高三高考数学填空题训练

合集下载

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15 比较大小(含解析)

2020届高考数学选择题填空题专项练习(文理通用)15比较大小第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·福建高三(理))设12a e-=,24b e -=,12c e -=,323d e -=,则a b c d ,,,的大小关系为( ) A .c b d a >>>B .c d a b >>> C .c b a d >>>D .c d b a >>>.【答案】B 【解析】【分析】利用指数幂的运算性质化成同分母,再求出分子的近似值即可判断大小.【详解】3241e a e e ==,2416b e =,222444e c e e==,249e d e =,由于 2.7e ≈,27.39e ≈,320.09e ≈,所以c d a b >>>,故选:B .【点睛】本题主要考查比较幂的大小,属于基础题.2.(2020·湖南高三学业考试)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).A .a b c >>B .c b a >>C .c a b >>D .b c a >>【答案】B 【解析】【分析】根据所给数据,分别求出平均数为a ,中位数为b ,众数为c ,然后进行比较可得选项. 【详解】1(15171410151717161412)14.710a =+++++++++=,中位数为1(1515)152b =+=,众数为=17c .故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3.(2020·四川省泸县第二中学高三月考(文))已知3log 6p =,5log 10q =,7log 14r =,则p ,q ,r 的大小关系为( )A .q p r >>B .p r q >>C .p q r >>D .r q p >>【答案】C 【解析】【分析】利用对数运算的公式化简,,p q r 为形式相同的表达式,由此判断出,,p q r 的大小关系.【详解】依题意得31+log 2p =,51log 2q =+,71log 2r =+,而357log 2log 2log 2>>,所以p q r >>.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题.4. (2020·四川省泸县第四中学高三月考(理))设{a n }是等比数列,则“a 1<a 2<a 3”是数列{a n }是递增数列的A .充分而不必要条件B .必要而不充分条件、C .充分必要条件D .既不充分也不必要条件【答案】C【解析】1212311101a a a a a a q a q q >⎧<<⇒<<⇒⎨>⎩或1001a q <⎧⎨<<⎩,所以数列{a n }是递增数列,若数列{a n }是递增数列,则“a 1<a 2<a 3”,因此“a 1<a 2<a 3”是数列{a n }是递增数列的充分必要条件,选C5.(2020·四川棠湖中学高三月考(文))设log a =log b =,120192018c =,则a ,b ,c 的大小关系是( ).A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】【分析】根据所给的对数式和指数式的特征可以采用中间值比较法,进行比较大小.【详解】因为20182018201811log 2018log log ,2a =>=>=201920191log log ,2b ==102019201820181c =>=,故本题选C.【点睛】本题考查了利用对数函数、指数函数的单调性比较指数式、对数式大小的问题.6.(2020·北京八十中高三开学考试)设0.10.134,log 0.1,0.5a b c ===,则 ( )A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】C 【解析】0.10.1341,log 0.10,00.51a b c =>=<<=<,a c b ∴>>,故选C 。

新高考高三数学试卷一轮

新高考高三数学试卷一轮

一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 函数f(x) = ax^2 + bx + c(a≠0)的图像开口向上,且对称轴为x=-1,则下列说法正确的是()A. a > 0,b < 0B. a < 0,b > 0C. a > 0,b > 0D. a < 0,b < 02. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/53. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S10 = 55,则该等差数列的公差d为()A. 1B. 2C. 3D. 44. 在平面直角坐标系中,点P(3,4)关于直线y=x的对称点为Q,则直线PQ的方程为()A. y = x - 1B. y = x + 1C. y = -x + 7D. y = -x - 75. 若函数f(x) = x^3 - 3x^2 + ax + b在x=1时取得极值,则a+b的值为()A. 1B. 0C. -1D. -26. 已知复数z满足|z-1| = |z+1|,则复数z在复平面上的轨迹方程为()A. x = 0B. y = 0C. x^2 + y^2 = 2D. x^2 + y^2 = 47. 已知函数f(x) = (x-1)/(x+1),则f(-1)的值为()A. -1B. 1C. 0D. 无定义8. 若等比数列{an}的首项为a1,公比为q,则a1 + a2 + a3 + ... + a10 = 100,a1 + a2 + a3 + ... + a10 + a11 = 200,则q的值为()A. 2B. 1/2C. 1D. -19. 已知函数f(x) = ln(x-1) - x + 2,则f(x)在(1,+∞)上的最大值为()A. 1B. 0C. -1D. 无最大值10. 若直线y=kx+b与圆x^2 + y^2 = 4相切,则k和b满足的关系为()A. k^2 + b^2 = 4B. k^2 + b^2 = 1C. k^2 + b^2 = 16D. k^2 + b^2 = 9二、填空题(本大题共5小题,每小题5分,共25分。

2020届高三高考数学二轮专项训练 选择填空题专项训练1 练习案

2020届高三高考数学二轮专项训练   选择填空题专项训练1 练习案

高三年级 文科数学练案使用日期:20年5月13日 编号:541.设全集,集合,,则集合( )A .B .C .D .2.若复数,则在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列函数中,值域为且在区间上单调递增的是 ( ) A .B .C .D .4.执行如图所示的程序框图,则输出的k 值为( )A .4B .5C .7D .9组编人 审核人5.在△中,已知,,,则c=( )A.4B.3C.D.6.设均为正数,则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.如图,阴影表示的平面区域是由曲线,所围成的. 若点在内(含边界),则的最大值和最小值分别为( )A.,B.,C.,D.,8.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线围成的平面区域的直径为( )A.B.C.D.9.某几何体的三视图如下图所示,则该几何体的表面积是A.12 B.2 C.D.10.在△ABC中,,,.的值为( )A.B.C.D.11.当时,使不等式成立的正数的值为( )A.B.C.2 D.412.“或”是“函数存在零点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件13.设向量,满足||=2,||=3,,60°,则•()____.14.设,为双曲线的两个焦点,若双曲线的两个顶点恰好将线段三等分,则双曲线的离心率为____.15.某四棱锥的三视图如图所示,那么该四棱锥的体积为____.16.过原点作圆的两条切线,则两条切线所成的锐角_________.选择填空题专项训练1练案参考答案1.B【详解】,所以故选:B2.D=,对应的点为(),在第四象限故选:D3.C【详解】(A)的值域不是R,是[-1,+∞),所以,排除;(B)的值域是(0,+∞),排除;(D)=,在(0,)上递减,在(,+∞)上递增,不符;只有(C)符合题意.故选C.4.D第1步:S=-3,k=3;第2步:S=-,k=5;第3步:S=,k=7;第4步:S=2,k=9,退出循环,此时,k=9故选:D5.C【详解】∵a=2,,,∴sin C=sin[π﹣(A+B)]=sin(A+B),∴由正弦定理,可得:c.故选:C.6.C由,为正数,得:,即,即,所以,有,即充分性成立,反过来,当时,有,化简,得:,必要性成立,所以,“”是“”的充要条件,故选:C7.A目标函数化为:,画出的图象,并平移,如图,当平移到与圆相切时,目标函数在y轴上的截距最大,由圆心O到直线距离d=,得z的最大值为,当平移到直线与圆的交点B时,目标函数在y轴上的截距最小,由,得B点坐标为(-1,-1),所以,z的最小值为-7,故选:A8.B【详解】等价于,如图:由图形可知,上下两个顶点之间的距离最大:4,那么曲线|y|=2﹣x2围成的平面区域的直径为:4.故选:B.9.D【详解】由三视图还原可知几何体是如下图所示的直三棱柱:则,表面积本题正确选项:10.B 由正弦定理可得:,所以,解得:.故选:B11.C【详解】由题可得:,由对数函数性质可得:,在同一坐标系中作出函数与的大致图象如下:因为且,所以第一象限内的最上面的曲线表示函数的图像,第一象限内的最下面的曲线表示函数的图像,作出直线,它与两函数图像交点分别为,由得:,所以点的横坐标为,由得:,所以点的横坐标为,由图可得:,综上所述:,故选:C 12.B存在零点有根当时,不合题意当时,或可知解集是或的子集“或”是“函数存在零点”的必要不充分条件本题正确选项:13.7向量,满足||=2,||=3,,60°,则•()4+27.故答案为:7.14.3依题意,得:2a=c-a,即a=,所以,离心率故答案为:315.由三视图知该几何体如图,V==故答案为:16.根据题意作出图像如下:其中是圆的切线,为切点,为圆心,则由圆的方程可得:圆心,圆的半径为:,在中,可得:,又将平分,所以。

2020年1月15日高三高考数学选择填空题专练(无答案)

2020年1月15日高三高考数学选择填空题专练(无答案)

2020年1月15日高三高考数学选择填空题专练【第一练】一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合21{|log 0},33x A x x B x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称 B .()f x 的最小正周期为2π C .()y f x =的图象关于点,02π⎛⎫ ⎪⎝⎭对称 D .()f x 在,36ππ⎛⎫- ⎪⎝⎭单调递增3.已知5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( )A .123B .91C .120-D .152-4.已知函数22()22x f x x x =-+.命题1:()p y f x =的图象关于点(1,1)对称;命题2:p 若2a b <<,则()()f a f b <.则在命题112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和412:()q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q5.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( )A .3200元B .3400元C .3500元D .3600元6.已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =7.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .120B .84C .56D .288.已知,,,A B C D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,2,8BC BD CD ===.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .89.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围是( ) A .[0,3]B .[0,2]C .[2,3]D .(1,3]-。

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(唯一零点求值问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2D .2-2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .13.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12B .1或12-C .1-或2D .2-或14.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2-B .12-C .1-D .12-或1-5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-26.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .17.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .188.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .210.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12B .1或12-C .12-或13D .2-或111.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .112.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .213.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .314.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .1215.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-116.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .417.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .1-或2D .2-或1二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232xf x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______. 21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.参考答案一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知函数()222e ex xf x x a +--=++++有唯一零点,则实数=a ( ) A .1 B .1- C .2 D .2-【答案】D【答案解析】设()(2)e e x xg x f x x a -=-=+++,定义域为R,∴()e e e e ()x x x xg x x a x a g x ---=-+++=+++=,故函数()g x 为偶函数,则函数(2)f x -的图象关于y 轴对称, 故函数()f x 的图象关于直线2x =-对称, ∵()f x 有唯一零点, ∴(2)0f -=,即2a =-. 故选:D .2.(2023ꞏ全国ꞏ高三专题练习)已知函数()()π4π4sin cos x x f x e ea x x --=+-+有唯一零点,则=a ( )A .πeB .4πeC D .1【答案】C【答案解析】令()()ππ44sin cos 0x x f x e ea x x --=+-+=,则π44ππs in 4x x eex --⎛++=⎫ ⎪⎝⎭,记π4x t -=,则πsin cos 2t t e e t t -⎛⎫++= ⎪⎝⎭=,令(),t t e t g e -=+则()(),()t t g t t e e t g g -=-∴=-+,所以()g t 是偶函数,图象关于y 轴对称,因为()f x 只有唯一的零点,所以零点只能是0,t =2,a =∴=故选:C3.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20202320202x f g x x λλ-=---有唯一零点,则实数λ的值为 A .1-或12 B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin xg x h e x x x ++=-,①且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin xx g x e x x h -+---=++,得:()()sin xe x x g x h x --=-+,②①+②得:()2x xe e g x -+=,由于2020x -关于2020x =对称, 则20203x -关于2020x =对称,()g x 为偶函数,关于y 轴对称,则()2020g x -关于2020x =对称, 由于()()20202320202x f g x x λλ-=---有唯一零点,则必有()20200f =,()01g =,即:()()0223021202020f g λλλλ=--=--=,解得:1λ=-或12. 故选:A.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()()222212e 222x x x f x a a ---=-+-有唯一零点,则负实数=a A .2- B .12-C .1-D .12-或1-【答案】A【答案解析】函数()()222212e222x x x f x a a ---=-+-有唯一零点, 设2x t -=,则函数()212e 222t tt y a a -=-+-有唯一零点,则()212e 222t tt a a --+=设()()()()()112e 222e 2222t t t tt t g t a g t a g t ---=-+-=-+= ,,∴()g t 为偶函数,∵函数()f t 有唯一零点, ∴()y g t =与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ,∴-= 解得2a =- 或1a =(舍去),故选A .5.(2023ꞏ全国ꞏ高三专题练习)已知函数()()11123e 22x x x f x a a ---=-+-有唯一零点,则负实数=a ( )A .13-B .12-C .-3D .-2【答案】C【答案解析】注意到直线1x =是13e x y -=和1122x x y --=+的对称轴,故1x =是函数()f x 的对称轴,若函数有唯一零点,零点必在1x =处取得,所以 ()21320f a a =--=,又0a <,解得3a =-.选C.6.(2023ꞏ全国ꞏ高三阶段练习)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .1【答案】C【答案解析】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 7.(2023春ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()1122222x x f x m x x --+⎛⎫=++- ⎪⎝⎭有唯一零点,则m 的值为( ) A .12-B .13C .12 D .18【答案】D【答案解析】()f x 有零点,则211222112224x x m x x x --+⎛⎫⎛⎫+=-+=--+ ⎪ ⎪⎝⎭⎝⎭,令12t x =-,则上式可化为()21224t t m t -+=-+, 因为220t t -+>恒成立,所以24122t tt m --+=+,令()21422tt t h t --+=+,则()()()2211222244t t t tt t h t h t ----+-+-===++, 故()h t 为偶函数,因为()f x 有唯一零点,所以函数()h t 的图象与=y m 有唯一交点, 结合()h t 为偶函数,可得此交点的横坐标为0,故()001102842m h -===+. 故选:D8.(2023春ꞏ山西ꞏ高三统考)已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =( )A .13n -B .12n -C .21n -D .32n -【答案】C【答案解析】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= , ()f x \为偶函数,图象关于y 轴对称,()f x \的零点关于y 轴对称,又()f x 有唯一零点,()f x \的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+, 又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列, 12n n a ∴+=,则21n n a =-.故选:C.9.(2023ꞏ全国ꞏ高三专题练习)已知函数()g x ,()h x 分别是定义在R 上的偶函数和奇函数,且()()e +=+x g x h x x ,若函数()()12e 12λλ-=+--x f x g x 有唯一零点,则正实数λ的值为( )A .13B .12C .1D .2【答案】C【答案解析】由题设,()()()()()()e e xxg x h x x g x h x x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩,可得:()e e 2x xg x -+=,由()()12e12λλ-=+--x f x g x ,易知:()f x 关于1x =对称.当1x ≥时,1112()e (e e )22x x x f x λλ---=++-,则111()e (e e )02x x x f x λ---'=+->,所以()f x 单调递增,故1x <时()f x 单调递减,且当x 趋向于正负无穷大时()f x 都趋向于正无穷大, 所以()f x 仅有一个极小值点1,则要使函数只有一个零点,即()10f =,解得1λ=. 故选:C10.(2023春ꞏ辽宁ꞏ高三校联考期末)已知函数()g x ,()h x 分别是定义在R 上的奇函数和偶函数,且()()3x g x h x e x x +=+-,若函数()()2022220226x f x h x λλ-=---有唯一零点,则实数λ的值为( )A .1-或12 B .1或12-C .12-或13D .2-或1【答案】C【答案解析】由题意,函数()g x ,()h x 分别是奇函数和偶函数,且()()3x g x h x e x x +=+-,可得()()()()()()33x x g x h x e x x g x h x g x h x e x x -⎧+=+-⎪⎨-+-=-+=-+⎪⎩,解得()2x xe e h x -+=, 则()()2x xe e h x h x -+-==,所以()h x 为偶函数,又由函数()()2022220226x f x h x λλ-=---关于直线2022x =对称,且函数()f x 有唯一零点,可得()20220f =,即00022602e e λλ+⨯-=-, 即2160λλ--=,解得13λ=或12λ=-.故选:C.11.(2023春ꞏ福建泉州ꞏ高三福建省德化第一中学校考开学考试)已知函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点,则=a ( )A .1-B .12-C .12D .1【答案】B【答案解析】因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭, 令1x t -=,则()()()()sin 1cos 22t t t tg t t a e e t a e e ππ--⎛⎫⎛⎫=+++=++ ⎪ ⎪⎝⎭⎝⎭为偶函数,因为函数()()11sin 2x x f x x a e e π--+⎛⎫=++⎪⎝⎭有唯一零点, 所以()()cos 2t tg t t a e e π-⎛⎫=++ ⎪⎝⎭有唯一零点,根据偶函数的对称性,则()0120g a =+=, 解得12a =-,故选:B12.(2023ꞏ全国ꞏ高三专题练习)已知函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则=a ( )A .0B .12-C .1D .2【答案】C【答案解析】函数()f x 的定义域为()1,a -,则1a >-,()1121f x x x x a'=--+-, 则()()()2211201f x x x a ''=++>+-,所以,函数()f x '在()1,a -上为增函数,当1x +→-时,()f x '→-∞,当x a -→时,()f x '→+∞, 则存在()01,x a ∈-,使得()000011201f x x x x a '=--=+-,则0001121x a x x =--+, 当01x x -<<时,()0f x '<,此时函数()f x 单调递减, 当0x x a <<时,()0f x ¢>,此时函数()f x 单调递增,()()()()20000min ln 1ln f x f x x x a x ∴==-+--,由于函数()()()2ln 1ln f x x x a x =-+--有唯一零点,则()()()()20000min ln 1ln 0f x f x x x a x ==-+--=,由0000112011x a x x x ⎧=->⎪-+⎨⎪>-⎩,解得01x -<<所以,()()()2220000000200002111ln 1ln ln 1ln 2ln 0111x x x x x x x a x x x x ⎡⎤⎛⎫-++=-++-=+-=⎢⎥ ⎪-+++⎢⎥⎝⎭⎣⎦,令()()2212ln 11x x x x x ϕ⎡⎤=+-⎢⎥++⎢⎥⎣⎦,其中112x --<<, ()()()()()()()()()2432322212222482422122221122111x x x x x x x x x x x x x x x x x x ϕ⎡⎤++++++'=+⋅-=+=⎢⎥--+-++-++⎢⎥⎣⎦()()()()222241222211x x x xx x ++-=+-+,112x -<<,则22210x x +-<,10x +>,220x ->,则()0x ϕ'<,所以,函数()x ϕ在11,2⎛⎫- ⎪ ⎪⎝⎭上单调递减,且()00ϕ=,00x ∴=, 从而可得11a=,解得1a =. 故选:C.13.(2023春ꞏ重庆九龙坡ꞏ高三重庆市育才中学校考阶段练习)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12 B .13C .2D .3【答案】A【答案解析】由已知条件可知()()()()()()xxg x h x e xg x h x e x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩由函数奇偶性易知()2x x e e g x -+=令()()226xx g x ψλλ=+-,()x ψ为偶函数.当0x ≥时,()'2202x xxe e x ln ψλ--=+>,()x ψ单调递增,当0x <时,()x ψ单调递减,()x ψ仅有一个极小值点()0,f x ()x ψ图象右移一个单位,所以仅在1处有极小值,则函数只有1一个零点,即()10f =, 解得12λ=,故选:A14.(2023ꞏ全国ꞏ高三专题练习)已知函数2112()cos(1)1()x x x x a e e x f x --+=-+++--有唯一零点,则=a ( ) A .1B .13-C .13D .12 【答案】D【答案解析】因为21(1)()(1)(e e )cos(1)2x x f x x a x ---=-+++--,令1x t -= 则2()(e e )cos 2t t g t t a t -=+++-,因为函数()2112(1(s ))co 1x x x x a e e f x x --+=-+++--有唯一零点, 所以()g t 也有唯一零点,且()g t 为偶函数,图象关于y 轴对称,由偶函数对称性得(0)0g =,所以2120a +-=,解得12a =, 故选:D.15.(2023ꞏ全国ꞏ高三专题练习)若函数33()|3|x x f x x e e m --=-+++有唯一零点,则实数m 的值为( ) A .0B .-2C .2D .-1【答案】B【答案解析】设()(3)||x x g x f x x e e m -=+=+++,∴()||||()x x x x g x x e e m x e e m g x ---=-+++=+++=故函数()g x 为偶函数,则函数(3)f x +的图像关于y 轴对称,故函数()f x 的图像关于直线3x =对称, ∵()f x 有唯一零点∴(3)0f =,即2m =-,经检验,33()|3|2x x f x x e e --=-++-仅有1个零点3x =.故选:B.16.(2023春ꞏ广西ꞏ高三校联考阶段练习)已知关于x 的函数()22214f x bx bx x b b =-+-++-有唯一零点x a =,则a b +=( )A .1-B .3C .1-或3D .4【答案】B 【答案解析】22()(1)14f x b x x b =-+-+-,令1t x =-, 则有22()4g t bt t b =++-是偶函数,若只有唯一零点,则必过原点,即(0)0g =,从而2b =±.当2b =-时,有3个零点,舍去.故2b =,此时10t a =-=,则1a =,故3a b +=.故选:B17.(2023春ꞏ广东广州ꞏ高三广州六中校考)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()sin x g x h e x x x ++=-,若函数()()20212320212x f x g x λλ-=---有唯一零点,则实数λ的值为( ) A .1-或12B .1或12-C .1-或2D .2-或1【答案】A【答案解析】已知()()sin x g x h e x x x ++=-,① 且()g x ,()h x 分别是R 上的偶函数和奇函数,则()()()sin x x g x e x x h -+---=++,得:()()sin x e x x g x h x --=-+,②①+②得:()2x xe e g x -+=, 由于2021x -关于2021x =对称, 则20213x -关于2021x =对称,()g x 为偶函数,关于y 轴对称,则()2021g x -关于2021x =对称,由于()()20212320212x f x g x λλ-=---有唯一零点,则必有()20210f =,()01g =,即:()()0223022021120g f λλλλ=--=--=,解得:1λ=-或12.故选:A.二、填空题18.(2023ꞏ上海ꞏ高三专题练习)若函数()()232x f x m x m x R =-+-∈有唯一零点,则实数m 的值为_________.【答案】1±【答案解析】()2,32()x x R f x m x m f x -∈-=--+-=()f x ∴是偶函数 根据偶函数的性质,可得(0)0f =,02320m +-=,解得1m =±当1m =时,此时()31xf x x =--,有唯一零点; 当1m =-时,此时()31xf x x =+-,也有唯一零点; 故1m =±时有唯一零点.故答案为:1±19.(2023ꞏ上海ꞏ高三专题练习)若函数||2()2||2()x f x a x a x R =-+-∈有唯一零点,则实数a 的值为__________.【答案】1-【答案解析】因为x R ∈,又||2()2||2()x f x a x a f x --=--+-=,所以函数为偶函数.因为函数有一个零点,根据偶函数的性质,可得(0)0f =,所以02220a +-=,解得1a =±.当1a =,此时||()2||1x f x x =--,知1(2)02f f ⎛⎫< ⎪⎝⎭,()f x 有零点(1x =),不符合题意: 当1a =-,此时||()2||1x f x x =+-在(0,)+∞上单调递增,()(0)0f x f >=,根据偶函数对称性,符合题意;所以1a =-.故答案为:1-20.(2023ꞏ全国ꞏ高三专题练习)若函数2()28ln 14f x x x x m =---有唯一零点,则实数m 的值_______.【答案】16ln 224--【答案解析】由题意,函数2()28ln 14f x x x x m =---有唯一零点,即方程228ln 14x x x m --=有唯一实数解,令2()28ln 14h x x x x =--,则82(4)(21)()414,0x x h x x x x x-+'=--=>, 当>4x 时,()0h x '>,当04x <<时,()0h x '<,所以()h x 在(4,)+∞上单调递增,在(0,4)上单调递减,则函数()h x 在4x =处取得最小值,最小值为(4)16ln 224h =--,要使得函数2()28ln 14f x x x x m =---有唯一零点,则16ln 224m =--.故答案为:16ln 224--.21.(2023ꞏ全国ꞏ高三假期作业)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ________ 【答案】12【答案解析】()()()()221111211x x x x f x x x a e e x a e e --+--+=-++=--++ 设1t x =-,则()()21t t f t t a e e -=-++定义域为R ,()()()()21t t f t t a e e f t --=--++= 所以()f t 为偶函数,所以()f x 的图像关于1x =成轴对称要使()f x 有唯一零点,则只能()10f =,即()2001210a e e -⨯++= 解得12a =, 故答案为:12.三、双空题22.(2023ꞏ浙江ꞏ高三专题练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且满足()()2x f x g x x +=-,则(0)f 的值为________:若函数2022()2(2021)2x h x f x λλ-|=---∣有唯一零点,则实数λ的值为________.【答案】 1 1-或12【答案解析】因为()g x 是定义在R 上的奇函数,所以有(0)0g =,因为()()2x f x g x x +=-,所以(0)(0)1f g +=,所以(0)1f =,令||2()2()2x F x f x λλ=--,因为()f x 是定义在R 上的偶函数,所以||2||2()2()22()2()x x F x f x f x f x λλλλ--=---=--=,所以()F x 是定义在R 上的偶函数,图象关于y 轴对称,所以|2021|2()2(2021)2(2021)x h x f x F x λλ-=---=-,所以()h x 的图象关于2021x =对称,因为()h x 有唯一零点,所以(2021)0h =,即21(0)20f λλ--=,即2120λλ--=,解得1λ=-或12.故答案为:1,1-或12. 23.(2023春ꞏ江苏苏州ꞏ高三校考期末)已知函数g (x ),h (x )分别是定义在R 的偶函数和奇函数,且满足()()sin ,x g x h x e x x +=+-则函数g (x )的答案解析式为_________;若函数|2021|2()3(2021)2x f x g x λλ-=---有唯一零点,则实数λ的值为_________.【答案】 ()12x x e e -+ 12或1-【答案解析】∵()g x ,()h x 分别是定义在R 上的偶函数和奇函数,∴()()g x g x -=,()()h x h x -=-又∵()()sin x g x h x e x x +=+-①,∴()()()()e sin x g x h x g x h x x x --+-=-=-+②①+②:2()e e x x g x -=+,∴()1()e e 2x x g x -=+, 又∵()()2021202112(2022021)21()3202123e 22x x x x f x g x e λλλλ----⎡⎤=---=-⋅+-⎣⎦, 又∵()f x 有唯一零点,等价于()213202x x x e e λλ--⋅+-=有唯一解, 设()21()322x x x t x e e λλ-=-+-, ∵()t x 为偶函数,∴当且仅当0x =时为唯一零点,∴2120λλ--=,解得12λ=或1λ=-. 故答案为:()12x x e e -+;12或1-。

最新版高考高三数学小题多维训练原卷含解析——课时09-基本不等式及其应用

最新版高考高三数学小题多维训练原卷含解析——课时09-基本不等式及其应用

课时09 基本不等式及其应用(基础题)一、填空题1.(·上海高三二模)某茶农打算在自己的茶园建造一个容积为500立方米的长方体无盖蓄水池,要求池底面的长和宽之和为20米.若每平方米的池底面造价是池侧壁的两倍,则为了使蓄水池的造价最低,蓄水池的高应该为______________米.2.(·上海交大附中高三期末)若1x>,则函数211x xyx-+=-的最小值为___________.3.(·上海高三其他模拟)已知函数()()3031xxaf x a=+>+的最小值为5,则a=______. 4.(·上海市嘉定区第一中学高三月考)已知正数a,b满足1ab=,则11a bb a+++的最小值为______.5.(·上海高三三模)若正实数,a b满足a b ab+=,则64baa ab++的最小值为__________.二、解答题6.(·上海卢湾高级中学高三月考)某市为了刺激当地消费,决定发放一批消费券,已知每投放(04,)a a a<≤∈R亿元的消费券,这批消费券对全市消费总额提高的百分比y随着时间x(天)的变化的函数关系式近似为()10af xy=,其中302,()3727,xx xf x xx x x+⎧≤≤∈⎪=-⎨⎪-<≤∈⎩RR,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m 亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m 的最小值.(能力题) 一、单选题1.(·上海)若直线l :212x y b a a b +=++经过第一象限内的点11(,)P a b ,则ab 的最大值为 A .76B .422-C .523-D .632-2.(2018·上海市控江中学高三开学考试)已知*N k ∈,,,R x y z +∈,若222()5()k xy yz zx x y z ++>++,则对此不等式描述正确的是A .若5k =,则至少存在....一个以,,x y z 为边长的等边三角形 B .若6k =,则对任意满足不等式的,,x y z 都存在...以,,x y z 为边长的三角形 C .若7k =,则对任意满足不等式的,,x y z 都存在...以,,x y z 为边长的三角形 D .若8k,则对满足不等式的,,x y z 不存在...以,,x y z 为边长的直角三角形3.(2018·上海高三二模)已知长方体的表面积为2452cm ,所有棱长的总和为24cm .那么,长方体的体对角线与棱所成的最大角为( ).A .1arccos 3 B .2arccos3 C .3arccos9D .6arccos9二、填空题4.(·上海市建平中学高三期中)已知二次函数2()2019f x ax bx c =++(0a >),若存在0x ∈Z ,满足01|()|2019f x ≤,则称0x 为函数()f x 的一个“近似整零点”,若()f x 有四个不同的“近似整零点”,则a 的取值范围是________5.(·上海高三一模)已知0a b >>,那么,当代数式216()a b a b +-取最小值时,点(,)P a b 的坐标为________6.(2018·上海高三二模)在直角三角形ABC 中,2A π∠=,3AB =,4AC =,E 为三角形ABC 内一点,且22AE =,若AE AB AC λμ=+,则34λμ+的最大值等于___________.(真题/新题)一、单选题1.(·全国高三其他模拟)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x 里见到树,则11972215x ⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里=300步)( )A .210里B .410里C .610里D .810里二、填空题2.(·上海高考真题)如图,已知正方形OABC ,其中()1OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当AQ CP +最小时,则a 的值为_______三、解答题3.(·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本; (2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.课时10 基本不等式及其应用(基础题)一、填空题 1.(·上海高三二模)某茶农打算在自己的茶园建造一个容积为500立方米的长方体无盖蓄水池,要求池底面的长和宽之和为20米.若每平方米的池底面造价是池侧壁的两倍,则为了使蓄水池的造价最低,蓄水池的高应该为______________米. 【答案】5;【分析】设长方体蓄水池长为y ,宽为x ,高为h ,蓄水池总造价为()W h ,由题意可得500()402W h ah ah=+,然后基本不等式求出()W h 的最小值即可. 【详解】设长方体蓄水池长为y ,宽为x ,高为h , 每平方米池侧壁造价为a ,蓄水池总造价为()W h ,则由题意可得20500x y xyh +=⎧⎨=⎩,500()2()22()2402W h a xh yh axy ah x y axy ah ah∴=++=++=+, 500()2402400W h ah aa h∴⋅=, ∴当且仅当5h =时,()W h 取最小值,即5h =时,()W h 取最小值. 故答案为:5.2.(·上海交大附中高三期末)若1x >,则函数211x x y x -+=-的最小值为___________. 【答案】3【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以()1111211311y x x x x =-++≥-⋅+=--,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.3.(·上海高三其他模拟)已知函数()()3031x x af x a =+>+的最小值为5,则a =______. 【答案】9【分析】配方得()()303113131x x x x aaf x a =+>=++-++,结合基本不等式即可求解【详解】()()3031121593131x x x x aaf x a a a =+>=++-≥-=⇒=++,当且仅当3log 2x =时等号满足,故答案为:94.(·上海市嘉定区第一中学高三月考)已知正数a ,b 满足1ab =,则11a b b a+++的最小值为______. 【答案】4 【分析】由已知得11a b a ba b b a b a+++=+++,然后利用基本不等式求最值即可.【详解】由题可知,0,0a b >>,且1ab =,所以11224a b a b a b a b a ba b ab b a b a ab b a b a++++=++=+++≥⋅+=, 当且仅当1a b ==等号成立, 故答案为:4.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值; (3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5.(·上海高三三模)若正实数,a b 满足a b ab +=,则64b a a ab ++的最小值为__________. 【答案】15【分析】由a b ab +=可得1bb a,将它们替换目标式中的ba、ab ,应用基本不等式求最小值即可. 【详解】由题设知:1bb a +=,即1b b a ,又a b ab +=且0,0a b >>,∴64646412()()116115ba ab a b a ab a b a b++=+-+≥+-=-=++, 当且仅当8a b +=时等号成立. 故答案为:15.二、解答题6.(·上海卢湾高级中学高三月考)某市为了刺激当地消费,决定发放一批消费券,已知每投放(04,)a a a <≤∈R 亿元的消费券,这批消费券对全市消费总额提高的百分比y 随着时间x (天)的变化的函数关系式近似为()10af x y =,其中302,()3727,xx x f x x xx x +⎧≤≤∈⎪=-⎨⎪-<≤∈⎩R R,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m 亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m 的最小值.【答案】(1)5天内;(2)min 2086m =-.【分析】(1)根据题意分段列出不等式组,求解,然后取并集即得x 的取值范围,从而得解;(2)依题意,列出不等式,并分离参数,然后利用换元方法和基本不等式求相应最值,从而得到所求. 【详解】依题意得a=2,321040%4302xx x +⎧⨯≥⨯=⎪-⎨⎪≤≤⎩,解得12x ≤≤, 2(7)1040%427x x ⨯-≥⨯=⎧⎨<≤⎩,解得25x ≤≤, 15x ∴≤≤,即第一次投放2亿元消费券,则接下来5天内都能使消费总额至少提高40%;(2)依题意得3()42[7(4)]43xmf x x m x +≥⇒-++⨯≥-;在[]0,2x ∈上恒成立,3(22)(3)62433x x x x m m x x+---+≥⇒≥-+, 设(28)(6)243[3,5],3202()t t t x x t m t t t--=+∈=-⇒≥=-+ 2086m ≥-,min 2086m ∴=-.【点睛】本题考查分段函数模型的应用,涉及不等式的求解,不等式恒成立问题.注意:(1)不等式恒成立问题,分离参数后所得式子如果不是特别复杂以至于很难处理,一般常用分离参数法解决;(2)对于二次分式函数的最值,若分子或分母中的式子是一次的,一般作换元,用一个字母t 表示这个一次式,二次分式可以表示为t 函数,一般可用基本不等式或者对勾函数的性质求得相应最值;若分子分母都是二次式,则可以通过分离常数,先将分子转化为一次式在进行处理.(能力题) 一、单选题1.(·上海)若直线l :212x y b a a b +=++经过第一象限内的点11(,)P a b ,则ab 的最大值为 A .76 B .422- C .523- D .632-【答案】B 【分析】直线2:12x y l b a a b +=++经过第一象限内的点1(P a,1)b ,可得a ,0b >,211(2)()a b a b a b +=++.2211()(2)()121ba ab ab b ba b a b a b a a⨯=+=++++⨯+.令0bt a =>,21()121t g t t t=+++,(0)t >再利用基本不等式计算可得. 【详解】解:直线2:12xyl b a a b +=++经过第一象限内的点1(P a ,1)b , 则a ,0b >,211(2)()a b a b a b +=++. 22121()(2)()2121bb a a ab ab b ba b a b a b a b a b a a⨯∴=+=+=++++++⨯+.令0bt a =>,()()()()211221()121121t t t t g t t t t t +++=+=++++22214231t tt t ++=++ 21231tt t =+++ 11312t t =+++. 因为1123223322t t t t ++≥⋅+=+,当且仅当12t t =即22t =时取最小值;1114221322213t t∴+≤+=-+++即()max 24222g t g ⎛⎫==- ⎪ ⎪⎝⎭故选:B .【点睛】本题考查了直线方程、换元法、基本不等式的应用,考查了推理能力与计算能力,属于中档题.2.(2018·上海市控江中学高三开学考试)已知*N k ∈,,,R x y z +∈,若222()5()k xy yz zx x y z ++>++,则对此不等式描述正确的是A .若5k =,则至少存在....一个以,,x y z 为边长的等边三角形 B .若6k =,则对任意满足不等式的,,x y z 都存在...以,,x y z 为边长的三角形C .若7k =,则对任意满足不等式的,,x y z 都存在...以,,x y z 为边长的三角形D .若8k ,则对满足不等式的,,x y z 不存在...以,,x y z 为边长的直角三角形【答案】B【详解】本题可用排除法,由222222222222x y y z z x x y z xy yz zx+++++=++≥++,对于A ,若5k =,可得222xy yz zx x y z ++>++,故不存在这样的,,,x y z A 错误,排除A ;对于,1,1,2C x y z ===时,()()22275xy yz zx xy z ++>++成立,而以,,x y z 为边的三角形不存在,C 错误,排除C ;对于,D 1,1,2x y z ===时,()()22285xy yz zx x y z ++>++成立,存在以,,x y z 为边的三角形为直角三角形,故D 错误,排除,D 故选B.【 方法点睛】本题主要考查不等式的性质、排除法解选择题,属于难题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等. 3.(2018·上海高三二模)已知长方体的表面积为2452cm ,所有棱长的总和为24cm .那么,长方体的体对角线与棱所成的最大角为( ). A .1arccos 3 B .2arccos3 C .3arccos9D .6arccos9【答案】D【解析】设三条棱a b c ≤≤454ab ac bc ∴++=,6a b c ++=,222272a b c ++=()22222452264a b c a bc a a a ⎡⎤++≥+=+--⎢⎥⎣⎦整理可得2430a a -+≤12a ∴≤≤∴最短棱长为1,体对角线长为36226cos 936θ==故选D点睛:本题以长方体为载体,考查了不等式的运用,根据题目意思给出三边的数量关系,利用基本不等式代入消元,将三元变为二元,二元变为一元,从而求出变量范围,结合问题求出角的最大值二、填空题 4.(·上海市建平中学高三期中)已知二次函数2()2019f x ax bx c =++(0a >),若存在0x ∈Z ,满足01|()|2019f x ≤,则称0x 为函数()f x 的一个“近似整零点”,若()f x 有四个不同的“近似整零点”,则a 的取值范围是________ 【答案】21(0,]2019【分析】设函数的四个“近似整零点”为,1,2,3m m m m +++,再利用绝对值不等式和01|()|2019f x ≤,求得a 的取值范围.【详解】设函数的四个“近似整零点”为,1,2,3m m m m +++, 所以42019()(3)(1)(2)a f m f m f m f m ⨯=++-+-+|()||(3)||(1)||(2)|f m f m f m f m ≤++++++142019≤⨯所以212019a ≤.故答案为21(0,]2019. 【点睛】本题考查“近似整零点”的定义,求解的关键是读懂新定义,且理解“近似整零点”只与图象的开口大小有关,且四个整零点之间的最小距离为3,此时a 可取到最大值.5.(·上海高三一模)已知0a b >>,那么,当代数式216()a b a b +-取最小值时,点(,)P a b 的坐标为________ 【答案】(22,2)【分析】先根据基本不等式得到22()24b a b a b a b +-⎛⎫-=⎪⎝⎭;再利用基本不等式即可求解.【详解】解:因为0:a b >>22()24b a b a b a b +-⎛⎫∴-≤=⎪⎝⎭;所以222166426416()a a b a b a +≥+≥=-.当且仅当464a b a b ⎧=⎨=-⎩,即222a b ⎧=⎪⎨=⎪⎩时取等号,此时(,)P a b 的坐标为:()22,2.故答案为:()22,2.【点睛】本题考查的知识点:关系式的恒等变换,基本不等式的应用,属于基础题.6.(2018·上海高三二模)在直角三角形ABC 中,2A π∠=,3AB =,4AC =,E 为三角形ABC 内一点,且22AE =,若AE AB AC λμ=+,则34λμ+的最大值等于___________. 【答案】1【分析】先以直角建系,将22AE =转化为221(3)(4)2λμ+=,然后结合基本不等式求最值.【详解】在直角三角形ABC 中,2A π∠=, 故以A 点为原点,以,AB AC 为,x y 轴正方向建系:则(3,0),(0,4)AB AC ==, 所以(3,4)AE AB AC λμλμ=+=, 因为22AE =,所以()()22134(0,0)2λμλμ+=>>, 又2221(3)(4)(34)2342λμλμλμ+=+-⋅⋅= 所以22134(34)2342()22λμλμλμ++-=⋅⋅≤⋅(当且仅当1342λμ==时等号成立), 所以22134(34)2()22λμλμ++-≤⋅, 解得341λμ+≤, 故答案为:1.【点睛】本题主要考查向量,考查基本不等式,需要学生有一定的计算推理能力.一般在向量中遇见直角,垂直等条件时,可以考虑建系应用坐标求解.(真题/新题)一、单选题 1.(·全国高三其他模拟)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x里见到树,则11972215x⎛⎫⎛⎫⨯⨯⨯⎪ ⎪⎝⎭⎝⎭=.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里=300步)()A.210里B.410里C.610里D.810里【答案】D【分析】根据题意得EF GFGAEB⋅=,进而得4 2.510EF GF EB GA⋅=⋅=⨯=,再结合基本不等式求4()EF GF+的最小值即可.【详解】因为1里=300步,则由图知1200EB=步=4里,750GA=步=2.5里.由题意,得EF GFGAEB⋅=,则4 2.510EF GF EB GA⋅=⋅=⨯=,所以该小城的周长为4()8810EF GF EF GF+≥⋅=,当且仅当10EF GF==时等号成立.故选:D.【点睛】本题以数学文化为背景考查基本不等式,解题的关键在于根据题意,得出对应的边长关系,即:EF GF GA EB⋅=,再代入数据,结合基本不等式求解,同时,在应用基本不等式时,还需要注意“一正”、“二定”、“三相等”.二、填空题 2.(·上海高考真题)如图,已知正方形OABC ,其中()1OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当AQ CP +最小时,则a 的值为_______【答案】3【分析】通过函数解析式得到,P Q 两点坐标,从而表示出AQ CP +,利用基本不等式得到最值,从而得到取最值时的条件13a a=,求解得到结果.【详解】依题意得:,3a P a ⎛⎫ ⎪ ⎪⎝⎭,1,Q a a ⎛⎫⎪⎝⎭ 则4111223333a a a AQ CP a a a +=+=+≥⋅=当且仅当13a a=即3a =时取等号,故3a =本题正确结果:3【点睛】本题考查基本不等式的应用,关键在于能够通过坐标构造出关于a 的基本不等式的形式,从而利用取等条件得到结果.三、解答题 3.(·江苏高考真题)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y 万元与年产量x 吨之间的函数关系可以近似地表示为22420005x y x =-+,已知此生产线的年产量最小为60吨,最大为110吨.(1)年产量为多少吨时,生产每吨产品的平均成本最低?并求最低平均成本;(2)若每吨产品的平均出厂价为24万元,且产品能全部售出,则年产量为多少吨时,可以获得最大利润?并求最大利润.【答案】(1)年产量为100吨时,平均成本最低为16万元;(2)年产量为110吨时,最大利润为860万元.【分析】(1)列出式子,通过基本不等式即可求得; (2)将式子化简后,通过二次函数的角度求得最大值. 【详解】(1)2000245yxx x=+-,[60,110]x ∈ 2000224165x x≥⋅-= 当且仅当20005xx=时,即100x =取“=”,符合题意;∴年产量为100吨时,平均成本最低为16万元.(2)()()2212424200012088055x L x x x x ⎛⎫=--+=--+ ⎪⎝⎭又60110x ≤≤,∴当110x =时,max ()860L x =.答:年产量为110吨时,最大利润为860万元.。

高考数学试题及答案 (1)

高考数学试题及答案 (1)

普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =, 其中S 为底面积, h 为高. 一、填空题:本大题共14小题, 每小题5分, 共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{124}A =,,, {246}B =,,, 则A B = ▲ .2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本, 则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,, 117ii 12ia b -+=-(i 为虚数单位), 则a b +的值 为 ▲ .4.右图是一个算法流程图, 则输出的k 的值是 ▲ . 5.函数6()12log f x x =-的定义域为 ▲ .6.现有10个数, 它们能构成一个以1为首项, 3-为公比的 等比数列, 若从这10个数中随机抽取一个数, 则它小于8 的概率是 ▲ .7.如图, 在长方体1111ABCD A B C D -中, 3cm AB AD ==, 12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.8.在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+的离心率5 则m 的值为 ▲ .9.如图, 在矩形ABCD 中, 22AB BC ==,点E 为BC 的中点, 点F 在边CD 上, 若2AB AF =, 则AE BF 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数, 在区间[11]-,上,开始 结束k ←1k 2-5k +4>0输出k k ←k +1NY (第4题)FD DABC 1 1D 1A1B(第7题)0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 则3a b +的值为 ▲ .11.设α为锐角, 若4cos 65απ⎛⎫+= ⎪⎝⎭, 则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .12.在平面直角坐标系xOy 中, 圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点, 使得以该点为圆心,1为半径的圆与圆C 有公共点, 则k 的最大值是 ▲ . 13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,, 则实数c 的值为 ▲ . 14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .二、解答题:本大题共6小题, 共计90分.请在答题卡指定区域.......内作答, 解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中, 已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若5cos C =求A 的值. 16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中, 1111A B AC =,D E,分别是棱1BC CC ,上的点(点D 不同于点C ), 且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .(第9题)1A1C FDCAE1B17.(本小题满分14分) 如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为3.2千米,试问它的横坐标a 不超过多少时, 炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x =在x =x 0取得极大值或者极小值则x =x 0是()y f x =的极值点 已知a , b 是实数, 1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+, 求()g x 的极值点;(3)设()(())h x f f x c =-, 其中[22]c ∈-,, 求函数()y h x =的零点个数.19.(本小题满分16分)如图, 在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和3e ⎛ ⎝⎭,都在椭圆上, 其中e(第16题)x (千米y (千米)O(第17题)(1)求椭圆的离心率;(2)设A , B 是椭圆上位于x 轴上方的两点, 且直线1AF与直线2BF 平行, 2AF 与1BF 交于点P .(i )若126AF BF -=, 求直线1AF 的斜率; (ii )求证:12PF PF +是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b 满足:122n n n n n a n a b *+=∈+N .(1)设11n n nb b n a *+=+∈N ,, 求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设12nn nb b n a *+=∈N ,, 且{}n a 是等比数列, 求1a 和1b 的值.绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题, 请选定其中两题.......,. 并在相应的答题区域内作...........答...若多做, 则按作答的前两题评分. 解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图, AB 是圆O 的直径, D , E 为圆上位于AB 异侧的两点, 连结BD 并延长至点C , 使BD= DC , 连结AC , AE , DE . 求证:E C ∠=∠.B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A , 求矩阵A 的特征值.C .[选修4 - 4:坐标系与参数方程](本小题满分10分)(第21-A 题)AED CO在极坐标中,已知圆C 经过点()24Pπ,,圆心为直线()3sin 32ρθπ-=-与极轴的交点, 求圆C 的极坐标方程. D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x , y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【必做题】第22题、第23题, 每题10分, 共计20分.请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量, 从棱长为1的正方体的12条棱中任取两条, 当两条棱相交时, 0ξ=;当两条棱平行时, ξ的值为两条棱之间的距离;当两条棱异面时, 1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列, 并求其数学期望()E ξ.23.(本小题满分10分)设集合{12}n P n =,,,…, n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈, 则2x A ∉;③若nP x A ∈, 则2nP x A ∉.(1)求(4)f ;(2)求()f n 的解析式(用n 表示).江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)(2012•江苏)已知集合A={1,2,4},B={2,4,6},则 A∪B= {1,2,4,6} .考点:并集及其运算.专题:集合.分析:由题意,A,B两个集合的元素已经给出,故由并集的运算规则直接得到两个集合的并集即可解答:解:∵A={1,2,4},B={2,4,6},∴A∪B={1,2,4,6}故答案为{1,2,4,6}点评:本题考查并集运算,属于集合中的简单计算题,解题的关键是理解并的运算定义2.(5分)(2012•江苏)某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取15 名学生.考点:分层抽样方法.专题:概率与统计.分析:根据三个年级的人数比,做出高二所占的比例,用要抽取得样本容量乘以高二所占的比例,得到要抽取的高二的人数.解答:解:∵高一、高二、高三年级的学生人数之比为3:3:4,∴高二在总体中所占的比例是=,∵用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,∴要从高二抽取,故答案为:15点评:本题考查分层抽样方法,本题解题的关键是看出三个年级中各个年级所占的比例,这就是在抽样过程中被抽到的概率,本题是一个基础题.3.(5分)(2012•江苏)设a,b∈R,a+bi=(i为虚数单位),则a+b的值为8 .考点:复数代数形式的乘除运算;复数相等的充要条件.专题:数系的扩充和复数.分析:由题意,可对复数代数式分子与分母都乘以1+2i,再由进行计算即可得到a+bi=5+3i,再由复数相等的充分条件即可得到a,b的值,从而得到所求的答案解答:解:由题,a,b∈R,a+bi=所以a=5,b=3,故a+b=8故答案为8点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握,复数相等的充分条件是将复数运算转化为实数运算的桥梁,解题时要注意运用它进行转化.4.(5分)(2012•江苏)图是一个算法流程图,则输出的k的值是 5 .考点:循环结构.专题:算法和程序框图.分析:利用程序框图计算表达式的值,判断是否循环,达到满足题目的条件,结束循环,得到结果即可.解答:解:1﹣5+4=0>0,不满足判断框.则k=2,22﹣10+4=﹣2>0,不满足判断框的条件,则k=3,32﹣15+4=﹣2>0,不成立,则k=4,42﹣20+4=0>0,不成立,则k=5,52﹣25+4=4>0,成立,所以结束循环,输出k=5.故答案为:5.点评:本题考查循环框图的作用,考查计算能力,注意循环条件的判断.5.(5分)(2012•江苏)函数f(x)=的定义域为(0,].考点:对数函数的定义域.专题:函数的性质及应用.分析:根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.解答:解:函数f(x)=要满足1﹣2≥0,且x>0∴,x>0∴,x>0,∴,x>0,∴0,故答案为:(0,]点评:本题考查对数的定义域和一般函数的定义域问题,在解题时一般遇到,开偶次方时,被开方数要不小于0,;真数要大于0;分母不等于0;0次方的底数不等于0,这种题目的运算量不大,是基础题.6.(5分)(2012•江苏)现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.考点:等比数列的性质;古典概型及其概率计算公式.专题:等差数列与等比数列;概率与统计.分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解解答:解:由题意成等比数列的10个数为:1,﹣3,(﹣3)2,(﹣3)3…(﹣3)9其中小于8的项有:1,﹣3,(﹣3)3,(﹣3)5,(﹣3)7,(﹣3)9共6个数这10个数中随机抽取一个数,则它小于8的概率是P=故答案为:点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题7.(5分)(2012•江苏)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A﹣BB1D1D的体积为 6 cm3.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离;立体几何.分析:过A作AO⊥BD于O,求出AO,然后求出几何体的体积即可.解答:解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.点评:本题考查几何体的体积的求法,考查空间想象能力与计算能力.8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为 2 .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由双曲线方程得y2的分母m2+4>0,所以双曲线的焦点必在x轴上.因此a2=m>0,可得c2=m2+m+4,最后根据双曲线的离心率为,可得c2=5a2,建立关于m的方程:m2+m+4=5m,解之得m=2.解答:解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:2点评:本题给出含有字母参数的双曲线方程,在已知离心率的情况下求参数的值,着重考查了双曲线的概念与性质,属于基础题.9.(5分)(2012•江苏)如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若=,则的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据所给的图形,把已知向量用矩形的边所在的向量来表示,做出要用的向量的模长,表示出要求得向量的数量积,注意应用垂直的向量数量积等于0,得到结果.解答:解:∵,====||=,∴||=1,||=﹣1,∴=()()==﹣=﹣2++2=,故答案为:点评:本题考查平面向量的数量积的运算.本题解题的关键是把要用的向量表示成已知向量的和的形式,本题是一个中档题目.10.(5分)(2012•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10 .考点:函数的周期性;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.解答:解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.点评:本题考查函数的周期性,考查分段函数的解析式的求法,着重考查方程组思想,得到a,b的方程组并求得a,b的值是关键,属于中档题.11.(5分)(2012•江苏)设α为锐角,若cos(α+)=,则sin(2α+)的值为.考点:三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.专题:三角函数的求值;三角函数的图像与性质.分析:先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.解答:解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.点评:本题要我们在已知锐角α+的余弦值的情况下,求2α+的正弦值,着重考查了两角和与差的正弦、余弦公式和二倍角的正弦、余弦等公式,考查了三角函数中的恒等变换应用,属于中档题.12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.13.(5分)(2012•江苏)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为9 .考点:一元二次不等式的应用.专题:函数的性质及应用;不等式的解法及应用.分析:根据函数的值域求出a与b的关系,然后根据不等式的解集可得f(x)=c的两个根为m,m+6,最后利用根与系数的关系建立等式,解之即可.解答:解:∵函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),∴f(x)=x2+ax+b=0只有一个根,即△=a2﹣4b=0则b=不等式f(x)<c的解集为(m,m+6),即为x2+ax+<c解集为(m,m+6),则x2+ax+﹣c=0的两个根为m,m+6∴|m+6﹣m|==6解得c=9故答案为:9点评:本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.14.(5分)(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].考点:导数在最大值、最小值问题中的应用;不等式的综合.专题导数的综合应用;不等式的解法及应用.分析:由题意可求得≤≤2,而5×﹣3≤≤4×﹣1,于是可得≤7;由c ln b≥a+c ln c可得0<a≤cln,从而≥,设函数f(x)=(x>1),利用其导数可求得f(x)的极小值,也就是的最小值,于是问题解决.解答:解:∵4c﹣a≥b>0∴>,∵5c﹣3a≤4c﹣a,∴≤2.从而≤2×4﹣1=7,特别当=7时,第二个不等式成立.等号成立当且仅当a:b:c=1:7:2.又clnb≥a+clnc,∴0<a≤cln,从而≥,设函数f(x)=(x>1),∵f′(x)=,当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,当x=e时,f′(x)=0,∴当x=e时,f(x)取到极小值,也是最小值.∴f(x)min=f(e)==e.等号当且仅当=e,=e成立.代入第一个不等式知:2≤=e≤3,不等式成立,从而e可以取得.等号成立当且仅当a:b:c=1:e:1.从而的取值范围是[e,7]双闭区间.:本题考查不等式的综合应用,得到≥,通过构造函数求的最小值是关键,也是难点,考查分析与转化、构造函数解决问题的能力,属于难题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2012•江苏)在△ABC中,已知.(1)求证:tanB=3tanA;(2)若cosC=,求A的值.考点:解三角形;平面向量数量积的运算;三角函数中的恒等变换应用.专题:三角函数的求值;解三角形;平面向量及应用.分析:(1)利用平面向量的数量积运算法则化简已知的等式左右两边,然后两边同时除以c化简后,再利用正弦定理变形,根据cosAcosB≠0,利用同角三角函数间的基本关系弦化切即可得到tanB=3tanA;(2)由C为三角形的内角,及cosC的值,利用同角三角函数间的基本关系求出sinC的值,进而再利用同角三角函数间的基本关系弦化切求出tanC的值,由tanC的值,及三角形的内角和定理,利用诱导公式求出tan(A+B)的值,利用两角和与差的正切函数公式化简后,将tanB=3tanA代入,得到关于tanA的方程,求出方程的解得到tanA的值,再由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.解答:解:(1)∵•=3•,∴cbcosA=3cacosB,即bcosA=3acosB,由正弦定理=得:sinBcosA=3sinAcosB,又0<A+B<π,∴cosA>0,cosB>0,在等式两边同时除以cosAcosB,可得tanB=3tanA;(2)∵cosC=,0<C<π,sinC==,∴tanC=2,则tan[π﹣(A+B)]=2,即tan(A+B)=﹣2,∴=﹣2,将tanB=3tanA代入得:=﹣2,整理得:3tan2A﹣2tanA﹣1=0,即(tanA﹣1)(3tanA+1)=0,解得:tanA=1或tanA=﹣,又cosA>0,∴tanA=1,又A为三角形的内角,则A=.点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算法则,正弦定理,同角三角函数间的基本关系,诱导公式,两角和与差的正切函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.16.(14分)(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离;立体几何.分析:(1)根据三棱柱ABC﹣A1B1C1是直三棱柱,得到CC1⊥平面ABC,从而AD⊥CC1,结合已知条件AD⊥DE,DE、CC1是平面BCC1B1内的相交直线,得到AD⊥平面BCC1B1,从而平面ADE⊥平面BCC1B1;(2)先证出等腰三角形△A1B1C1中,A1F⊥B1C1,再用类似(1)的方法,证出A1F⊥平面BCC1B1,结合AD⊥平面BCC1B1,得到A1F∥AD,最后根据线面平行的判定定理,得到直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.点评:本题以一个特殊的直三棱柱为载体,考查了直线与平面平行的判定和平面与平面垂直的判定等知识点,属于中档题.17.(14分)(2012•江苏)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx﹣(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(1)求炮的最大射程即求y=kx﹣(1+k2)x2(k>0)与x轴的横坐标,求出后应用基本不等式求解.(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.解答:解:(1)在 y=kx﹣(1+k2)x2(k>0)中,令y=0,得 kx﹣(1+k2)x2=0.由实际意义和题设条件知x>0,k>0.∴,当且仅当k=1时取等号.∴炮的最大射程是10千米.(2)∵a>0,∴炮弹可以击中目标等价于存在 k>0,使ka﹣(1+k2)a2=3.2成立,即关于k的方程a2k2﹣20ak+a2+64=0有正根.由韦达定理满足两根之和大于0,两根之积大于0,故只需△=400a2﹣4a2(a2+64)≥0得a≤6.此时,k=>0.∴当a不超过6千米时,炮弹可以击中目标.点评:本题考查函数模型的运用,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2012•江苏)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.:(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.解答:解:(1)由 f(x)=x3+ax2+bx,得 f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f(2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根 x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:( i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5个零点.( i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.点评:本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(i)若AF1﹣BF2=,求直线AF1的斜率;(ii)求证:PF1+PF2是定值.考点:直线与圆锥曲线的综合问题;直线的斜率;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的性质和已知(1,e)和(e,),都在椭圆上列式求解.(2)(i)设AF1与BF2的方程分别为x+1=my,x﹣1=my,与椭圆方程联立,求出|AF1|、|BF2|,根据已知条件AF1﹣BF2=,用待定系数法求解;(ii)利用直线AF1与直线BF2平行,点B在椭圆上知,可得,,由此可求得PF1+PF2是定值.解答:(1)解:由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得,∴b=1,c2=a2﹣1.由点(e,)在椭圆上,得∴,∴a2=2∴椭圆的方程为.(2)解:由(1)得F1(﹣1,0),F2(1,0),又∵直线AF1与直线BF2平行,∴设AF1与BF2的方程分别为x+1=my,x﹣1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0,∴由,可得(m2+2)﹣2my1﹣1=0.∴,(舍),∴|AF1|=×|0﹣y1|=①同理|BF2|=②(i)由①②得|AF1|﹣|BF2|=,∴,解得m2=2.∵注意到m>0,∴m=.∴直线AF1的斜率为.(ii)证明:∵直线AF1与直线BF2平行,∴,即.由点B在椭圆上知,,∴.同理.∴PF1+PF2==由①②得,,,∴PF1+PF2=.∴PF1+PF2是定值.点评本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.:20.(16分)(2012•江苏)已知各项均为正数的两个数列{a n}和{b n}满足:a n+1=,n∈N*,(1)设b n+1=1+,n∈N*,求证:数列是等差数列;(2)设b n+1=•,n∈N*,且{a n}是等比数列,求a1和b1的值.数列递推式;等差关系的确定;等比数列的性质.考点:等差数列与等比数列.专题:分析:(1)由题意可得,a n+1===,从而可得,可证(2)由基本不等式可得,,由{a n}是等比数列利用反证法可证明q==1,进而可求a1,b1解答:解:(1)由题意可知,a n+1===∴从而数列{}是以1为公差的等差数列(2)∵a n>0,b n>0∴从而(*)设等比数列{a n}的公比为q,由a n>0可知q>0下证q=1若q>1,则,故当时,与(*)矛盾0<q<1,则,故当时,与(*)矛盾综上可得q=1,a n=a1,所以,∵∴数列{b n}是公比的等比数列若,则,于是b1<b2<b3又由可得∴b1,b2,b3至少有两项相同,矛盾∴,从而=∴点评:本题主要考查了利用构造法证明等差数列及等比数列的通项公式的应用,解题的关键是反证法的应用.三、附加题(21选做题:任选2小题作答,22、23必做题)(共3小题,满分40分)21.(20分)(2012•江苏)A.[选修4﹣1:几何证明选讲]如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.B.[选修4﹣2:矩阵与变换]已知矩阵A的逆矩阵,求矩阵A的特征值.C.[选修4﹣4:坐标系与参数方程]在极坐标中,已知圆C经过点P(,),圆心为直线ρsin(θ﹣)=﹣与极轴的交点,求圆C的极坐标方程.D.[选修4﹣5:不等式选讲]已知实数x,y满足:|x+y|<,|2x﹣y|<,求证:|y|<.考点:特征值与特征向量的计算;简单曲线的极坐标方程;不等式的证明;综合法与分析法(选修).专题:不等式的解法及应用;直线与圆;矩阵和变换;坐标系和参数方程.分析:A.要证∠E=∠C,就得找一个中间量代换,一方面考虑到∠B,∠E是同弧所对圆周角,相等;另一方面根据线段中垂线上的点到线段两端的距离相等和等腰三角形等边对等角的性质得到.从而得证.B.由矩阵A的逆矩阵,根据定义可求出矩阵A,从而求出矩阵A的特征值.C.根据圆心为直线ρsin(θ﹣)=﹣与极轴的交点求出的圆心坐标;根据圆经过点P(,),求出圆的半径,从而得到圆的极坐标方程.D.根据绝对值不等式的性质求证.解答:A.证明:连接 AD.∵AB是圆O的直径,∴∠ADB=90°(直径所对的圆周角是直角).∴AD⊥BD(垂直的定义).又∵BD=DC,∴AD是线段BC 的中垂线(线段的中垂线定义).∴AB=AC(线段中垂线上的点到线段两端的距离相等).∴∠B=∠C(等腰三角形等边对等角的性质).又∵D,E 为圆上位于AB异侧的两点,∴∠B=∠E(同弧所对圆周角相等).∴∠E=∠C(等量代换).B、解:∵矩阵A的逆矩阵,∴A=∴f(λ)==λ2﹣3λ﹣4=0∴λ1=﹣1,λ2=4C、解:∵圆心为直线ρsin(θ﹣)=﹣与极轴的交点,∴在ρsin(θ﹣)=﹣中令θ=0,得ρ=1.∴圆C的圆心坐标为(1,0).∵圆C 经过点P(,),∴圆C的半径为PC=1.∴圆的极坐标方程为ρ=2cosθ.D、证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,|x+y|<,|2x﹣y|<,∴3|y|<,∴点评:本题是选作题,综合考查选修知识,考查几何证明选讲、矩阵与变换、坐标系与参数方程、不等式证明,综合性强23.(10分)(2012•江苏)设集合P n={1,2,…,n},n∈N*.记f(n)为同时满足下列条件的集合A的个数:①A⊆P n;②若x∈A,则2x∉A;③若x∈A,则2x∉A.(1)求f(4);(2)求f(n)的解析式(用n表示).考点:函数解析式的求解及常用方法;元素与集合关系的判断;集合的包含关系判断及应用.专题:集合.分析:(1)由题意可得P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4},故可求f(4)(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,可知,若m∈A,则x∈A,⇔k为偶数;若m∉A,则x∈A⇔k为奇数,可求解答:解(1)当n=4时,P4={1,2,3,4},符合条件的集合A为:{2},{1,4},{2,3},{1,3,4}故f(4)=4(2)任取偶数x∈p n,将x除以2,若商仍为偶数,再除以2…,经过k次后,商必为奇数,此时记商为m,于是x=m•2k,其中m为奇数,k∈N*由条件可知,若m∈A,则x∈A,⇔k为偶数若m∉A,则x∈A⇔k为奇数于是x是否属于A由m是否属于A确定,设Q n是P n中所有的奇数的集合因此f(n)等于Q n的子集个数,当n为偶数时(或奇数时),P n中奇数的个数是(或)∴点评:本题主要考查了集合之间包含关系的应用,解题的关键是准确应用题目中的定义22.(10分)(2012•江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)求出两条棱相交时相交棱的对数,即可由概率公式求得概率.(2)求出两条棱平行且距离为的共有6对,即可求出相应的概率,。

2024年上海市高考高三数学模拟试卷试题及答案详解

2024年上海市高考高三数学模拟试卷试题及答案详解

2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三(12)班数学填空题基础训练一1.已知复数1m iz i+=+,(),m R i ∈是虚数单位是纯虚数,则m 的值是2.若复数()(1)a i i -+(i 是虚数单位,a R ∈)是纯虚数,则a =.3.若复数z 满足z i=2+i (i 是虚数单位),则z =.4.若复数12,1z a i z i =-=+(i 为虚数单位),且12z z ⋅为纯虚数,则实数a 的值为. 5.复数21i(1i)-+(i 是虚数单位)的虚部为.6. 复数(1i )(12i )z =++(i 为虚数单位)的实部是 7.复数ii215+的实部是8.若将复数212ii+-表示为(,,a bi a b R +∈i 是虚数单位)的形式,则a b +=。

9.i 是虚数单位,若32()4a bii a b R i+=+∈-、,则a b +的值是_____________.10.将复数3i 321++i 表示为),,(为虚数单位i R b a bi a ∈+的形式为_______.11.集合{}0,2A =,{}21,B a =,若{}0,1,2,4A B ⋃=,则实数a 的值为 ___12. 已知集合U ={1,2,3,4},M ={1,2},N ={2,3},则U C (M ∪N ) =13.已知集合{}1,0,1,2A =-,{}20B x x x =-≤,则A B =.14.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =_________.15.已知集合{}1,2,3A =,{}2,B a =,若{}0,1,2,3A B =,则a 的值为_____________.16.已知集合11{|()}24x A x =>,2{|log (1)2}B x x =-<。

则A B =。

17.已知全集{}4,3,2,1=U ,集合{}{}1,2,2,3P Q ==,则Q C P U =.18.已知集合{}},12,3,1{,,32--==m B m A 若B A ⊆,则实数m 的值为.19.设集合{}12A x x =-≤≤,{}04B x x =≤≤,则A B =.若集合}1,0,1{-=A ,}20|{<<=x x B ,则=B A20.集合2{0,2,},{1,}A a B a ==,若{0,1,2,4,16}A B =,则a 的值为____.高三(12)班数学填空题基础训练二1.已知角α的终边经过点(),6P x -,且3tan 5α=-,则x 的值为. 2.已知23tan 1tan =-x x ,则=x 2tan 3.函数()cos (sin cos )()f x x x x x =+∈R 的最小正周期是.4.在等式cos()(1)1=★的括号中,填写一个锐角,使得等式成立,这个锐角是____________.5. 已知2sin()63x π+=,求219sin()sin ()63x x ππ++-的值为____19-__.6.若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a =_.7.已知函数()sin()(0)3f x x ωωπ=+>,若()()62f f ππ=,且()f x 在区间(,)62ππ内有最大值,无最小值,则=ω.8.直线2y x m =+和圆221x y +=交于点A 、B ,以x 轴的正方向为始边,OA 为终边(O是坐标原点)的角为α,OB 为终边的角为β,若AB =sin()αβ-的值是_________.9.若函数2sin()4y a ax π=+的最小正周期为π,则正实数a =_____________. 10.3sin 5α=,3cos 5β=,其中(0,)2παβ∈、,则αβ+=_____________.11.函数x x y cos 2+=在(0,)π上的单调递减区间为. 12.“6πα=”是“1sin 2α=”的 条件. (填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) 13. 已知:α为第四象限角,且31)sin(-=-απ,则αtan = 14.设,,a b c 是单位向量,且a b c +=,则•的值为.15.已知锐角3πα⎛⎫+⎪⎝⎭的终边经过点(1,P ,则cos α=.16.设向量a ,b满足:3||1,2=⋅=a a b ,+=a b ,则||=b .17.已知a ,b 是非零向量,且a ,b 的夹角为3π,若向量||||=+a b p a b ,=p _18.已知平面上三点A 、B 、C 满足|AB |=3,||=4,||=5,则⋅+⋅+⋅的值等于.19.在△A B C 中,若4=•=•,则边AB 的长等于______20.已知平面向量(1,2)a =,(1,3)b =-,则a 与b夹角的余弦值为.高三(12)班数学填空题基础训练三1.设向量(cos ,sin )a αα=,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-=.2. 设向量a 与b 的夹角为θ,(2,1)a =,3(5,4)a b +=,则sin θ=. 3.已知向量m =(1,1)与向量n =(x ,22x -)垂直,则x =。

4.等腰直角三角形ABC 中,90A ∠=︒,AB =,AD 是BC 边上的高,P 为AD 的中点,点M N 、分别为AB 边和AC 边上的点,且M N 、关于直线AD 对称,当12PM PN ⋅=-时,AMMB=_____________.5.直线20x y +=与圆222x y +=相交于,A B 两点,O 为原点, 则OA OB ⋅=.6.经过点()2,1-,且与直线50x y +-=垂直的直线方程是.7.在平面直角坐标系xOy 中,直线(1)2x m y m ++=-与直线28mx y +=-互相垂直的充要条件是m =.8.经过点(-2,3),且与直线250x y +-=垂直的直线方程为______。

9.“直线012=++y ax 和直线01)1(3=+-+y a x 平行”的充要条件是“=a ” 10.直线l 经过点)1,2(-,且与直线0532=+-y x 垂直,则l 的方程是.11.已直线2121//,023)2(:06:l l a y x a l ay x l 则和=++-=++的充要条件是a =. 12.今年9月10日,某报社做了一次关于“尊师重教”的社会调查,在A 、B 、C 、D 四个单位回收的问卷数一次成等差数列,因报道需要,从回收的问卷中按单位分层抽取容量为300的样本,其中在B 单位抽的60份,则在D 单位抽取的问卷是份。

13.若样本321,,a a a 的方差2,则样本32,32,32321+++a a a 的方差是_____14.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________人.18.下图是一次考试结果的频率分布直方图,若规定60分以上(含60)为考试合格,则这次考试的合格率为.19.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,下图是根据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50,70),[70,90), [90,110),[110,130),[130,150],已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数大于或等于70个并且小于130个的人数是.高三(12)班数学填空题基础训练四0.0.0.0.o 20 40 60 80 100 分数/分(第19题图)(第18题图)/分钟1.连续两次掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为,m n ,设向量(),m n =a ,()3,3=-b ,则a 与b 的夹角为锐角的概率是.2.从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是3.在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y )的概率是。

4.集合{1,2,3,4,5}A =,{0,1,2,3,4}B =,点P的坐标为(m ,n ),m A ∈,n B ∈,则点P 在直线5x y +=下方的概率为。

5. 把分别写有“灰”、“太”、“狼”的三张卡片随意排成一排,则能使 卡片排成的顺序从左向右或从右向左都可以念为“灰太狼”的概率 是.(用分数表示)6.若以连续掷两次骰子分别得到的点数n m ,作为点P 的横、 纵坐标,则点P 在直线5=+y x 上的概率为_____7.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的 一个食堂用餐,则他们在同一个食堂用餐的概率为_____8.一个正四面体的四个面分别涂有红、黄、蓝、白四种颜色,若随机投掷该四面体两次,则两次底面颜色相同的概率是.9.已知等比数列{}n a 的公比0q >,若22343,21a a a a =++=, 则345a a a ++=________10.设等差数列{}n a 的公差0d ≠,14a d =,若k a 是1a 与2k a 的等比中项,则k 的值为.11.在数列{a n }中,若对于n ∈N *,总有1nkk a =∑=2n -1,则21nkk a=∑=.12.若数列1,,,,4a b c 成等比数列,则b 的值为_______.13.在数列{}n a 中,已知122,3a a ==,当2n ≥时,1n a +是1n n a a -⋅的个位数,则2010a =. 14.已知数列{}n a 中,112,34n n a a a +==+.则数列{}n a 的通项公式是.15.通项公式为2n a an n =+的数列{}n a ,若满足12345a a a a a <<<<,且1n n a a +>对8n ≥恒成立,则实数a 的取值范围是_____________.16.设正项等比数列{}n a 的公比为q ,且337S a =,则公比q =。

17.对于数列{n a },定义数列{n n a a -+1}为数列{n a }的“差数列”,若21=a ,{n a }的“差数列”的通项公式为n 2,则数列{n a }的前n 项和n S =______18.等差数列{}n a 中,若124a a +=,91036a a +=, 则10S =.19. 已知等比数列{}n a 的各项均为正数,若31=a ,前三项的和为21 ,则=++654a a a .20.已知数列{}n a 满足:11a =,2a x =(x N *∈),21n n n a a a ++=-,若前2010项中恰好含有666项为0,则x 的值为.高三(12)班数学填空题基础训练五1.已知双曲线()222210,0x y a b a b -=>>的渐近线过点41,3P ⎛⎫⎪⎝⎭,则该双曲线的离心率为.2.已知椭圆的中心在坐标原点,焦点在x 轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P 为该椭圆上的动点,C 、D的坐标分别是())0,0,则PC ·PD 的最大值为.3.已知椭圆的方程为2221(0)16x y m m+=>,如果直线y x =与椭圆的一个交点M 在x 轴的射影恰为椭圆的右焦点F ,则椭圆的离心率为______.4.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值5.已知椭圆方程22221x y a b +=()0a b >>,当216()a b a b +-的最小值时,椭圆的离心率=e _____.6.顶点在原点且以双曲线1322=-y x 的右准线为准线的抛物线方程是 __7.已知双曲线:C 22221(0,0)x y a b a b-=>>的实轴长为2,离心率为2,则双曲线C 的焦点坐标是_____________.8.已知双曲线的中心在原点,对称轴为坐标轴,且经过点(2,0),则双曲线的焦点坐标为。

相关文档
最新文档