高一数学学习技巧及重要知识点
高一的数学学习方法和技巧

高一的数学学习方法和技巧很多高一新生反映:开学学习不适应,比初中要难学。
一个是暑假放了近六十天暑假,很多东西都忘了,就会出现了知识上的断层。
下面给大家分享一些关于高一的数学学习方法和技巧,希望对大家有所帮助。
一、温故法学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念.五、置疑法这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。
通过拍手体验,在边问、边议中逐步讲解。
实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
转变观念初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。
可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。
所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。
要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。
高一数学知识点总结及公式大全

高一数学知识点总结及公式大全数学是一门让很多学生头痛的学科,不过只要我们掌握了一些基础知识和常用的公式,就能在数学学习上更加游刃有余。
以下是高一数学中一些重要的知识点总结及公式大全,希望对大家的学习有所帮助。
一、代数基础知识1. 整式的加减乘除运算- 括号法则:先算括号里的,再算指数,再算乘除,最后算加减。
- 合并同类项:将同类项合并,即将相同字母的幂相同的项合并。
2. 因式分解- 公因式提取法:将多项式中各项的公因式提取出来。
- 完全平方公式:将二次三项式进行因式分解,可用公式(a+b)²=a²+2ab+b²,以及(a-b)²=a²-2ab+b²。
- 公式法:根据特定公式进行因式分解,如二次三项式的平方差公式以及二次三项式的和差公式。
3. 分式的加减乘除运算- 通分:将分数的分母化为相同的最简形式,通分后再进行运算。
- 约分:将分数的分子与分母同时除以一个相同的数。
二、平面几何1. 直线和角度- 直线的倾斜度:一般表示为y=kx+b的形式,k即为直线的倾斜度,b为截距。
- 同位角、同旁内角、同旁外角等角度关系。
- 垂直、平行线的性质。
2. 三角形- 三角形的内角和定理:三角形内角的和为180°。
- 外角和定理:三角形的外角等于不相邻的两个内角的和。
- 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 同心圆和相似- 同心圆的性质:同心圆的圆心相同,但半径不同。
- 相似三角形:两个三角形对应角相等,对应边成比例。
三、函数与方程1. 一次函数- 函数的概念:函数是一种具有特定输入与输出关系的数学对象。
- 一次函数的一般式:y=ax+b,其中a为斜率,b为截距。
2. 二次函数- 二次函数的一般式:y=ax²+bx+c,其中a、b、c为常数,a≠0。
- 二次函数的顶、凹性:若a>0,则函数开口向上,为正列抛物线;若a<0,则函数开口向下,为负列抛物线。
高一数学学习方法总结大全

高一数学学习方法总结大全很多高一新生反映:开学学习不适应,比初中要难学。
一个是暑假放了近六十天暑假,很多东西都忘了,就会出现了知识上的断层。
再一个就是高中数学的确比初中数学要难学,小编在这里整理了相关资料,希望能帮助到您。
1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。
2.二次函数,二次方程不仅是初中重点,也是难点。
在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了! 解不等式的时候就要从先解方程的根开始,二次项系数大于 0 时,有个口诀得记下:“大于号取两边,小于号取中间”。
3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。
4.判别式很重要,不仅能判断二次方程的根有几个,大于零 2 个根;等于零1 个根;小于零无根。
而且还能判断二次函数零点的情况,人教版必修一就会学到。
集合里面有许多题也要用到。
2 学习方法一1.不少同学都会有个相同的错误,就是在老师讲课的时候,拼命的做笔记,做计算。
这都是徒劳或者是低效的。
最有效的是抛开一切,认真理解老师的解题思路,千万不要纠结某个计算结果或者是某个环节,你所要理解的是,一道题如何一环环的解开和每一个环节的原理。
2.要学好高中数学,最主要的是自己做题,千万不可依赖老师或者同学,不提倡题海战术,因为做一道新题要比你做一百道同样的题强很多。
每做完一道题,要总结出解题的思路方法。
3.整个高中最难的一块就是函数,而函数又恰巧学在前面,导致很多学生受挫。
函数一块的话,可以先了解一下函数图象的一块,借助图象来解函数问题,非常方便。
4.看书能明白,听老师讲题觉得很简单,但一到自己做,就不会了。
这是一个通病。
主要原因不是因为高中的数学有多难,而是思维没有转变过来。
高一数学知识点重点难点

高一数学知识点重点难点一、函数与方程函数是数学中的重要概念,高一数学课程中需要掌握函数的定义、函数图像的变换以及函数的性质等知识点。
对于平方函数、绝对值函数、一次函数等常见函数,需要熟练掌握其图像特征和性质,并能够应用到实际问题中去解答。
方程作为数学中的基本工具之一,是高一数学的难点之一。
高一数学课程中的方程主要涉及到一元二次方程、一次方程组和二元二次方程等。
特别是对于一元二次方程,需要重点掌握求根公式和判别式的运用,并能够运用到实际问题中解决。
二、几何与三角在几何的学习中,需要掌握几何基本性质、常见的几何公式以及几何图形之间的关系。
对于圆的相关知识,需要熟练掌握圆的基本性质和常见的定理,如切线定理、弦切角定理等。
三角学是高中数学中的重点难点,主要包括正弦定理、余弦定理、正切定理以及三角函数的相关性质等。
在解决实际问题时,需要能够灵活运用这些定理和公式。
三、概率与统计概率与统计是高一数学的另一难点。
概率主要涉及到事件的概率计算、事件之间的关系以及样本空间的构建等。
统计则需要掌握统计调查的方法和数据处理的技巧,包括频率统计、图表分析、平均数和标准差的计算等。
四、数列与逻辑数列是高一数学中的一个重要内容,需要理解数列的概念、数列的通项公式和前n项和的计算。
同时,需要熟练掌握等差数列和等比数列的性质以及其应用。
逻辑推理是高一数学的一个考察点,需要能够运用命题逻辑的方法进行推理和证明。
包括条件命题、充分必要条件、充要条件等概念的理解,并能够应用到相关问题中去解答。
五、矩阵与变量矩阵是高一数学中的一个重要概念,需要理解矩阵的定义、矩阵的运算以及矩阵的性质。
同时,需要能够运用矩阵解决实际问题,如线性方程组的解法等。
变量是数学中的一个基本概念,需要理解变量的含义和变量的应用。
在高一数学中,需要熟练掌握解方程的方法以及应用变量解决相关问题。
六、解析几何解析几何是高中数学的重点内容,需要掌握平面直角坐标系、直线和曲线的方程以及相关的性质。
高一数学必背公式及知识点汇总

高一数学必背公式及知识点汇总在高一数学学习中,掌握公式和知识点是非常重要的,它们是我们解题的基础。
下面将为大家总结一些高一数学中必须掌握的公式和知识点。
一、函数与方程1. 一次函数:函数表达式:y = kx + b直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)斜率与角度的关系: tanθ = k2. 二次函数:函数表达式:y = ax² + bx + c顶点坐标:(h, k)根与系数的关系:x₁ + x₂ = -b / a, x₁ * x₂ = c / a判别式:Δ = b² - 4ac根的个数与判别式的关系:Δ > 0 时,有两个不相等的实根;Δ = 0 时,有两个相等的实根;Δ < 0 时,无实根3. 指数与对数:指数运算法则:aᵇ * aᶜ = a⁽ᵇ⁺ᶜ⁾对数运算法则:log(mn) = logm + logn二、平面几何1. 勾股定理:a² + b² = c²(其中a、b为直角边,c为斜边)2. 直角三角形中的正弦定理、余弦定理:正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c² = a² + b² - 2ab · cosC3. 三角函数的周期性及基本关系:正弦函数:f(x) = sinx余弦函数:f(x) = cosx正切函数:f(x) = tanx三、概率统计1. 事件发生的概率:P(A) = n(A) / n(S) (其中n(A)表示事件A 发生的次数,n(S)表示样本空间S中的元素个数)2. 排列组合:排列:从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排列,有多少种不同的排列方式组合:从n个不同元素中,取出m(m≤n)个元素,不考虑顺序,有多少种不同的组合方式3. 正态分布:正态分布的概率密度函数:f(x) = (1 / (σ * √(2π))) · exp((-1/2) * ((x - μ) / σ)²)正态分布的标准差和方差符号:σ和σ²四、解析几何1. 二维平面坐标系:直线的斜率:k = (y₂ - y₁) / (x₂ - x₁)中点坐标公式:(x,y) = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)2. 空间直角坐标系:三维空间两点间距离公式:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)以上是高一数学中的一些必背公式和知识点汇总,希望能对大家的学习有所帮助。
高一数学万能知识点归纳总结

高一数学万能知识点归纳总结高中数学作为一门基础学科,对于高中阶段学生来说是至关重要的一门课程。
为了帮助高一学生更好地掌握数学知识,本文将对高一数学的一些万能知识点进行归纳总结。
以下是该科目的主要知识点及其相关内容。
1. 函数与方程(1)函数的定义与性质:函数是一种关系,它将一个集合的每个元素都映射到另一个集合的元素上。
函数的性质包括定义域、值域、单调性等。
(2)方程与不等式:包括一元一次方程、一元二次方程、一元高次方程等的解法,以及一元一次不等式、一元二次不等式等的解法。
2. 三角函数与解三角形(1)基本三角函数:包括正弦函数、余弦函数、正切函数等。
学生需掌握它们的定义及基本性质。
(2)解三角形:包括解直角三角形和一般三角形的周长、面积、角度等相关问题。
3. 平面向量(1)向量的定义与性质:包括向量的加法、减法、数量积、向量积等运算规则及其性质。
(2)平面向量的应用:包括向量的共线、平行、垂直关系等,以及向量表示几何解析问题等。
4. 数列与数列极限(1)数列的定义与性质:数列是由一列有序的数按照一定的规律排列而成。
学生需了解数列的等差数列、等比数列等,并掌握其性质。
(2)数列极限:数列极限是数列中的数随着项数的增大逐渐趋于某个确定的数值。
学生需要了解数列极限的定义、收敛性、夹逼定理等。
5. 概率与统计(1)基本概率论:包括事件的概率、互斥事件、独立事件及计算方法等。
(2)统计学基础:包括样本、总体、频数、频率等概念,以及统计数据的整理、分析与表示方法等。
6. 导数与微分(1)导数的定义与求导法则:包括常用函数的导数、复合函数的导数、隐函数的导数等。
(2)微分学应用:包括极值、最值、曲线的凹凸性、曲率、函数的增减性等。
7. 三角函数与解三角形(1)平面向量的定义与运算:包括向量的加法、减法、数量积、向量积等。
(2)平面向量的应用:包括向量的共线、平行、垂直关系等,以及向量表示几何解析问题等。
以上是高一数学的一些重点知识点的归纳总结。
高一数学重点及难点知识点
高一数学重点及难点知识点一、函数与方程函数是高中数学的基础,而方程则是函数的重要应用。
在高一数学中,学生将会学习如何掌握函数与方程的基本概念和性质。
下面是一些重点及难点知识点:1. 函数的概念与性质:- 定义函数的方法及表示方式;- 函数的定义域和值域;- 函数的奇偶性和周期性。
2. 一次函数:- 函数的表示与性质;- 函数图像与函数的关系;- 函数的平移和伸缩。
3. 二次函数:- 函数的表示与性质;- 函数图像与函数的关系;- 函数的最值及其求解。
4. 指数函数与对数函数:- 函数的表示与性质;- 函数图像与函数的关系;- 指数函数与对数函数的互逆性;- 对数函数的常用性质与计算方法。
二、三角函数三角函数是数学中的重要概念,对于几何问题和物理问题的解决起着重要的作用。
以下是高一数学中的三角函数的重点及难点:1. 基本概念:- 角的概念与表示方法;- 弧度制与角度制的转换;- 扇形面积与弧长的计算。
2. 正弦函数与余弦函数:- 函数的定义与性质;- 函数图像与函数的关系;- 函数的周期性与对称性。
3. 正切函数与余切函数:- 函数的定义与性质;- 函数图像与函数的关系;- 函数的周期性与对称性。
4. 三角恒等式:- 三角函数的和差化积;- 三角函数的倍角化简;- 三角函数的半角化简。
三、平面向量平面向量是高中数学中引入的新概念,它在几何与代数中都有广泛的应用。
以下是高一数学中平面向量的重点及难点:1. 平面向量的表示与运算:- 向量的表示方法;- 向量的加法与减法;- 向量的数量积与向量积。
2. 向量的共线与垂直:- 向量的共线与夹角的关系;- 向量的垂直与正交投影。
3. 向量的坐标表示与应用:- 向量与坐标的转换;- 平面向量在几何问题中的应用。
四、概率与统计概率与统计是高中数学的重要内容,它们可以帮助我们理解和处理随机事件与实际问题。
以下是高一数学中概率与统计的重点及难点:1. 随机事件与概率:- 随机事件的基本概念;- 概率的定义与性质;- 概率计算与应用。
高一数学知识点总结及技巧
高一数学知识点总结及技巧数学是一门需要坚实基础和灵活思维的学科,对于高一学生来说,学好数学是非常重要的。
下面将对高一数学的知识点进行总结,并分享一些学习技巧,帮助同学们更好地掌握数学。
一、代数知识点总结1. 整式和分式运算高一数学中,整式和分式是基础且重要的概念。
需要掌握整式的加减乘除运算法则,以及分式的简化、约分和运算。
2. 一元一次方程与一元一次不等式学习高一数学时,需要掌握解一元一次方程和不等式的方法,包括消元法、代入法、图像法等。
3. 二次根式与二次方程二次根式与二次方程是高一数学中的重要内容,需要掌握二次根式的化简与运算法则,以及求解二次方程的方法,包括因式分解法、配方法、求根公式等。
4. 线性不等式与线性规划在学习线性不等式和线性规划时,需要了解线性不等式的性质,掌握图像法解不等式和线性规划问题的方法。
二、几何知识点总结1. 平面几何基础高一学习平面几何时,要掌握点、直线、角的基本概念与性质,了解平面相关的公理和定理,熟练运用几何知识进行证明和计算。
2. 三角形与四边形掌握三角形和四边形的性质,包括各种特殊三角形、直角三角形、等腰三角形等,以及四边形的分类和特性。
3. 圆与圆的性质学习圆的相关知识时,要掌握圆心角、弧、切线等基本概念,了解圆的性质和定理,学会运用这些知识解题。
4. 空间几何高一学习空间几何时,要了解直线和平面的性质,掌握立体图形的表达方法,学会计算空间几何问题。
三、概率与统计知识点总结1. 随机事件与概率学习概率与统计时,需要了解随机事件的概念,熟悉计算概率的方法,包括经典概率、几何概率和条件概率等。
2. 统计与统计图表掌握统计学中的基本概念,包括样本、总体、频数、频率等,学会制作和解读各类统计图表,如直方图、折线图、饼图等。
四、高一数学学习技巧1. 积极参与课堂上课时要认真听讲,积极思考,遇到问题要及时提问。
课后要复习课堂内容,将知识点强化,巩固自己的理解。
2. 多做练习题数学是一门需要反复练习的学科,要多做各类题目,包括课本习题和试题。
高一数学必修一各章知识点总结技巧解答
高一数学必修1各章知识点总结一、集合1.集合的中元素的三个特性:2.集合的表示方法: 列举法与描述法、图示法非负整数集(即自然数集)记作: N正整数集 N*或 N+ 整数集Z 有理数集Q 实数R二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分, ;(2)A与B 是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2. “相等”关系: A=B (5≥5, 且5≤5, 则5=5)实例: 设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即: ①任何一个集合是它本身的子集。
A(A②真子集:如果A(B,且A( B那就说集合A是集合B的真子集, 记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B◆ 3.不含任何元素的集合叫做空集, 记为Φ◆规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合, 含有2n个子集, 2n-1个真子集例题:1.下列四组对象, 能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a, b, c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0}, 则M与N的关系是 .4.设集合A= , B= , 若A B, 则的取值范围是5.50名学生做的物理、化学两种实验, 已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人, 则这两种实验都做对的有人。
6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M.........7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ, A∩C=Φ, 求m的值二、函数的有关概念1. 定义域:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法: ①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2. 值域 : 先考虑其定义域3.函数图象常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4. 映射可一对一、多对一补充: 复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f、g的复合函数。
高一数学所有知识点总结归纳
高一数学所有知识点总结归纳高一数学是学生在高中阶段学习数学的第一年,是基础扎实、知识积累的重要阶段。
在这一年里,学生将接触到许多数学的基本概念和方法,并逐渐拓展自己的数学思维。
为了让大家更好地复习和巩固基础知识,本文将对高一数学的所有知识点进行总结归纳。
一、集合与函数1. 集合的基本概念- 集合的定义、元素和特点- 空集、全集和子集- 并集、交集和差集的运算2. 函数与映射- 函数的定义和性质- 函数的分类及其表示法- 函数的运算、复合函数和反函数3. 集合与函数的应用- 关系与函数的区别与联系- 函数在实际问题中的应用二、数列与数列的极限1. 数列的概念与表示- 数列的定义和性质- 等差数列和等比数列2. 数列的通项与前n项和- 递推公式与通项公式- 前n项和的计算和性质3. 数列的极限- 数列极限的概念及性质- 数列极限的计算和判断三、平面向量与解析几何1. 平面向量的基本概念- 平面向量的定义和性质- 平面向量的线性运算和数量积2. 平面向量的应用- 向量的共线与垂直- 向量的模、夹角和投影- 平面向量在几何中的应用3. 解析几何- 平面直角坐标系与向量表示- 直线和圆的方程- 直线与圆的性质和判断条件四、三角函数与三角恒等变换1. 三角函数的定义和性质- 正弦、余弦、正切等基本概念- 三角函数的周期性和奇偶性2. 三角函数的运算- 三角函数的和差、倍角、半角公式 - 三角函数的积化和差化积3. 三角恒等变换- 三角函数的恒等变换及证明- 三角方程的解法和应用五、数系与方程1. 实数与复数- 实数的性质与运算- 复数的定义和运算2. 一次方程和二次方程- 一次方程和一元二次方程的概念- 一次方程和一元二次方程的解法和应用3. 不等式与绝对值- 不等式的性质和解法- 绝对值的定义和性质总结:高一数学涉及的知识点非常广泛,本文对集合与函数、数列与数列的极限、平面向量与解析几何、三角函数与三角恒等变换、数系与方程等方面进行了总结归纳。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学学习技巧及重要知识点高一数学(人教版)的知识点较多,高一试题约占高考得分的60%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充。
技巧要点整体把握是很重要的,高中数学的重要性不是谁能想象的,刚进入高一,有些学生还不是很适应,如果直接学习高考技巧仿佛是“没学好走就想跑”。
任何的技巧都是建立在牢牢的基础知识之上,因此建议高一的学生多抓基础,多看课本。
在应试教育中,只有多记公式定理,掌握解题技巧,熟悉各种题型,才能在考试中取得最好的成绩。
在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。
集合及运算的概念集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B空集:不含任何元素的集合叫做空集。
记为Φ集合的三要素:确定性、互异性、无序性集合的表示方法:列举法、描述法、视图法、区间法集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集常见数集“N”全体非负整数(或自然数)组成的集合“N+”或“N*”所有正整数组成的集合“Z”全体整数组成的集合"Q“全体有理数组成的集合“R”全体实数组成的集合关系:元素属于集合:a∈A集合与集合:A⊇B,A=B运算:交集:由属于集合A且属于集合B的所有元素组成的集合,叫做集合A与集合B的交集。
记作A ∩B并集:由所有属于集合A或属于集合B的元素组成的集合,叫做集合A与B的并集记作A∪B补集:由全集U中不属于集合A的所有元素组成的集合,记为CuA运算的基本性质集合的运算性质(1)A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ;(2)A∪B=BUA;A⊆A∪B;B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A ;(3)Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律);(4)A⊇B,B⊇A,则A=B,A⊇B,B⊇C,则A⊇C常用结论(1) A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B(2) CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律有关公式抛物线y = ax^2+ bx + c就是y等于a乘x 的平方加上bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x-h)^2+ k就是y等于a乘以(x-h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的交点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的交点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 三角函数两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2α=2tanα/(1-tan^2(α)) sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)cos((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n^22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角乘法与因式分解a^2-b^2=(a+b)(a-b) , a^3+b^3=(a+b)(a^2-ab+b^2) ,a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)有关定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 在同一平面内,过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行或垂直,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。