东南大学-高数(上)-03至10年-期末试卷(附答案)
东南大学高数复习题

1. 函数22,(,)(0,0)(,)0,(,)(0,0)xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 [ ] (A)连续且偏导数存在 (B) 连续但偏导数不存在(C)不连续但偏导数存在 (D) 不连续且偏导数不存在2. 交换积分次序0242000d (,)d d (,)d y y f x y x y f x y x +-+=⎰⎰⎰; 3.交换积分次序:()()1220010d ,d d ,d y y y f x y x y f x y x -+=⎰⎰⎰⎰.4. 设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分d z =;5.设 (,)z z x y =是由方程e e e z y x z x y =+所确定的隐函数,求,z z x y ∂∂∂∂. 6. 计算二重积分2223d D x y x yσ++⎰⎰,其中{}22(,)1,0,0D x y x y x y =+≤>>. 7. 求幂级数()()1211121n n n x n n ∞-=--∑的收敛域与和函数。
1.改变积分次序212d (,)d ________.x x f x y y -=⎰ 2.二次积分1120sin _____.ydy x dx =⎰⎰ 3.设12111(1)2,5,n n n n n u u +∞+∞--==-==∑∑则1______.n n u +∞==∑3.设212,x x y e y e -==是二阶常系数齐次常微分方程的两个解, 求该方程。
4.求幂级数411 41n n x n ++∞=+∑的收敛域与和函数。
5.将函数21()12f x x x=+-展开为x 的幂级数。
6.将函数()arctan f x x =展开成x 的幂级数.7.求微分方程sin y y x x ''+=+的特解,使得该特解在原点处 与直线32y x =相切。
东南大学高等数学(A)期末03-13试卷

f ( z) =
1 z ! 4z + 3
2
1< z < 3
Laurent
(cos x + 2 xy + 1)dx + ( x 2 ! y 2 + 3)dy
.
+! 0
"
1 dx 1 + x4
v( x, y, z) = { y3 ! z 3 , z 3 ! x3 , 2 z 3}
z = 1 + 1 ! x2 ! y 2
2
1< z ! 2 < 3
2 ydx + ( y 2 ! 6x)dy = 0
2 8 9
y!! + 4 y = 8 x " 4sin 2 x
y(0) = 0, y!(0) = 5
!
I = ## x2 dy " dz + y 2 dz " dx + ( z 3 + x)dx " dy
!
z = x2 + y 2 (0 ! z ! 1)
! n
!
"a x
k k =1
k +1
[0,1]
f ( x)
(f$ % &n'
n =1
!
"1#
2005
1+ 1! x2 x
A
"
1
0
dx "
f ( x, y)dy =
e z + z + xy = 3
M (2,1, 0) (2,1,1)
divA =
A = 3x 2 yz 2i + 4 xy 2 z 2 j + 2 xyz 3k
东南大学大一公共课高等数学期末考试卷8套

东南大学高等数学(A )期末试卷03年——10年2003级高等数学(A )(下)期末试卷一. 填空题(每小题3分,满分15分):1.幂级数11(1)2nnn x n ∞=-⋅∑的收敛域为 。
2.当常数p 满足条件时,级数1(1)n n ∞=-∑绝对收敛。
3.设2sin ()(1)zf z z z=-,则()f z 在0z =的留数Re [(),0]s f z = 。
4.微分方程()9()0y x y x ''''-=的通解为 。
5.设C 为抛物线21y x =-上自点A (-1,0)到点B (1,0)的一段弧,则曲线积分22()()()C AB x y dx x y dy ++-⎰的值为 。
二.单项选择题(每小题4分,满分12分):1.微分方程356x y y y xe '''-+=的特解形式为(其中A 、B 为常数) ( ) (A )3x y Ae *= (B )3x y Axe *= (C )3()x y Ax B e *=+ (D )3()x y x Ax B e *=+2.设2,02()0,24x x f x x +≤<⎧=⎨≤<⎩,1()sin ()4n n n xS x b x π∞==-∞<<+∞∑,其中 401()sin (1,2,)24n n xb f x dx n π==⎰,则(2)(9)S S +-等于 ( ) (A )-1 (B )1 (C )5 (D )73.设级数1(1)n n n a ∞=-∑条件收敛,则必有 ( )(A )1n n a ∞=∑收敛 (B )21n n a ∞=∑收敛(C )11()n n n a a ∞+=-∑收敛 (D )21n n a ∞=∑与211n n a ∞-=∑都收敛三.(每小题7分,满分35分):1.计算积分10xydx dy y⎰。
2. 计算复积分2221(1)x ce dz z z --⎰,其中c 为正向圆周:3z =。
高等数学上期末试卷(含答案)

一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。
高等数学AB上册期中期末试卷完整版0309东南大学

03~09级高等数学(A )(上册)试卷东南大学2003级高等数学(A )(上)期中试卷一、单项选择题(每小题4分,共12分)1.2)( ,)( ='=οοx f x x f y 且处可导在点函数, 是时则当dy x ,0→∆() (A )等价的无穷小与x ∆;(B )同价但非等价的无穷小与x ∆; (C )低价的无穷小比x ∆;(D )高价的无穷小比x ∆。
2.方程内恰有在) ,(0125∞+-∞=-+x x ()(A ) 一个实根;(B )二个实根;(C )三个实根;(D )五个实根。
3.已知函数 ,0)0( , 0 ==f x f 的某个邻域内连续在 ,1cos 1)(lim 0=-→xx f x则处在 0 =x f ()(A ) 不可导;(B )可导且0)0(≠'f ;(C )取得极大值;(D )取得极小值。
二、填空题(每小题4分,共24分)1.=⎪⎩⎪⎨⎧=≠-=a x a x xxx x f 0.,,0,3cos 2cos )(2则当若 时,处连续在 0 )( =x x f . 2.设函数nxnx n ee x x xf +++=∞→11lim )( 2,则=x x f )( 在 0 处 ,其类型是 .3.函数Lagrange x xe x f x处的带在1)(==ο余项的三阶Taylor 公式为 4.设函数所确定由方程 1)sin()(=-=xye xy x y y ,则=dy . 5.已知)1ln()(x x f -=,则=)0()(n f.6.设22tan )(cos x x f y +=,其中可导 f ,=dxdy则 三、(每小题7分,共28分)1.求极限x x x 2cot 0)]4[tan(lim π+→. 2.求极限)sin 1(sin lim x x x -++∞→3.已知x x ey xsin 1ln --=,求)2(π'y . 4.设22 , , 2cos sin 2dx yd dx dy t y t x 求⎩⎨⎧==.四、(8分)求证时当 0 >x ,x x x sin 63<-. 五、(6分)落在平静水面上的石头产生同心圆形波纹。
大一上学期高数期末考试试题(五套)详解答案

2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。
解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。
或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。
2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。
解:f(x)在x=3,0,-1处无定义,是间断点。
121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。
∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。
∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。
3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。
东南大学《高等数学》2010-2011学年期中试卷B卷 (1)

东南大学成贤学院考试卷 (A 卷)课程名称 高等数学B(下)期中 适 用 专 业 工科各专业考试学期 10 - 11 - 3 考 试 形 式 闭 卷 考 试 时 间 长 度 120 分钟 学 号 姓 名 得 分题 号 一二三四五得 分一、选择题(每题 3 分,共 5 题)1、点 M (−3,−7,− 1) 关于( )的对称点是 M ′ 3(,7,− 1)。
(A ) 原点 O ; (B ) Oxy 平面; (C ) z 轴; (D )平面 x + y − z = 0。
2、直线 = = 与直线 = = 的夹角是( )。
1 − 4 12 − 2 − 1 (A ) ; 6 (B ) ; 4 (C ) ;3 (D ) 。
43、为使二元函数 f (x , y ) = 当 (x , y ) 沿着某一特殊路线趋于 0(,0) 时的极限为 2, 这条路x − y线应选择( )。
(A ) y = ;(B ) y = ;(C ) y =4、二元函数 z = 3(x + y ) − x 3 − y 3 的极值点是((A ) 1(,− 1); (B ) (− 1,1); (C ) (− 1,− 1);; (D ) y = 。
)(D ) 0(,0)。
5、设 D = {(x , y ) 1≤ x ≤ 2 , 3 ≤ y ≤ 4 },则积分的值为( )。
4(A ) ln ;3 (B ) ln ; 2 (C ) ln ; 3(D ) ln 。
二、填空题(每题 3 分,共 5 题)1、直线 = = 在 Oxy 平面上的投影直线为 。
- 1 -x = 0 sin(xy )(x ,y )→0(,0)2 −。
4、设z = x y ,则 dz 1(,1) = 。
5、交换积分次序: ∫dy∫yf (x , y )dx = 。
三、计算题(每题 7 分,共 5 题)1、已知某球面的中心在 3(,−5,2) 且与平面 2x − y +3z = 3相切,求球面方程。
高等数学测试卷(上)+答案

高等数学测试卷(上)一、填空题:(每小题2分,共20分)1.一切初等函数在其 内都是连续的。
2.若y x ,满足方程xyy x arctan ln22=+,则=dy 。
3.已知)100()2)(1()(---=x x x x x f ,则=')0(f 。
4.当0→x 时,x x x f -=sin )(是3x 的 阶无穷小。
5.已知C xxdx x f +-=⎰21)(,则=⋅⎰dx x f x )(cos sin 。
6.=-⎰-dx x 312 。
7.若)(x f 在[]a a ,-上连续且为奇函数,则⎰-=aadx x f )( 。
8.曲线x y =2和2x y =所围成的平面图形的面积是 。
9.已知向量)1,2,1(),1,1,2(-=-=b a,单位向量e 同时垂直于a 与b ,则e= 。
10.通过点)5,0,3(0M 与坐标原点的直线的对称式方程为 。
二、选择题:(每小题2分,共20分) 1.下列极限存在的是:( ))A 2)1(lim x x x x +∞→ )B 121lim 0-→x x )C x x e 10lim → )D xx x 1lim 2++∞→2.设⎪⎩⎪⎨⎧≤>-=0),(0,cos 1)(2x x g x x xxx f ,其中)(x g 是有界函数,则)(x f 在0=x 处( ) )A 极限不存在 )B 极限存在,但不连续 )C 连续,但不可导 )D 可导高等数学测试卷(上)-答案一、 填空题:(每小题2分)1. 定义区间 2.dx yx yx -+ 3. 100! 4. 同5. C x x +⋅-csc cot 6. 5 7. 0 8.31 9. )355,353,351(-±10. ⎪⎩⎪⎨⎧==053y z x二、 选择题:(每小题2分) 1).A 2).D 3).C 4).D 5).D6).A 7).A 8).D 9).C 10).B三、 计算题:(每小题7分)1.3162sin lim 52202==→x x x ex x x e x 原式 2.x x f xxx x x dx dy x 2sin )(sin )sin ln (cos 2sin '++= 3.C x x dx xx dx x x +++=+++=⎰⎰]arctan )1[ln(211arctan 12222原式 4.3821)1()(221210=++==⎰⎰⎰dx x dx x du u f 原式5.由2222222)1()1)(1(2)1(4)1(2,12x x x x x x y x x y ++-=+-+=''+='得拐点坐标为:)2ln ,1(),2ln ,1(-在),1[],1,(+∞--∞上凸,在[-1,1]上凹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03~10级高等数学(A )(上册)期末试卷2003级高等数学(A )(上)期末试卷一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程⎰+-=yx t x dt e12确定,则==0x dxdy( ).e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A2.曲线41ln 2+-+=x xx y 的渐近线的条数为( ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y '=的图形为( )4.微分方程x y y 2cos 34=+''的特解形式为( ).2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )( ****x A D x Bx x Ax C x Ax B x A A =+===二、填空题(每小题3分,共18分)1._____________________)(lim 21=-→x xx x e2.若)(cos 21arctanx f e x y +=,其中f 可导,则_______________=dxdy3.设,0,00,1sin )(⎪⎩⎪⎨⎧=≠=αx x xx x f 若导函数)(x f '在0=x 处连续,则α的取值范围是__________。
4.若dt t t x f x ⎰+-=2324)(,则)(x f 的单增区间为__________,单减区间为__________. 5.曲线xxey -=的拐点是__________6.微分方程044='+''+'''y y y 的通解为__________________________=y 三、计算下列各题(每小题6分,共36分)1.计算积分dx x x⎰+232)1(arctan 2.计算积分dx xxx ⎰5cos sin3. 计算积分dx e x x ⎰-2324. 计算积分⎰π+0cos 2xdx5.设)(x f 连续,在0=x 处可导,且4)0(,0)0(='=f f ,求xx dtdu u f t xtx sin ))((lim 3⎰⎰→6.求微分方程0)2(222=+-dx y x xydy 的通解四.(8分)求微分方程xxe y y y 223-=+'-''满足条件0,000='===x x y y 的特解五.(8分)设平面图形D 由x y x 222≤+与x y ≥所确定,试求D 绕直线2=x 旋转一周所生成的旋转体的体积。
六.(7分)设质量均匀分布的平面薄板由曲线C:⎩⎨⎧-=+=tt y tt x 2522与x 轴所围成,试求其质量m七.(7分)设函数)(x f 在],[a a -上有连续的二阶导数,且0)0(=f ,证明:至少存在一点],[a a -∈ξ,使得)(3)(3ξ''=⎰-f a dx x f aa2004级高等数学(A )(上)期末试卷一. 填空题(每小题4分,共20分)1.函数()⎥⎥⎦⎤⎢⎢⎣⎡+=x x f 11的间断点 是第 类间断点.2. 已知()x F 是()x f 的一个原函数,且()()21x x xF x f +=,则()=x f .3.()()=-+⎰--x x x x x d e e 1112005 .4. 设()t u u x f xtd d 10sin 14⎰⎰⎪⎭⎫ ⎝⎛+=,则()=''0f . 5. 设函数()()01d 23>+=⎰x tt x f x x,则当=x 时,取得最大值.二. 单项选择题(每小题4分,共16分)1. 设当0x x →时,()()x x βα,都是无穷小()()0≠x β,则当0x x →时,下列表达式中不一定为无穷小的是 [ ](A)()()x x βα2 (B)()()x x x 1sin 22βα+ (C)()()()x x βα⋅+1ln (D)()()x x βα+2. 曲线()()211arctane212+-++=x x x x y x 的渐近线共有 [ ] (A) 1条 (B) 2条 (C) 3条 (D) 4条3. 微分方程x x y y y 2e 2=-'-''的一个特解形式为=*y [ ](A) ()xx b ax 22e+ (B) xax 2e (C) ()xb ax 2e+ (D) ()xx b ax 2e+4. 下列结论正确的是 [ ] (A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤bad cx x f x x f d d .(B) 若()x f 在区间[]b a ,上可积,则()x f 在区间[]b a ,上可积. (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TTa ax x f x x f 0d d .(D) 若()x f 在区间[]b a ,上可积,则()x f 在[]b a ,内必有原函数. 三. (每小题7分,共35分)1. ()()32d cos ln limx t t t xx ⎰+→2. 设函数()x y y =是由方程2e22=-+xyy y x 所确定的隐函数,求曲线()x y y =在点()2,0处的切线方程.3. x x x x d cos cos 042⎰-π4. ⎰∞+13d arctan x xx5. 求初值问题 ()()⎪⎩⎪⎨⎧-='=+=+''210,10sin y y x x y y 的解.四.(8分) 在区间[]e ,1上求一点ξ,使得图中所示阴影部分绕x 轴旋转所得旋转体的体积最小五.(7分) 设 b a <<0,求证 ()ba ab a b +->2ln .xln六.(7分) 设当1->x 时,可微函数()x f 满足条件()()()0d 110=+-+'⎰xt t f x x f x f 且()10=f ,试证: 当0≥x 时,有 ()1e ≤≤-x f x成立.七.(7分) 设()x f 在区间[]1,1-上连续,且()()0d tan d 1111==⎰⎰--x x x f x x f ,证明在区间()1,1-内至少存在互异的两点21,ξξ,使()()021==ξξf f .2005级高等数学(A )(上)期末试卷一.填空题(本题共9小题,每小题4分,满分36分)1. 2206sin d limx x t t x→=⎰ ;2.曲线322(1)x y x =+的斜渐近线方程是 ;3.设()y y x =是由方程ln ln y y x =所确定的隐函数,则d d yx= ; 4.设f 在区间[0,]π上连续,且0()sin ()d f x x f x x π=+⎰,则()f x = ;5.设21,0()e ,0x x x f x x ⎧+<⎪=⎨≥⎪⎩,则31(2)d f x x -=⎰ ;6.2sin d cos xx x xππ-=+⎰ ; 7.曲线ln y x =相应于13x ≤≤的一段弧长可用积分 表示;8.已知1e x y -=与22e xy =分别是微分方程0y ay by '''++=的两个特解,则常数a = ,常数b = ;9.0()0f x ''=是曲线()y f x =以点00(,())x f x 为拐点的 条件。
二.计算下列各题(本题共4小题,每小题7分,满分28分) 1.设0()x f x t t =⎰,求()f x '2.2e 1d e 4x xx -+⎰ 3.0x π⎰4.1+∞⎰三.(本题满分9分)设有抛物线2:(0,0)y a bx a b Γ=->>,试确定常数a 、b 的值,使得(1)Γ与直线1y x =-+相切;(2)Γ与x 轴所围图形绕y 轴旋转所得旋转体的体积最大。
四.(本题共2小题,满分14分) 1.(本题满分6分)求微分方程()222e 1d e d 0x x x y x y -+=的通解。
2.(本题满分8分)求微分方程22e xy y x '''-=+满足初始条件9(0)2,(0)4y y '==的特解。
五.(本题满分7分)试证:(1)设e u >,方程ln x x u =在e x >时存在唯一的实根()x u ;(2)当u →+∞时,1()x u 是无穷小量,且是与ln u u等价的无穷小量。
六.(本题满分6分)证明不等式:111113521n <++++<+-L , 其中n 是大于1的正整数。
2006级高等数学(A )(上)期末试卷一.填空题(本题共9小题,每小题4分,满分36分) 1.2e d lim(cos 1)xt x x tx x →-=-⎰ ;2.曲线231x ty t⎧=+⎪⎨=⎪⎩在2t =对应的点处的切线方程为 ; 3.函数()ln(1)f x x x =-+在区间 内严格单调递减; 4.设()y y x =是由方程ln 1xy y -=所确定的隐函数,则(0)y '= ;5.51241d 1x x x x -⎛-= ++⎝⎰ ; 6.设)(x f 连续,且201(2)d arctan 2xtf x t t x -=⎰,已知1)1(=f ,则21()d f x x =⎰ ; 7.已知)(x y y =在任意点x 处的增量α++∆=∆21xxy y ,当0→∆x 时,α是x ∆的 高阶无穷小,已知π=)0(y ,则_____)1(=y ;8.曲线1ln e y x x ⎛⎫=+⎪⎝⎭的斜渐近线方程是 ; 9.若二阶线性常系数齐次微分方程有两个特解312e ,e x xy y ==,则该方程为.二.计算题(本题共4小题,每小题7分,满分28分) 1.计算不定积分x 2.计算定积分20sin d x x x π⎰3.计算反常积分()211d 1x x x +∞+⎰4.设1()x G x t =⎰,求 10()d G x x ⎰三.(本题满分7分)求曲线ln cos 1sin 2x ty t =⎧⎪⎨=⎪⎩自0t =到4t π=一段弧的长度。
(第3页)四.(本题共2小题,第1小题7分,第2小题9分,满分16分) 1.求微分方程()2sin cot yy x y x '=-的通解。
2.求微分方程sin y y x x ''+=+的特解,使得该特解在原点处与直线32y x =相切。