同济大学《高等数学》第四版1-6节极限的运算法则
同济大学《高等数学》(第四版)1-8节 无穷小的比较

练 习 题
(1 ax ) 1 6、lim =_________. x 0 x
1 n
7、当 x 0 时, a x 3 a (a 0) 对于 x 是_______阶无穷小 . 8、当 x 0 时,无穷小 1 cos x 与 mx n 等价,则 m _______,n _______ . 二、求下列各极限: tan x sin x 1、lim ; 3 x 0 sin x e e 2、 lim ; sin x sin x 3、lim ; x 0 x tan x tan a lim 4、 ; x a xa
故当 x 时 f ( x ) 和 g( x ) 不能比较.
一、填空题: tan 3 x 1、lim =__________. x 0 sin 2 x arcsin x n 2、lim =________. x 0 (sin x ) m ln( 1 2 x ) 3、lim =_________. x 0 x 1 x sin x 1 4、lim =________. 2 x0 x arctan x x n 5、lim 2 sin n =________. n 2
例5 解
tan 5 x cos x 1 求 lim . x0 sin 3 x
tan x 5 x o( x ), sin 3 x 3 x o( x ),
1 2 1 cos x x o( x 2 ). 2 1 2 5 x o( x ) x o( x 2 ) 2 原式 lim x 0 3 x o( x )
sin x ~ x , tan x ~ x , ln(1 x ) ~ x ,
arcsin x ~ x , arctan x ~ x , e 1 ~ x,
同济大学《高等数学》(第四版)第三章习题课

上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当
同济大学《高等数学》(第四版)1-6节 极限的运算法则

3
x→2
小结: 小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 + ⋯ + a n , 则有
x → x0
lim f ( x ) = a 0 ( lim x ) n + a1 ( lim x ) n −1 + ⋯ + a n
x → x0
n
x → x0
= a 0 x 0 + a1 x 0
n −1
+ ⋯ + a n = f ( x 0 ).
P( x) 2. 设 f ( x ) = , 且Q( x 0 ) ≠ 0, 则有 Q( x )
P ( x0 ) lim f ( x ) = = f ( x 0 ). = x → x0 lim Q ( x ) Q( x0 )
x → x0 x → x0
由无穷小与无穷大的关系,得 由无穷小与无穷大的关系 得
4x − 1 lim 2 = ∞. x →1 x + 2 x − 3
x −1 例3 求 lim 2 . x →1 x + 2 x − 3
2
0 解 x → 1时, 分子 , 分母的极限都是零 . ( 型) 0
先约去不为零的无穷小 因子 x − 1后再求极限 . 后再求极限
1 2 n 1+ 2 +⋯+ n lim ( 2 + 2 + ⋯ + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
sin x 例6 求 lim . x→∞ x
高等数学(同济大学版) 课程讲解 1.6-1.7 两个重要极限 无穷小比较

课时授课计划课次序号:05一、课题:§1.6极限存在准则两个重要极限§1.7 无穷小的比较二、课型:新授课三、目的要求:1.了解极限的两个存在准则,并会利用它们求极限;2.掌握利用两个重要极限求极限的方法;3.掌握无穷小阶的概念以及利用等价无穷小替换求极限的方法.四、教学重点:利用两个重要极限以及等价无穷小替换求极限.教学难点:利用极限的存在准则求极限.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–6 1(1)(6),2(3);习题1–7 1,4(3)八、授课记录:九、授课效果分析:复习1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则. 有些函数的极限不能(或者难以)直接应用极限运算法则求得,往往需要先判定极限存在,再用其他方法求得.下面先介绍判定函数极限存在的两个准则,然后介绍两个重要极限.在此基础上,进一步介绍无穷小的比较与等价无穷小的性质.第六节 极限存在准则 两个重要极限一、极限存在准则1. 夹逼准则定理1 如果数列{}{}n n y x 、及{}n z 满足下列条件: (1)()...321,,=≤≤n z x y nn n , (2),,a z a y n n n n ==∞→∞→lim lim 那么数列{}n x 的极限存在,且a x n n =∞→lim 。
证 ,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε1,n n N y a ε>-<当时,恒有 2,n n N z a ε>-<当时,恒有},,max{21N N N =取上两式同时成立, ,εε+<<-a y a n 即 ,εε+<<-a z a n所以恒有时当,N n >,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n.lim a x n n =∴∞→例1 求⎪⎪⎭⎫⎝⎛++++++∞→n n n n n 22212111lim 解11112222+<++++<+n n nn n nn n ,而 11limlim22=+=+∞→∞→n n nn n n n , 所以原式极限为1.定理1/ 设在点x 0的某去心邻域有12()()()F x f x F x ≤≤, 且0lim x x →F 1(x )= 0lim x x →F 2(x )=A ,则0lim ()x x f x →=A .证 由已知条件, ∃δ1>0,当x ∈0U (x 0,δ1)时, 12()()()F x f x F x ≤≤.又由0lim x x →F 1(x )=0lim x x →F 2(x )=A 知: ∀ε>0,∃δ2>0,当x ∈0U (x 0,δ2)时,|F 1(x )-A |<ε,∃δ3>0,当x ∈0U (x 0,δ3)时,|F 2(x )-A |<ε.取δ=min(δ1,δ2,δ3),则当x ∈0U (x 0,δ)时,得 A -ε<12()()()F x f x F x ≤≤<A +ε.由极限定义可知,0lim ()x x f x A →=.夹逼定理虽然只对x →x 0的情形作了叙述和证明,但是将x →x 0换成其他的极限过程,定理仍成立,证明亦相仿.例如,若∃X >0使x >X 时有12()()()F x f x F x ≤≤,且lim x →+∞F 1(x )=lim x →+∞F 2(x )=A , 则lim x →+∞f (x )=A.2. 单调有界准则定义 数列{}n x 的项若满足x 1≤x 2≤…≤x n ≤x n +1≤…,则称数列{}n x 为单调增加数列;若满足x 1≥x 2≥…≥x n ≥x n +1≥…,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.定理2 单调有界数列必有极限.该准则的证明涉及较多的基础理论,在此略去.例2 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界.当a >b >0时,有 a n +1-b n +1=(a -b )(a n +a n -1b +…+ab n -1+b n )<(n +1)(a -b )a n , 即a n [(n +1)b -na ]<b n +1. (8)取a =1+1n ,b =1+11n +代入(8)式,得 11n n ⎛⎫+ ⎪⎝⎭<1111n n +⎛⎫+ ⎪+⎝⎭,即数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调增加的.取a =1+12n ,b =1代入(8)式,得 112nn ⎛⎫+ ⎪⎝⎭<2,从而2112nn ⎛⎫+ ⎪⎝⎭<4,n =1,2,…,又由于 211121n n -⎛⎫+ ⎪-⎝⎭<2112nn ⎛⎫+ ⎪⎝⎭<4,所以11nn ⎛⎫+ ⎪⎝⎭<4对一切n =1,2,…成立,即数列11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭有界,由收敛准则可知11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.我们将11n n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的极限记为e ,即 1l i m 1nn n →∞⎛⎫+ ⎪⎝⎭=e .二、两个重要极限利用夹逼定理,可得两个非常重要的极限.1. 第一个重要极限 0sin lim1x x x→=我们首先证明0sin lim1x x x+→=.因为x →0+,可设x ∈(0,2π).如图1-35所示,其中, EAB为单位圆弧,且OA =OB =1,∠AOB =x ,则OC =cos x ,AC =sin x ,DB =tan x ,又△AOC 的面积<扇形OAB 的面积<△DOB 的面积, 即 cos x sin x <x <tan x .因为x ∈(0,2π),则cos x >0,sin x >0,故上式可写为cos x <sin x x<1cos x.由0lim cos 1x x →=,01lim1cos x x→=,运用夹逼定理得 0sin lim 1x x x+→=. 注意到sin x x是偶函数,从而有0sin sin()sin limlim lim 1x x z x x z xxz--+→→→-===-.图1-35综上所述,得 0s i n l i m1x x x →=.例3 证明0tan lim1x x x→=.证 0tan sin 1limlimcos x x x x xxx→→=⋅sin 1limlim1cos x x x xx→→=⋅=.例4 求21cos limx xx→-.解 22220002(sin )sin1cos 1122lim lim lim 222x x x xx x xx x →→→⎛⎫ ⎪-=== ⎪⎪⎝⎭. 例5 求3tan sin lim x x xx →-.解 33tan sin sin (1cos )limlimcos x x x xx x xx x→→--=20s i n 1c o s 11l i m c o s 2x x x x x x→-=⋅⋅=.例6 求1lim sinx x x→∞.解 令u =1x,则当x →∞时,u →0,故01sin lim sinlim1x u u x x u→∞→==.从以上几例中可以看出,0sin lim1x x x→=中的变量可换为其他形式的变量,只要在极限过程中,该变量趋于零.即如果在某极限过程中有lim ()0u x =(()u x ≠0),则sin ()lim1()u x u x =.2.第二个重要极限 1lim (1)e x x x→∞+=前面我们已证明了1lim (1)e nn n→∞+=.对于任意正实数x ,总存在n ∈N ,使n ≤x <n +1,故有1+11n +<1+1x≤1+1n,及1111(1)(1)(1)1nxn n xn++<+<++.由于x →+∞时,有n →∞,而11(1)11lim (1)lime 1111n nn n n n n +→∞→∞+++==+++,1111lim (1)lim (1)(1)e n nn n nnn+→∞→∞+=++= ,由夹逼定理使得1lim (1)e xx x→+∞+=.下面证1lim (1)e xx x→-∞+=.令x =-(t +1),则x →-∞时,t →+∞,故(1)(1)11lim (1)lim (1)lim ()11xt t x t t t xt t -+-+→-∞→+∞→+∞+=+=++lim ()()e 11tt t t t t →+∞==++.综上所述,即有 1l i m (1)e xx x→∞+=.在上式中,令z =1x,则当x →∞时,z →0,这时上式变为1lim (1)e z z z →+=.为了方便地使用以上公式,常将它们记为下列形式:(1) 在某极限过程(x →x 0,x →∞,x →-∞,x →+∞)中,若lim ()u x =∞,则()1lim 1e ()u x u x ⎡⎤+=⎢⎥⎣⎦;(2) 在某极限过程中,若lim ()0u x =,则 []1()lim 1()e u x u x +=.例7 求lim (1)xx k x→∞+(k ≠0).解 l i m (1)l i m (1)xkxk x x k k xx →∞→∞+=+ l i m (1)ekx kkx k x →∞⎡⎤=+=⎢⎥⎣⎦. 例8 求1lim 2xx x x →∞+⎛⎫⎪+⎝⎭. 解 22111lim lim 1lim 1222xxx x x x x x x x +-→∞→∞→∞+--⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭22111lim 1lim 1e22x x x x x +--→∞→∞--⎛⎫⎛⎫=++= ⎪ ⎪++⎝⎭⎝⎭ .例9 求0ln(1)limx x x→+.解 1ln(1)limlim ln(1)ln e =1x x x x x x→→+=+=.例10 求0e 1limxx x→-.解 令u =e x -1,则x =ln (1+u ),当x →0时,u →0,故e 11limlimlim1ln(1)ln(1)xx u u u u xu u→→→-===++.例11 求ln ln limx ax a x a→--(a >0).解 令u =x -a ,则x =u +a ,当x →a 时,u →0,故ln ln ln()ln limlimx au x a u a ax au→→-+-=-011limln(1)au u u aaa→=+=.第七节 无穷小的比较同一极限过程中的无穷小量趋于零的速度并不一定相同,研究这个问题能得到一种求极限的方法,也有助于以后内容的学习.我们用两个无穷小量比值的极限来衡量这两个无穷小量趋于零的快慢速度.一、无穷小阶的概念定义 设(),()x x αβ是同一极限过程中的两个无穷小量:lim ()0,lim ()0x x αβ==.若()lim0()x x αβ=,则称()x α为()x β的高阶无穷小,记为α(x )= o (β(x )). 若()lim()x x αβ=∞,则称()x α为()x β的低阶无穷小,记为β(x )= o (α(x )). 若()lim ()x A x αβ=(A ≠0),则称()x α是()x β的同阶无穷小. 特别地,当A =1时,则称α(x )与β(x )是等价无穷小,记为α(x )~β(x ). 若在某极限过程中,α是βk的同阶无穷小量(k >0),则称α是β的k 阶无穷小. 例如:因为01cos lim0x xx →-=,所以当x →0时,1-cos x 是x 的高阶无穷小量,即1-cos x =o (x ) (x →0).因为21cos 1lim2x xx→-=,所以当x →0时,1-cos x 是x 2的同阶无穷小量,即1-cos x =O (x 2)(x →0).因为0sin lim1x x x→=,所以当x →0时,与sin x 与x 是等价无穷小量,即sin x x (x →0).二、等价无穷小的性质等价无穷小在极限计算中有重要作用.定理1 设α ,β为同一极限过程的无穷小量,则()o αββαα⇔=+ .定理2 设,,,ααββ''为同一极限过程的无穷小量,,ααββ'' ,若limαβ存在,则 limlimααββ'='.证 因为,ααββ'' ,则lim1αα'=,lim1ββ'=,由于αααββαββ'''=',又limαβ存在,所以 l i m l i m l i ml i m l i m αααβαβαβββ''==''. 定理2表明,在求极限的乘除运算中,无穷小量因子可用其等价无穷小量替代,这个结论可写为以下的推论.推论1 设,ααββ'',若()lim f x αβ存在或为无穷大量,则 ()()limlimf x f x ααββ'='.推论2 设αα' ,若lim ()f x α存在或为无穷大,则 lim ()lim ()f x f x αα'=. 在极限运算中,常用的等价无穷小量有下列几种:当x →0时,sin ,tan ,arcsin ,arctan ,x x x x x x x x ,1-cos x ~212x ,ex-1~x ,ln (1+x )~x,1~2x ,(1)a x +-1~αx (α∈R ).例1 当x →0时,22~2x x x -,232~x x x -, 2sin ~x x x +, c o s ~2x x .例2 求0tan 7limsin 5x x x→.解 因为x →0时,tan7x ~7x ,sin5x ~5x ,所以 00tan 777limlimsin 555x x x x xx→→==.例3 求0eelimsin sin axbxx ax bx→-- (a ≠b ).解 ()0e ee [e 1]limlimsin sin 2cossin22axbxbx a b xx x a ba b ax bxx x-→→--=+--()0e e1limlim cos2sin22bx a b xx x a b a b xx-→→-=+- 0()lim1()22x a b x a b x→-==- .例4 求223lim ln(1)x x x→∞+. 解 当x →∞时,2233ln(1)xx+,故222233lim ln(1)lim 3x x x x xx→∞→∞+== .例5 当x →0时,tan x -sin x 是x 的几阶无穷小量?解 23330tan sin tan (1cos )12limlimlim2x x x xx x xx x xxx →→→⋅--===, 所以,当x →0时,tan x -sin x 是x 的三阶无穷小量. 例6求21limsin 2x x x→+.解211~()~22x x x +,2sin 2~sin 2~2x x x x +,所以20112limlim sin 224x x xx xx →→==+. 课堂总结1.极限的存在准则:夹逼准则、单调有界准则;2.两个重要极限:1sin 1lim1,lim (1)e lim (1)e xx x x x x x xx→→∞→=+=+=或;3.无穷小的比较:高阶、低阶、同阶、等价、k 阶;4.等价无穷小替换求极限的方法.。
同济大学《高等数学》(第四版)1-5节 无穷小与无穷大

x → x0
∴ f ( x ) = A + α( x ).
充分性 设 f ( x ) = A + α( x ),
其中 α( x )是当x → x 0时的无穷小,
则 lim f ( x ) = lim ( A + α( x )) = A + lim α( x ) = A.
意义 关于无穷大的讨论,都可归结为关于无穷小 关于无穷大的讨论 都可归结为关于无穷小 的讨论. 的讨论
四、小结
无穷小与无穷大是相对于过程而言的. 无穷小与无穷大是相对于过程而言的 1、主要内容: 两个定义 四个定理 三个推论 、主要内容 两个定义;四个定理 三个推论. 四个定理;三个推论 2、几点注意: 、几点注意
值f (x)都 足 等 f (x) > M, 满 不 式
x 称 数 则 函 f (x)当x →x0(或 →∞)时 无 小 为 穷 ,
作 记
x→x0
lim f (x) = ∞ (或 lim f (x) = ∞ ).
x→ ∞
特殊情形:正无穷大,负无穷大. 特殊情形:正无穷大,负无穷大.
x → x0 ( x→∞ )
练习题答案
一、1、0; 3、 3、 ⇔ ; 2、 2、 lim f ( x ) = C ;
x→∞ x → ±∞
1 4、 4、 . f ( x)
1 二、 0 < x < 4 . 10 + 2
思考题
若 f ( x ) > 0 ,且 lim f ( x ) = A,
x → +∞
问:能否保证有 A > 0 的结论?试举例说明 的结论?试举例说明.
思考题解答
不能保证. 不能保证
高数同济§1.5 极限运算法则

•推论1 如果lim f(x)存在 而c为常数 则 lim [cf(x)]=clim f(x)
•推论2 如果limf(x)存在 而n是正整数 则 lim[f(x)]n=[limf(x)]n
x3 x 3
x3 x 3 u6
14
结束
思考题
在某个过程中,若 f ( x) 有极限,g( x) 无极限,那么f ( x) g( x)是否有极限?为
什么?
思考题解答
没有极限.
假设 f ( x) g( x) 有极限, f ( x)有极限,
由极限运算法则可知:
g( x) = f ( x) g( x) f ( x) 必有极限,
5
下页
❖二、数列极限的四则运算法则
•定理4 设有数列{xn}和{yn} 如果
那么
lim
n
xn
=
A
lim
n
yn
=
B
(1) nlim(xn yn)= A B
(2) nlim(xn yn)= AB
(3)当 yn 0 (n=1 2 )且 B0 时
x
=
1 x
sin
x
是无穷小与有界函数的乘积
所以 lim sin x = 0 x x
12
下页
❖定理6(复合函数的极限运算法则)
设函数y=f[g(x)]是由函数y=f(u)与函数u=g(x)复合而成
f[g(x)]在点x0的某去心邻域内有定义 若g(x)u0(xx0) f(u)A(uu0) 且在x0的某去心邻域内g(x)u0 则
高等数学(同济大学版) 课程讲解 1.4-1.5 无穷小.
课时授课计划课次序号:一、课题:§1.4 无穷小与无穷大§1.5 极限运算法则二、课型:新授课三、目的要求:1.理解无穷小和无穷大的概念,掌握无穷小、无穷大以及有界量之间的关系;2.掌握极限的运算法则.四、教学重点:无穷小和无穷大的概念,极限的运算法则.教学难点:极限运算法则的应用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–4 4(1);习题1–5 1(1)(5)(7)(14),3(2)八、授课记录:授课日期班次九、授课效果分析:复习1.两种变化趋势下函数极限的定义,左右极限(单侧极限)2.函数极限的性质:唯一性、局部有界性、局部保号性、函数极限与数列极限的关系.对于函数极限来说,有两种情形比较特殊:一种是极限为零,另一种是极限无穷不存在,我们分别称之为无穷小和无穷大.下面我们先介绍无穷小与无穷大,在此基础上,进一步介绍极限的运算法则.第四节无穷小与无穷大一、无穷小定义1 若limα(x)=0,则称α(x)为该极限过程中的一个无穷小.例1当x→2时,y=2x-4是无穷小,因为容易证明(2x-4)=0.当x→∞时,y=也是无穷小,因为=0.定理1(无穷小与函数极限的关系定理lim f(x)=A的充要条件是f(x)=A+(x,其中(x为该极限过程中的无穷小.证为方便起见,仅对x→x0的情形证明,其他极限过程可仿此进行.设f(x=A,记(x=f(x-A,则ε>0,δ>0,当x∈(x0,δ)时,|f(x)-A|<ε,即|(x|<ε.由极限定义可知,(x=0,即(x是x→x0时的无穷小,且f(x)=A+(x.反过来,若当x→x0时,(ξ是无穷小,则ε>0,δ>0,当x∈(x0,δ)时,|(ξ-0|=|(ξ|<ε,即|f(ξ)-A|<ε,由极限定义可知,f(ξ)=A.二、无穷大在lim f(ξ)不存在的各种情形下,有一种较有规律,即当x→x0或x→∞时,|f(ξ)|无限增大的情形.例如,函数f(ξ)=,当x→1时,|f(ξ)|=无限增大,确切地说,M>0(无论它多么大),总δ>0,当x∈(1,δ)时,|f(ξ)|>M,这就是我们要介绍的无穷大.定义2 若M>0(无论它多么大),总δ>0(或X>0),当x∈(x0,δ)(或|ξ|>X)时,|f(ξ)|>M恒成立,则称f(ξ)当x→x0(或x→∞)时是一个无穷大.若用f(ξ)>M代替上述定义中的|f(ξ)|>M,则得到正无穷大的定义;若用f(ξ)<-M代替|f(ξ)|>M,则得到负无穷大的定义.某极限过程中的无穷大、正无穷大、负无穷大分别记作:.注(1)若,则称为曲线的垂直渐近线.(2)称一个函数为无穷大时,必须明确地指出自变量的变化趋势.对于一个函数,一般来说,自变量趋向不同会导致函数值的趋向不同.例如函数y=,当x→时,它是一个无穷大,而当x→时,它则是一个无穷小.(3)由无穷大的定义可知,在某一极限过程中的无穷大必是无界变量,但其逆命题不成立.例如, 当n→∞时,(1+(-1nn是无界变量,但它不是无穷大.例2=+∞,=-∞,=-∞,=+∞, =-∞.三、无穷小与无穷大的关系定理2在某极限过程中,若f(ξ)为无穷大,则为无穷小;反之,若f(ξ)为无穷小,且f(ξ)≠0,则为无穷大.证我们仅对x→x0的情形证明,其他情形仿此可证.设f(ξ)=∞,则ε>0,令M=,则δ>0,当x∈(x0,δ)时,|f(ξ)|>M=,即<ε,故为x→x0时的无穷小.反之,若f(ξ)=0,且f(ξ)≠0,则M>0,令ε=,则δ>0,当x∈(x0,δ)时,|f(ξ)|<ε=,即>M,故为x→x0时的无穷大.第五节极限运算法则一、无穷小运算法则定理1在某一极限过程中,如果(x,(x是无穷小,则(x± (x也是无穷小.证我们只证x→x0的情形,其他情形的证明类似.由于x→x0时,(x,(x均为无穷小,故ε>0,δ1>0,当0<|x-x0|<δ1时,|(x|<,(1)δ2>0,当0<|x-x0|<δ2时,|(x|<,(2)取δ=min(δ1,δ2),则当0<|x-x0|<δ时,(1)、(2)两式同时成立,因此|(x±(x|≤|(x|+|(x|<+=ε.由无穷小的定义可知,x→x0时,(x± (x为无穷小.推论在同一极限过程中的有限个无穷小的代数和仍为无穷小.定理2在某一极限过程中,若(x是无穷小,f(x)是有界变量,则(x f(x)仍是无穷小.证我们只证x→∞时的情形,其他情形证法类似.设f(x)为x→∞时的有界变量,则M>0,当|x|>X1>0时,|f(x)|<M,又因(x=0,则ε>0,对来说,X2>0,当|x|>X2时,|(x|<,取X=m ax{X1,X2},则当|x|>X时,有|(x·f(x)|=|(x|·|f(x)|<·M =ε.这就证明了当x→∞时,(x f(x)是无穷小.例1求.解因为x∈(-∞,+∞),|sin x|≤1,且=0,故由定理2得sin x=0.推论在某一极限过程中,若C为常数,(x和(x是无穷小,则C(x,(x(x)均为无穷小.这是因为C和无穷小均为有界变量,由定理2即可得此推论.此推论可推广到有限个无穷小乘积的情形.定理3在某一极限过程中,如果(x是无穷小,f(x)以A为极限,且A≠0,则(x\f(x)仍为无穷小.证由定理2可知,我们只需证为该极限过程中的有界变量即可.我们仅对x→x0时进行证明,其他情形类似可证.因为f(x)=A,A≠0, 则对ε=,δ>0,当x∈(x0,δ)时,有||f(x)|-|A||≤|f(x)-A|<,从而<|f(x)|<,故<=M, 即为时的有界变量.利用无穷小的性质及无穷小与函数极限的关系,我们可得极限四则运算法则.二、极限的四则运算法则定理4若,则(1 ;(2 ;(3 l= (.证我们仅证(2),(3).因为,所以f(x)=A +(x,g(x)=B +β(x,其中,于是f(x g(x=[A+][B+β(x]=AB+Aβ(x+B+β(x.由定理1及其推论可得, , .故由第四节定理1及本节定理1可知.同理,对于式(3),只需证-是无穷小即可,因为-=-=,由定理1及其推论可知.由刚获证的式(2)可知.所以,其中为无穷小.最后由第四节中的定理1便得lim==(B≠0).推论1 若存在,C为常数,则.这就是说,求极限时,常数因子可提到极限符号外面,因为.推论2 若存在,n∈N,则.例2 求.结论:多项式函数当极限为,而解===-2.例3求,其中m,n∈N.解由于分子分母的极限均为零,这种情形称为“”型,对此情形不能直接运用极限运算法则,通常应设法去掉分母中的“零因子”.===.例4求.解此极限仍属于“”型,可采用二次根式有理化的办法去掉分母中的“零因子”.====.例5求.解分子分母均为无穷大,这种情形称为“”型.对于它,我们也不能直接运用极限运算法则,通常应设法将其变形.==.结论当,例6求解====1例7求解====.例8设f(x=问b取何值时,存在.解由于==2,==b,由第三节定理1可知,要存在,必须=,因此b=2.三、复合函数极限运算法则定理5设函数由复合而成,如果,且在x0的一个去心邻域内,,又=A,则=A.该定理可运用函数极限的定义直接推出,故略去证明.例9求解因为=0,=1,故=1.例10 求.解因为=0,=0,故=0.课堂总结1.无穷小与无穷大的概念以及它们之间的关系;2.极限运算法则:无穷小运算法则、四则运算法则、复合函数极限运算法则.在计算极限时,应注意法则成立的条件,不要错误地运用以上法则.。
线性代数(同济大学应用数学系第四版)1-6 行列式展开法则
D=
a21 M
a22 L a2 n M M
an1 an 2 L ann
根据P 14例 根据P.14例10
D = a11 M 11 . A11 = (− 1)
1+1
又 从而
M 11 = M 11 ,
D = a11 A11 .
再证一般情形, 再证一般情形 此时 a11 L a1 j L a1n
M D= 0 M
a22 a32 a23 a33 − a12 a21 a31
= a11
a23 a33
+ a13
a21 a31
a22 a32
(− 1)i + j M ij, 叫做元素 a ij 的代数余子式. 记 Aij = 代数余子式.
例如
在 n 阶行列式中,把元素 a ij 所在的第 i 行和第 j 阶行列式中, 列划去后, 列划去后,留下来的 n − 1 阶行列式叫做元素 a ij 余子式, 的余子式,记作 M ij .
再把 D的第 j列依次与第 j − 1列, 第j − 2列, 第1列 对调, 得
aij M D = (− 1) ⋅ (− 1)
i −1 j −1
0 M L
0 M ai −1,j −1
0 M ai −1,j+1
0 M L
0 M ai −1,n
ai −1,j
ai+1,j L ai+1,j −1 M M M anj L an,j −1
5 1 1 = ( −1) 3+ 3 − 11 1 − 1 −5 −5 0
r2 + r1
5
1
1
−6 2 0 −5 −5 0
= ( −1)
1+ 3
−6 2 3 1 = 10 − 1 − 1 = 40. − −5 −5
同济大学高等数学 函数极限 ppt课件
2 lim f(x)A
x
y π 2
oX
x
0, “X一>个0 时刻” 使得 “当在x该>X时时刻以后”恒有
f(x)A.
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
x 1,
x 2, x 1.
1
当 x 1时,
o
1
x
f (x) 1
lim f(x) A (右极限)
xx0
5.x x0
x递减地无限接近常数x0,但恒不等于x0
例: x, x 1,
y
f
(
x)
0,
x 1,
x 2, x 1.
1
当 x 1时,
o
1
x
f (x) 1
lim f(x) A (右极限)
f(x)A
A f(x)A
y
A+ε A
A-ε
o
x
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
1.x
自变量恒取正值,递增地无限变大
例 f(x)arctanx
f(x)A.
2.x
自变量恒取负值, |x|递增地无限变大
例: y
f(x)arctanx
当 x时,
f (x) π 2
-X
o
x
lim f(x)A
高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件
2n 2 2n 1
成立.
发散数列 1n 也可能有界, 1 n 1 ;
无界数列 (1)n 2n 一定发散;
有界数列
1 2
1
(1)n
不
一
定
收
敛
,
1 2
1
(1)n
1,但当
n
为奇数时,
1 2
1
(1)
n
0 ;当
n
为偶数时,
1 2
1
(1)n
1.
综上可知:收敛数列必有界.数列有界是数列收敛的
2x 1 7 ,即 m f (x) M .此处 f x 2x 1 在x 3 处有定义,且当 x 3时, f x 的极限值恰好是f 2 .
例 8 由表达式
y
f
(x)
1
x, 0, x
x 0
0
1
的确定的函数,如图 1-26 所示.
O
1
x
图21-526
当 x 0时, f (x) 1 x,则lim f (x) lim(1 x) 1.
x2 x2
求 lim f (x), lim f (x),并由此判断lim f (x) 是否存在.
x2
x2
x2
解 lim f (x) lim (2x 1) 5, lim f (x) lim (x2 1) 5,
x2
x2
x2
x2
即 f (2 ) f (2 ) 5, 由函数 f (x) 在x 2 处极限存在的充要
自变 x x0的变化过程中,函数值 f (x)无限接近于 A,就
称 A 是函数 f (x)当
x
x0
时
极
限
.
记