DC DC设计原理、经验与应用技巧总结

合集下载

大电流dc-dc降压设计原理

大电流dc-dc降压设计原理

大电流dc-dc降压设计原理大电流 DC-DC 降压设计原理大电流 DC-DC 降压转换器在各种电子系统中扮演着至关重要的角色,从便携式设备到工业电机控制。

它们将较高电压转换为较低电压,同时保持或增加电流容量。

以下是设计大电流 DC-DC 降压转换器的关键原理:功率器件选择选择合适的功率器件(开关管)对于确保转换器的效率和可靠性至关重要。

常见的选项包括 MOSFET(金属氧化物半导体场效应晶体管)和 IGBT(绝缘栅双极型晶体管)。

对于大电流应用,低导通电阻和低栅极电荷的功率 MOSFET 是理想的选择。

开关频率和电感值开关频率和电感值共同决定了转换器的尺寸、效率和纹波电流。

较高的开关频率通常会导致较小的电感值,但会增加开关损耗。

较低的开关频率需要更大的电感值,但会降低效率。

最佳值取决于负载电流、电压和纹波电流要求。

输入和输出电容输入和输出电容用于吸收电流纹波,从而平滑转换器输出电压。

电容值为开关频率、负载电流和纹波电流要求的函数。

电容的 ESR (等效串联电阻)也应尽可能低,以最大限度地减少损耗。

反馈回路反馈回路用于调节转换器的输出电压。

常见拓扑包括电压模式和电流模式。

电压模式控制通过比较输出电压与基准电压来调节占空比,而电流模式控制通过比较电感电流与基准电流来调节占空比。

同步整流同步整流技术可以提高转换器的效率,尤其是在大电流应用中。

通过使用低导通电阻的 MOSFET 作为整流器,而不是使用二极管,可以显著减少整流损耗。

散热大电流 DC-DC 降压转换器在大电流条件下运行,会产生大量热量。

因此,散热是至关重要的。

可以使用散热器、热垫和强制空气冷却来管理热量。

保护特性为了确保转换器的可靠性和安全性,应纳入多种保护特性。

这些包括过流保护、过压保护、欠压保护和短路保护。

布局和布线转换器的布局和布线对于性能至关重要。

应使用宽走线和低电感环路来最大限度地减少损耗和 EMI(电磁干扰)。

电容器和电感器应放置在靠近功率器件以最小化寄生效应。

dc-dc降压电路工作原理

dc-dc降压电路工作原理

dc-dc降压电路工作原理DC-DC降压电路是一种常见的电力转换电路,其工作原理是将输入的直流电压降低到所需的输出电压。

本文将详细介绍DC-DC降压电路的工作原理及其应用。

一、DC-DC降压电路的基本原理DC-DC降压电路利用电感和电容元件,通过开关管的开关控制,实现输入电压到输出电压的转换。

主要分为两种类型:线性降压电路和开关降压电路。

1. 线性降压电路线性降压电路是通过电阻分压的方式来实现电压的降低。

其基本原理是通过调节电阻的大小,将输入电压分压到所需的输出电压。

但是线性降压电路效率低,且只适用于输入电压和输出电压相差不大的情况。

2. 开关降压电路开关降压电路利用开关管的开关控制,通过改变开关管的导通和关断时间比,实现输入电压到输出电压的转换。

其工作原理是通过周期性的开关操作,将输入电压按一定比例转换为输出电压。

开关降压电路效率高,适用范围广。

二、DC-DC降压电路的应用DC-DC降压电路广泛应用于各种电子设备和电力系统中。

以下是几个典型应用场景:1. 手机充电器手机充电器通常采用DC-DC降压电路来将市电的交流电转换为手机所需的直流电。

通过降压电路,将高电压的交流电转换为手机所需的低电压直流电。

2. 电子设备电源模块各种电子设备的电源模块中都会包含DC-DC降压电路,用于将输入电压转换为设备所需的工作电压。

例如电视机、电脑、音响等电子设备均需要稳定的电压供应。

3. 太阳能电池板太阳能电池板将太阳能转换为直流电。

由于太阳能电池板的输出电压波动较大,需要通过DC-DC降压电路将电压稳定为所需的输出电压,以供应给电力系统或储存设备。

4. 电动汽车充电桩电动汽车充电桩需要将市电的交流电转换为电动汽车所需的直流电。

DC-DC降压电路在充电桩中起到将高电压的交流电转换为电动汽车所需的低电压直流电的作用。

三、DC-DC降压电路的优势和不足DC-DC降压电路相比于其他电力转换电路具有以下优势:1. 高效率:DC-DC降压电路采用开关控制方式,工作效率高于线性降压电路。

DC-DC原理与应用

DC-DC原理与应用

DC/DC基本知识DC/DC是开关电源芯片。

开关电源,指利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量。

其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。

开关电源可以用于升压和降压。

我们常用的DC-DC产品有两种。

一种为电荷泵(Charge Pump),一种为电感储能DC-DC转换器。

本文详细讲解了这两种DC/DC产品的相关知识。

目录一.1. 工作原理2. 倍压模式如何产生3. 电荷泵的效率4. 电荷泵的应用5. 电荷泵选用要点二.电感式DC/DC1. 工作原理(BUCK)2. 整流二极管的选择3. 同步整流技术4. 电感器的选择5. 输入电容的选择6. 输出电容的选择7. BOOST 与 BUCK的拓扑结构一. 电荷泵电荷泵为容性储能DC-DC产品,可以进行升压,也可以作为降压使用,还可以进行反压输出。

电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。

1. 工作原理电荷泵是通过外部一个快速充电电容(Flying Capacitor),内部以一定的频率进行开关,对电容进行充电,并且和输入电压一起,进行升压(或者降压)转换。

最后以恒压输出。

在芯片内部有负反馈电路,以保证输出电压的稳定,如上图V out ,经R1,R2分压得到电压V2,与基准电压V REF做比较,经过误差放大器A,来控制充电电容的充电时间和充电电压,从而达到稳定值。

电荷泵可以依据电池电压输入不断改变其输出电压。

例如,它在1.5X或1X的模式下都可以运行。

当电池的输入电压较低时,电荷泵可以产生一个相当于输入电压的1.5倍的输出电压。

而当电池的电压较高时,电荷泵则在1X模式下运行,此时负载电荷泵仅仅是将输入电压传输到负载中。

这样就在输入电压较高的时候降低了输入电流和功率损耗。

2. 倍压模式如何产生以1.5x mode为例讲解:电压转换分两个阶段完成。

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之 DC/DC 工作原理及芯片详解-设计应用

电源设计之DC/DC 工作原理及芯片详解-设计应用DC/DC电源指直流转换为直流的电源,从这个定义上看,LDO(低压差线性稳压器)芯片也应该属于DC/DC电源,但一般只将直流变换到直流,且这种转换是通过开关方式实现的电源称为DC/DC电源。

一、工作原理要理解DC/DC的工作原理,首先得了解一个定律和开关电源的三种基本拓扑(不要以为开关电源的基本拓扑很难,你继续往下看)。

1、电感电压伏秒平衡定律一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。

稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在该电感上的反向伏秒。

是不是觉得有点难理解,接着往下看其公式推导过程。

伏秒平衡方程推算过程:电感的基本方程为:V(t)=L*dI(t)/dt,即电感两端的电压等于电感感值乘以通过电感的电流随时间的变化率。

根据上述方程,可得dI(t)=1/L∫V(t)dt,对于稳态的一个功率变换器,其应保证在一个周期内电感中的能量充放相等,反映在V-t图中即表示在一个周期内其面积之和为0,所以得出电感电压伏秒平衡定律。

此处可参考:DC/DC电源详解第8页(如果此处还无法理解,可先阅读下面开关电源三种基本拓扑的工作原理)。

扩展资料:1、当一个电感突然加上一个电压时,其中的电流逐渐增加,并且电感量越大,其电流增加越慢;2、当一个电感上的电流突然中断,会在电感两端产生一个瞬间高压,并且电感量越大该电压越高;3、电容的基本方程为:I(t)=dV(t)/(C*dt),当一电流流经电容时,电容两端电压逐渐增加,并且电容量越大电压增加越慢;2、开关电源三种基本拓扑2.1、BUCK降压型图1 BUCK型基本拓扑简化工作原理图图2 电感V-t特性图BUCK降压型基本拓扑原理如图1所示,其电感L1的V-t特性图如图2。

DCDC升压电路原理与应用

DCDC升压电路原理与应用

DCDC升压电路原理与应用DC-DC升压电路是将直流电源的电压升高到所需的电压水平的电路。

它通常由开关元件、能储能元件(如电感、电容器)和控制电路组成。

升压电路的工作原理是:当直流电源输入到开关元件(如MOSFET)时打开,电流流过能储能元件(如电感),此时能储能元件存储了一定的能量;当开关元件关闭时,能储能元件上存储的能量将释放到输出负载上,通过控制电路调整开关元件的开关频率和占空比,就可以得到所需要的升压电压。

升压电路的应用非常广泛,下面介绍几个常见的应用场景:1.供电系统:由于电网的电压波动和传输损耗,远距离供电会导致电压下降,因此需要使用升压电路将电压升高,以确保合适的电压供电给负载设备。

这种应用场景常见于现代家庭、工业厂房、交通信号灯等。

2.电动车充电:电动车的电池通常需要较高的电压进行充电,而充电站提供的电压通常较低。

因此,在充电过程中需要使用升压电路将电压升高以适应电池的充电需求。

3.汽车点火系统:汽车点火系统通常需要高电压来产生火花放电,点燃汽油混合气体。

但是汽车电池的输出电压较低,所以需要使用升压电路将电压升高以满足点火系统的要求。

4.太阳能系统:太阳能电池组输出直流电压,但在实际应用中,往往需要更高的电压进行输送或存储。

因此,太阳能系统中经常使用升压电路来提升电压。

5.电子设备供电:在一些小型电子设备中,为了满足高压输入电缆的要求,需要使用升压电路将低电压升高。

这样可以减少电缆的尺寸和重量,提高设备的便携性。

总之,DC-DC升压电路是一种重要的电子设备,可以将低电压升高到所需的电压水平,广泛应用于电力系统、电动车、汽车点火系统、太阳能系统等领域。

通过控制电路调整开关元件的开关频率和占空比,可以实现电压的稳定输出。

DCDC电源设计方案

DCDC电源设计方案

DCDC电源设计方案DC-DC电源设计是一种将直流电源转换为不同电压或电流输出的电源设计方案。

DC-DC电源的设计目标是提供高效率、稳定可靠的电源输出,确保电路正常工作和设备正常运行。

本文将介绍DC-DC电源设计的基本原理、设计步骤和一些具体的设计方案。

一、DC-DC电源设计的原理和基本概念DC-DC电源设计基于开关电源的原理,使用开关元件(如MOS管)周期性地开启和关闭来控制电源输出电压和电流的变化。

通过调整开关元件的开关频率、占空比和电压波形等参数,可以实现不同输出电压和电流的调节。

DC-DC电源设计中,常用的基本概念有:1.输入电压:直流电源输入的电压值,例如12V、24V等。

2.输出电压:DC-DC电源输出的电压值,例如5V、3.3V等。

3.输出电流:DC-DC电源输出的电流值,例如1A、2A等。

4.效率:DC-DC电源输出功率与输入功率之比,用来衡量电源转换的效率。

5.稳定性:DC-DC电源输出电压或电流的稳定性,要求在负载变化、输入电压波动等情况下仍能保持稳定。

二、DC-DC电源设计的步骤DC-DC电源设计一般包括以下几个步骤:1.确定设计需求和参数:根据目标设备的需求和规格,确定DC-DC电源的输入电压、输出电压和输出电流等参数。

2. 选择拓扑结构:根据需求参数和应用场景选择合适的DC-DC拓扑结构,常见的有反激式、降压Buck型、升压Boost型、降压升压Buck-Boost型等。

3.选择元器件和设计电路:根据拓扑结构选择合适的开关元件、滤波电感、滤波电容和控制电路等元器件,并设计合理的电路连接方式和参数。

4.进行电路仿真和优化:使用仿真软件对电路进行仿真分析,评估电路的性能指标,并根据仿真结果对电路进行优化调整。

5.PCB设计和布局:根据电路设计结果进行PCB设计和布局,确保电路的稳定性和可靠性。

6.电路调试和测试:对设计好的PCB电路进行调试和测试,验证电路的稳定性、效率和输出性能是否符合设计要求。

全桥dc—dc变换电路实验报告总结 -回复

全桥DC-DC变换电路是一种常用的电力电子器件,在各种电子设备和电路中都有广泛的应用。

在本次实验中,我们针对全桥DC-DC变换电路进行了系统性的设计、搭建和测试,并对实验结果进行了分析和总结。

以下是本次实验报告的总结:一、实验目的1. 了解全桥DC-DC变换电路的基本工作原理和结构特点;2. 掌握全桥DC-DC变换电路的设计方法和关键参数选取;3. 进行实际电路搭建和性能测试,验证理论设计的准确性和可靠性。

二、实验内容1. 理论分析全桥DC-DC变换电路的工作原理和传统电压变换技术;2. 根据设计要求和指标,选择合适的电子元器件和参数;3. 按照设计要求,搭建全桥DC-DC变换电路实验评台,并进行性能测试;4. 对实验结果进行数据采集和分析,验证设计的正确性和稳定性。

三、实验步骤1. 理论分析:首先对全桥DC-DC变换电路的工作原理和传统电压变换技术进行了深入分析,以便更好地指导实验设计和搭建;2. 设计选型:根据设计要求和指标,选取了合适的电子元器件和参数,并进行了详细的设计计算和仿真分析;3. 电路搭建:在理论设计基础上,搭建了全桥DC-DC变换电路的实验评台,并进行了详细的电路布线和连接;4. 性能测试:对搭建好的全桥DC-DC变换电路进行了性能测试,包括输入输出电压、电流波形等参数的测试和记录;5. 数据分析:对实验结果进行了数据采集和分析,比对理论设计和实际测试的结果,进行了分析总结。

四、实验结果分析1. 输入输出特性:通过性能测试和数据分析,获得了全桥DC-DC变换电路的输入输出特性曲线,验证了设计的正确性和稳定性;2. 效率性能:从实验数据中计算得出了全桥DC-DC变换电路的转换效率,验证了设计的优化程度和功耗特性;3. 波形稳定性:对输入输出波形进行了详细的分析和比对,得出了全桥DC-DC变换电路的波形稳定性和失真程度;4. 结果评价:根据实验结果,对全桥DC-DC变换电路的整体性能进行了客观评价,指出了存在的问题和改进措施。

dc-dc变换电路原理及应用入门

文章标题:深入理解DC-DC变换电路原理及应用入门DC-DC变换电路是一种将直流电源转换为不同电压或电流输出的电子电路。

它在现代电子设备中应用广泛,包括手机、笔记本电脑、电动车和太阳能系统等。

本文将全面探讨DC-DC变换电路的原理及应用入门,以便读者更深入地理解和掌握这一重要的电子技术。

1. 什么是DC-DC变换电路?DC-DC变换电路是一种能够将直流电源转换为不同电压或电流输出的电路。

它可以实现直流电源的升压、降压、反向输出以及变换电流等功能。

在电子设备中,由于不同的电路和元件需要不同的工作电压和电流,DC-DC变换电路成为了必不可少的部分。

2. DC-DC变换电路的原理及工作方式DC-DC变换电路的原理基于电感和电容的储能特性,通过控制开关管的导通和截止,将输入电源以脉冲的形式加到电感上,再通过电容滤波获得稳定的输出电压。

根据不同的控制方式和拓扑结构,DC-DC变换电路可以分为多种类型,包括Buck、Boost、Buck-Boost、Cuk等。

每种类型都有其特定的工作方式和应用场景。

3. DC-DC变换电路的应用DC-DC变换电路在电子设备中有着丰富的应用场景,比如手机充电器中常用的Boost变换器、笔记本电脑电池管理系统中的Buck变换器、以及电动车和太阳能系统中的Buck-Boost变换器等。

通过合理选择和设计DC-DC变换电路,可以实现高效能的功率转换和电源管理。

4. 个人观点及总结通过本文的讲解,相信读者已经对DC-DC变换电路的原理及应用有了一定的了解。

在今后的学习和工作中,对于电子技术方面的研究和应用,深入掌握DC-DC变换电路的知识将会大有裨益。

希望读者能在实践中不断积累经验,尝试设计和应用更加复杂和高效的DC-DC变换电路,为电子技术的发展和应用做出更大的贡献。

总结来看,文章详细解释了DC-DC变换电路的原理及应用入门,帮助读者从零开始全面理解这一重要的电子技术。

对于想要深入研究和应用DC-DC变换电路的人来说,这篇文章将是一份有价值的指南和参考。

DCDC转换器电路设计的六大技巧

DC/DC转换器电路设计的六大技巧2017-11-19 xmsun2007来源阅 34 转 1转藏到我的图书馆微信分享:QQ空间QQ好友新浪微博推荐给朋友一、正确理解DC/DC转换器DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。

DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。

根据需求可采用三类控制。

PWM控制型效率高并具有良好的输出电压纹波和噪声。

PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。

PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。

目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。

在电路类型分类上属于斩波电路。

二、DC/DC转换器电路设计原理DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。

降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式DC/DC变换器基本工作原理电路如下图所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

DC/DC变换器基本工作原理图三、DC-DC电路设计要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2. DC-DC输出的电压,电流,系统的功率最大值。

四、选择PWM IC要考虑的要点有:1. PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

双向DCDC变换器设计

双向DCDC变换器设计双向直流-直流(DC-DC)变换器是一种电力电子设备,能够实现两个不同电压等效电路之间的能量转换和传输。

这种变换器常用于电池系统、节能转换系统和电网隔离系统等应用中。

本文将介绍双向DC-DC变换器的设计原理、工作原理和性能评估。

一、设计原理双向DC-DC变换器可以分为两个部分:升压变换器和降压变换器。

升压变换器将低电压输入提升为较高电压输出,而降压变换器则将高电压输入降压为较低电压输出。

这两个变换器可以通过一个可调节的开关来实现输出电压的控制。

在实际应用中,通过PWM(脉宽调制)技术来控制开关的导通时间,从而实现输出电压的调节。

二、工作原理双向DC-DC变换器的工作原理如下:1.当升压变换器开关导通时,输入电压经过电感储能,同时输出电容储能开始将能量传递到输出端。

2.当升压变换器开关断开时,储能元件的电感和电容开始释放储存的能量,使输出电压保持稳定。

3.当降压变换器开关导通时,输入电压先通过输出电容释放能量,同时电感储能元件开始储存电能。

4.当降压变换器开关断开时,储能元件释放储存的能量,实现输出电压的稳定。

三、性能评估设计双向DC-DC变换器时需要评估以下几个关键性能参数:1.效率:双向DC-DC变换器的效率主要取决于开关的损耗和传输效率。

通过合理选择开关元件和功率传输电路,可以提高变换器的效率。

2.响应时间:双向DC-DC变换器需要能够快速响应输入电压和输出负载的变化。

降低电路和控制系统的响应时间可以提高变换器的动态性能。

3.稳定性:双向DC-DC变换器需要具有良好的稳定性,以确保输出电压在不同负载条件下保持稳定。

在设计过程中应考虑噪声抑制和滤波技术。

4.安全性:在设计双向DC-DC变换器时,需要考虑过电流、过压和过温等保护功能,以防止电路损坏和事故发生。

在实际设计过程中,还需要考虑其他因素,如电路拓扑选择、元件选择、控制算法和布局布线等。

针对不同的应用需求,可能需要做出不同的设计决策。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DC/DC设计原理、经验与应用技巧总结
来源:大比特商务网
摘要:DC/DC设计原理、经验与应用技巧总结
关键字:DC/DC,设计原理,应用技巧
“绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。

能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。

对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。

因此,更长的电池寿命、更小的外形尺寸及各国政府推出的新法规都在要求必需谨慎选择电源元件,尤其是对板上的DC-DC转换器。

这表示着新平台的功率密度、效率和热性能必须大幅提高。

众所周知,设计理想的DC-DC转换器涉及到众多权衡取舍。

功率密度的提高通常意味着总体功耗的增加,以及结温、外壳温度和PCB温度的提升。

同样地,针对中等电流到峰值电流优化DC/DC电源,几乎也总是意味着牺牲轻载效率,反之亦然。

本人结合自己十多年的DC-DC应用经验,谈谈DC-DC转换器的基本原理和设计经验技巧。

DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。

降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式DC/DC变换器基本工作原理电路如图1所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

图1、降压式DC/DC变换器基本工作原理电路
DC-DC设计技巧
一.DC-DC电路设计至少要考虑以下条件:
1.外部输入电源电压的范围,输出电流的大小。

2.DC-DC输出的电压,电流,系统的功率最大值。

二.基于以上两点选择PWMIC要考虑:
1.PWMIC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

对储能电感,电容的大小的选择也有一定影响。

3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DCIC内部自带MOS,只需要考虑IC输出的额定电流。

4.MOS的开关电压Vgs大小及最大承受电压。

三.电感(L1),二极管(CR1),电容(C2)的选择
1.电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。

2.二极管:通常都用肖特基二极管。

选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。

3.电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。

容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:
1.输入部分:电源输入端需要加电感电容滤波。

目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。

2.输出部分:
(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100u F 的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。

(2)在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源。

PCB布线时,应注意几点:
1.输入电源与MOS的连线要尽可能的粗。

2.Vgs也要粗一点,千万不要以为粗细没关系,(注:一般系统功率相对较低时,输出电流不大,粗细的影响不明显)关键时刻会影响电源的稳定性。

3.CR1,L1尽量靠近Q1。

C2尽量靠近L1。

4.反馈电阻的线尽量远离电感L1。

5.反馈电压的地与系统的地尽量的近,保持在一个电位上。

6.CR1的地线千万要粗,在MOS的打开的时间里,L1的电流是由CR1的通路提供,即由地流向L1。

DC-DC应用技巧
在常见的DC/DC变换器中,有很多的应用技巧是不为工程师所掌握的.现拿UTCP3596应用电路来作一个说明,与诸位分享交流:
DC-DC应用技巧一
当我们用这个电路做好Buck以后,电感量达到其Spec.的要求,却发现负载调整率过低.这种情况下,很多同学都认为芯片品质问题等等.其实由于芯片的半导体工艺不能使内部的运放的带宽(bandwidth)做的很大.所以我们所做的要么就是屏蔽内部的运放(象我们常见的384X电路1,2pin的连接方法);要么就是外部来补偿,在R1上并一个无极性电容加速内部运放对输出电压的反应.
分析也不是仅针对UTCP3596的芯片,适用于全部的DC/DC,及其它的开关电源.
开关电源作为一个反馈系统,当我们选用一个运放来做PID(比例积分微分),而我们选用运放要求的带宽要有足够的大,相应的相位裕度也比较大(当然在一
定的性价比条件下).用于适应响应反馈中采样的低频至高频的信号!
我们做低成本的充电器,可以用稳压管.功率再大一些,就选用TL431(内部一个运放加晶体管).对于精度要求更好的,我们肯定不会用TL431或稳压管.呵呵~~~~结论还是自己分析会比较好!!!对于很多开关电源工程师来说,一但调试搞不定,就会说补偿没调好/变压器没绕好~~~原因为何?
我们首先看一下,UC384X内部结构图(注意看1/2脚之间的运放):
如果我们把2脚接地,用1脚作为反馈端;这实际上,就是把这个内部的运放接成一个跟随器.就是把这个运放给屏蔽了!
DC-DC应用技巧二
在很多情况下,突然撤去负载或输入时,导致Buck电路内部的MOSFET损坏.
分析原因:基本上是输出级的能量无处泄放,一种是自然放电,一种就会反灌!
基本上解决的方法就是在这样的Buck电路中,输入级至输出级反方向接一个二极管.
延伸:为什么我们在开关电源中所应用的MOSFET中会集成一个反向的体二极管啦!同样我们在用VR(7805/7808etc.)尽量会加一个反向二极管.
DC-DC应用技巧三
也有很多人说,短路电流大或者短路效果不明显.
碰到这样的可以尝试换一个线径来绕制这个电感,因为不同的线径在相同的磁环(磁棒)上都可以绕制到需求的电感量.但不同的线经会产生不同的ESR(等效电阻),而这个电阻是总负荷的一部分!
相关文章推荐:
1、《资深工程师讲述DC/DC设计技巧》
2、《DC/DC设计原理、经验与应用技巧总结》
3、《解析最佳DC/DC电源模块设计方案》
4、《DC/DC变换器在汽车照明中的应用方案》
5、《基于DC/DC变换器的LED驱动电路的设计》
6、《软开关半桥DC/DC变换器的PWM控制策略分析》
7、《双正激DC/DC变换器的一种新型拓扑研究》
8、《降压DC/DC控制器参考方案》
9、《运用DC/DC芯片做LED恒流驱动电路方案》。

相关文档
最新文档