33276 7 2.00 2.06 0.26 200 0 3.0 501 0.15 168097 8 2.00 2.06 0.13 210 0 3.0 573 34.40 3651 9 2.25 2.14 0.30 220 0 3.0 568 4.32 17693 10 2.25 2.28 0.24 190 0 3.0 562 13.50 1016311 ---490 0 4.3 - 1 310.00 2 18812 ---480 0 4.0 -291.00 8341 13 ---470 0 4.0 -110.00 27302 14 ---460 0 4.5 -31.90 91863 15 ---450 0 4.6 -32.50 78494 16 ---440 0 4.5 -11.40 144743 17 ---430 0 4.0 - 5.58 238362 18 ---420 0 4.8 -7.99 3206142009年2月陈学东等:复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法83图1 缺口试样典型的应力位移迟滞回线图2给出了缺口试样及光滑试样平均位移的变化规律。
可以看出,光滑试样和缺口试样的循环蠕变在全寿命期间内均可大致分成三个阶段:①初始快速增长阶段,此时循环蠕变速率相当大。
②循环稳定阶段,材料经一定循环周次之后,循环蠕变速率下降到一定数值并稳定下来。
③快速断裂阶段,循环蠕变速率非常大,可能与材料萌生微裂纹有关。
可见,不论是光滑试样,还是缺口试样,材料的破坏都是疲劳与循环蠕变共同作用而使材料延性不断耗竭的结果,只不过缺口试样由于应力集中的存在,循环蠕变基本被限制在缺口附近较小的范围内而不进行传播,从而使得在相同最大应力作用下缺口试样的疲劳强度有所提高。
图2 缺口及光滑试样的平均位移演化规律1.2最大轴向应力寿命预测方法脉动循环时高温疲劳寿命预测要兼顾考虑循环蠕变损伤和疲劳损伤。