高三理科数学选择题填空题专项训练
(完整word版)高三理科数学选择题填空题专项训练

高三理科数学限时训练一、选择题(本大题共10小题,每题5分,共50分.每题都给出四个结论,其中有且只有一个结论是正确的.)1. 复数z 满足(2)z z i =+,则z =( )A .1i +B .1i -C .1i -+D .1i --2. 已知实数a ≠0,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩,若f (1-a )=f (1+a ),则a 的值为( ) A. 23 B. 23- C. 34 D.34- 3. 曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12 B. 12 C .-22 D. 224.若,a b 为实数,则“01ab <<”是“1b a<”的 ( ) A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 不充分不必要条件5. 一个空间几何体的三视图如右上图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .806. 设F 1,F 2分别为椭圆x 23+y 2=1的左,右焦点,点A ,B 在椭圆上.若 F 1A →=5F 2B →,则点A 的坐标是( )A. (0,1)±B. (0,1)C. (0,1)-D. (1,0)±7. 若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:1()3x f x =,2()43x f x =⨯,385()log 53log 2x f x =⋅⋅,则( ) A . 123(),(),()f x f x f x 为“同形”函数B . 12(),()f x f x 为“同形”函数,且它们与3()f x 不为“同形”函数C . 13(),()f x f x 为“同形”函数,且它们与2()f x 不为“同形”函数D . 23(),()f x f x 为“同形”函数,且它们与1()f x 不为“同形”函数8. 函数b x A x f +ϕ+ω=)sin()(的图象如图,则)(x f 的解析式和++=)1()0(f f S )2006()2(f f +⋯+的值分别为( )A .12sin 21)(+π=x x f , 2006=S B .12sin 21)(+π=x x f , 212007=S C .12sin 21)(+π=x x f , 212006=S D .12sin 21)(+π=x x f , 2007=S 9. 在区间[—1,1]上任取两数a 、b ,则二次方程02=++b ax x 的两根都是正数的概率是( )A.128 B.148C.132D.1810. 已知函数32()(f x x bx cx d b =+++、c 、d 为常数),当(,0)(4,)k ∈-∞+∞U 时,()0f x k -=只有一个实根,当(0,4)k ∈时,()0f x k -=有3个相异实根,现给出下列4个命题:①函数()f x 有2个极值点;②函数()f x 有3个极值点;③()4f x =和()0f x '=有一个相同的实根;④()0f x =和()0f x '=有一个相同的实根.其中正确命题的个数是 ( )A. 1B. 2C. 3D. 4二、填空题(本大题共有4小题,每题5分,共20分.只要求直接填写结果.)(一)必做题(11—14题)11. 设函数c bx ax x f ++=2)()0(≠a ,对任意实数t 都有)2()2(t f t f -=+成立,在函数值、)1(-f 、)1(f 、)2(f )5(f 中最小的一个不可能是_____________12. 若5255(1)110ax x bx a x +=++++L ,则b = . 13. 若平面向量i a u r 满足 1(1,2,3,4)i a i ==u r 且10(1,2,3)i i a a i +⋅==u r u u u r ,则1234a a a a +++u r u u r u u r u u r 可能的值有____________个.14. 定义:函数)(x f y =,D x ∈。
高三理科数学函数选择填空题精选精练

高三数学复习函数选择填空题一、选择题1.下列四个函数中,既是奇函数又在定义域上单调递增的是( )A .()ln f x x =B .()2sin f x x x =+C .1()f x x x=+ D .()x x e f e x -=+2.已知函数()222,02,0x x x f x x x x ⎧+≥=⎨-<⎩.若()()2(1)f a f a f -+≤,则a 的取值范围是( )A .[1,0)-B .[]0,1C .[]1,1-D .[]2,2-3.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .b c a >> B .b a c >> C .a b c >> D .c a b >>4.已知函数3()),f x x x =-则对于任意实数,(0)a b a b +≠,则()()f a f b a b++的值为( )A .恒正B .恒等于0C .恒负D .不确定5.已知24()2,()f x x px q g x x x =++=+是定义在集合5{|1}2M x x =≤≤上的两个函数.对任意的x M ∈,存在常数0x M ∈,使得0()()f x f x ≥,0()()g x g x ≥,且00()()f x g x =.则函数()f x 在集合M 上的最大值为( ) A .92 B .4 C .6 D .8926.已知函数)(x f y =)(R x ∈满足(2)2()f x f x +=,且[1,1]x ∈-时,()1f x x =-+,则当[10,10]x ∈-时,)(x f y =与4()log g x x =的图象的交点个数为( )A .13B .12C .11D .107.对定义域为D 的函数,若存在距离为d 的两条平行直线11:m kx y l +=和22:m kx y l +=,使得当D x ∈时,21)(m kx x f m kx +≤≤+恒成立,则称函数)(x f 在(x ∈D )有一个宽度为d 的通道。
【高三数学试题】高三数学试题1(理科)及参考答案

高三数学试题1(理科)一、选择题1、设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( )A .1B .3C .4D .82、若集合{|3},{|33}xM y y P x y x ====-,则M P I =( ) A {|1}x x > B {|1}y y ≥ C {|0}y y > D {|0}x x ≥3、已知命题p :若,022=+y x 则x 、y 全为0;命题q :若a b >,则11a b <.给出下列四个命题:①p 且q ,②p 或q ,③p 的逆否命题,④ q ⌝,其中真命题的个数为( )()A 1()B 2 ()C 3 ()D 44.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).5、已知集合A ={(x ,y)|32y x --=1,x ,y ∈R},B={(x ,y)|y=ax+2,x ,y ∈R},若A ⋂B =∅,则a 的值为( )A .a =1或a =32B .a=1或a =12 C .a =2或a =3 D .以上都不对 6、若函数)(212)(为常数a k k x f xx⋅+-=在定义域上为奇函数,则的值为k ( )A . 1 B. 1- C. 1± D. 07、若函数()(2)()[1,1]()||,()f x f x f x x f x x y f x +=∈-==满足且时则函数的图象与 函数||log 3x y =的图像的交点个数是( )A .2B .3C .4D .多于4x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 2A. B. C . D.8、已知函数2()24(03),f x ax ax a =++<<若1212,1,x x x x a <+=-则( )A .12()()f x f x >B .12()()f x f x <C .12()()f x f x = D .1()f x 与2()f x 的大小不能确定二、填空题9、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1[()]2g g =__________.10.已知函数22(),1x f x x R x =∈+,则1()()f x f x += ;11、设0)1)((:;1|34:|≤---≤-a x a x q x p ,若p 是q 的充分不必要条件,则实数a 的取值范围是 .12、若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。
寒假高三理科数学每日一练(4)

寒假高三理科数学每日一练(4)一、选择题(本大题共5小题,每小题5分,满分25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知是虚数单位,复数z 与复平面内的点()2,1-对应,则复数12iz-对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2、已知α是三角形的一个内角,3tan 4α=,则cos 4πα⎛⎫+= ⎪⎝⎭( )A. B. CD3、公比为2的等比数列{}n a 的各项都是正数,且41016a a =,则6a =( )A .B .2C .4D .8 4、已知a 、b 是实数,则“1a >,1b >”是“2a b +>且1ab >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5、若()()()()214010x f x x f x e dt x t ->⎧⎪=⎨+≤⎪⎩⎰,则()2014f =( ) A .0 B .ln 2 C .2ln 2e -+ D .1ln 2+ 二、填空题(本大题共4小题,每小题5分,满分20分.) 6、若()5234501234512x a a x a x a x a x a x +=+++++,则3a = .7、已知点(),x y P 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数),若3z x y =+的最大值为8,则k = .8、已知命题“R x ∃∈,12x a x -++≤”是假命题,则实数a 的取值范围是 .9、(坐标系与参数方程选做题)已知曲线C 的极坐标方程是1ρ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线的参数方程是143x t y t =-+⎧⎨=⎩(为参数),则直线与曲线C 相交所成的弦的弦长是_________.三、解答题(本大题共2小题,共28分.解答应写出文字说明、证明过程或演算步骤.)10、(本小题满分14分)如图,三棱柱111C C AB -A B 中,1AA ⊥平面C AB ,C C B ⊥A ,C C 2B =A =,13AA =,D 为C A 的中点.()1求证:1//AB 平面1DC B ;()2求二面角1C D C -B -的余弦值;()3在侧棱1AA 上是否存在点P ,使得C P ⊥平面1DC B ?请证明你的结论. 11、(本小题满分14分)已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.()1求数列{}n a 的通项公式;()2设()22n n b n a =+,求数列{}n b 的前n 项和n S .寒假高三理科数学每日一练(4)参考答案1、D2、D3、B4、A5、C6、807、6-8、()(),31,-∞-+∞ 9、8510、()1证明:连接B 1C ,与BC 1相交于O ,连接OD …………1分 ∵BCC 1B 1是矩形 ∴O 是B 1C 的中点又D 是AC 的中点 ∴OD//AB 1 ∵AB 1⊄面BDC 1,OD ⊂面BDC 1 ∴AB 1//面BDC 1. …………4分 ()2解:如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2), C (0,3,0),A (2,3,0), D (1,3,0)1(0,3,2)C B =,1(1,3,0)C D = …………5分 设111(,,)n x y z =是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩即1111320,30y z x y +=⎧⎨+=⎩,取11(1,,)32n =- 易知1(0,3,0)C C =是面ABC 的一个法向量 1112cos ,7n C Cn C C n C C ==-⨯.∴二面角C 1—BD —C 的余弦值为27…………10分 ()3假设侧棱AA 1上存在一点P ,使得CP ⊥面BDC 1设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩,即3(3)0,23(3)0y y -=⎧⎨+-=⎩ 解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1…………14分11、解:()1设数列{}n a 的公差为d ,由12a =和2a ,3a ,41a +成等比数列,得()()()222233d d d +=++,解得:2d =或1d =-当1d =-时,30a =,与2a ,3a ,41a +成等比数列矛盾,舍去∴2d =∴()()112212n a a n d n n =+-=+-=即数列{}n a 的通项公式是2n a n =…………7分()2由()1知:2n a n=∴()()()2211122211n n b n a n n n n n n ====-++++∴1211111111223111n n nS a a a nn n n =++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=+++…………14分。
高三理科数学选择填空题训练

选择填空题训练一1.已知命题P:∀x>0,x3>0,那么¬P是()A.∃x≤0,x3≤0B.∀x>0,x3≤0C.∃x>0,x3≤0D.∀x<0,x3≤02.已知集合M={x|x﹣2<0},N={x|x<a},若M⊆N,则实数a的取值范围是()A.[2,+∞)B.(2,+∞) C.(﹣∞,0)D.(﹣∞,0]3.设i是虚数单位,若复数是纯虚数,则m的值为()A.﹣3 B.﹣1 C.1 D.34.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件5.已知数列{an }是等差数列,其前n项和为Sn,若a1a2a3=10,且,则a2=()A.2 B.3 C.4 D.56.已知长方体的底面是边长为1的正方形,高为,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于()A1 B.C.2 D.7.下列四个图中,函数y=的图象可能是()A.B.C.D.8.已知点P(x,y)的坐标满足条件,则x2+y2的最大值为()A.17 B.18 C.20 D.219.已知定义在R上的函数f(x)满足f(﹣1)=f(3)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示.则不等式f(x)<1的解集是()A.(﹣1,0)B.(﹣1,3) C.(0,3)D.(﹣∞,﹣1)(3,+∞)10.已知函数f(x)=Asin(πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则的值为()A.﹣1 B.C.D.211.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(﹣2015)+f(﹣2014)+f(﹣2013)+…+f(2014)+f(2015)=()A.0 B.2014 C.4028 D.403112.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值范围为()A.[3,6] B.[4,6] C.D.[2,4]二、填空题:本大题共4个小题,每小题5分.13.已知数列{an}是等比数列,若,则a10= .14.已知空间直角坐标系o﹣xyz中的点A的坐标为(1,1,1),平面α过点A且与直线OA垂直,动点P(x,y,z)是平面α内的任一点,则点P的坐标满足的条件是.15.直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x是该方程的实数解,则x>﹣1.则正确命题是.选择填空题训练二1.已知集合A={x|x2﹣x﹣2<0},B={y|y=sinx,x∈R},则( ) A.A⊆B B.B⊆A C.A∪B=[﹣1,2)D.A∩B=Φ2.若(1+2ai)•i=1﹣bi,其中a,b∈R,则|a+bi|=( ) A.B.C.D.3.设{an }的首项为a1,公差为﹣1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=( )A.2 B.﹣2 C.D.﹣4.若实数x,y满足,则z=x﹣2y的最大值是( )A.﹣3 B.C.D.5.阅读下列算法:(1)输入x.(2)判断x>2是否成立,若是,y=x;否则,y=﹣2x+6.(3)输出y.当输入的x∈[0,7]时,输出的y的取值范围是( )A.[2,7] B.[2,6] C.[6,7] D.[0,7]6.将三封信件投入两个邮箱,每个邮箱都有信件的概率是( )A.1 B.C.D.7.下列命题正确的个数是( )①命题“∃x0∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③x2+2x≥ax在x∈[1,2]上恒成立⇔(x2+2x)min ≥(ax)max在x∈[1,2]上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“•<0”.A. 1 B.2 C.3 D.48.把一个三棱锥适当调整位置,可以使它的三视图(正视图,侧视图,俯视图)都是矩形,形状及尺寸如图所示,则这个三棱锥的体积是( )A.1 B.2 C.3 D.6 9.若函数f(x)=2sinωx(ω>0)在(0,2π)上有两个极大值和一个极小值,则ω的取值范围是( )A.(,] B.(,] C.(1,] D.(,]10.设F是抛物线C:y2=12x的焦点,A、B、C为抛物线上不同的三点,若,则|FA|+|FB|+|FC|=( )A.3 B.9 C.12 D.1811.已知定义在R上的函数f(x)满足f(x+1.5)=﹣f(x),当x∈[0,3)时,f(x)=|(x﹣1)2﹣0.5|,记集合A={n|n是函数y=f(x)(﹣3≤x≤5.5)的图象与直线y=m(m∈R)的交点个数},则集合A的子集个数为( )A.8 B.16 C.32 D.6412.已知椭圆C1:的左右焦点分别为F,F′,双曲线C2:=1与椭圆C1在第一象限的一个交点为P,有以下四个结论:①>0,且三角形PFF′的面积小于b2;②当a=b时,∠PF′F﹣∠PFF′=;③分别以PF,FF′为直径作圆,这两个圆相内切;④曲线C1与C2的离心率互为倒数.其中正确的有( )A.4个B.3个C.2个D.1个13.已知向量,的夹角为120°,若||=3,||=4,|+|=λ||,则实数λ的值为__________.14.已知相关变量x ,y 之间的一组数据如下表所示,回归直线所表示的直线经过的定点为(1.5,5),则mn=__________.x 0 1 n 3y 8 m 2 415.已知函数f(x)=ln(2x+1)+3,若方程f(x)+f′(x)﹣3=a有解,则实数a的取值范围是__________.16.已知数列{an}的首项a1=1,前n项和为Sn,且Sn=2Sn﹣1+1(n≥2且n∈N*),数列{bn}是等差数列,且b1=a1,b4=a1+a2+a3,设cn=,数列{cn}的前n项和为Tn,则T10=__________.选择填空题训练三1.已知集合2{|1},{2,1,0,1,2}M x x N =>=--,则MN =(A) {0} (B){2} (C) {2,1,1,2}-- (D){2,2}- 2.复数112i i i -+的实部与虚部的和为 (A) 12- (B)1 (C)12 (D)323.在等差数列{}n a 中,已知35710132,9,a a a a a +=++=则此数列的公差为(A) 31 (B)3 (C) 12 (D) 164. 如果双曲线经过点(2,2)P ,且它的一条渐近线方程为,那么该双曲线的方程是(A)22312y x -= (B)22122x y -= (C)22136x y -= (D)22122y x -= 5.利用计算机在区间 (0,1)上产生随机数a ,则不等式ln(31)0a -<成立的概率是(A) 31 (B) 23 (C)12 (D) 146.设,a b 是两个非零向量,则“222()||||a b a b +=+”是“a b ⊥”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 7.已知奇函数)(x f y =的图象关于直线2=x 对称,且()3f m =, 则(4)f m -的值为(A) 3 (B)0 (C)3- (D) 138.函数24()cos cos f x x x =-的最大值和最小正周期分别为(A) 1,4π (B)1,42π (C)1,2π (D)1,22π9.某人以15万元买了一辆汽车,此汽车将以每年20%的速度 折旧,图1是描述汽车价值变化的算法流程图,则当4n =时, 最后输出的S 为(A) 9.6 (B)7.68 (C)6.144 (D)4.915210.如图2,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为(A) 54 (B)162 (C)54183+ (D)162183+11.7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法种数为( ) (A )120 (B )240 (C )360 (D )480 12.已知函数24,0()ln ,0x x x f x x x x ⎧+≤=⎨>⎩,()1g x kx =-,若方程()()0f x g x -=在(2,2)x ∈-有三个实根,则实数k的取值范围为( ) (A )(1,ln 2)e (B )3(ln 2,)2e (C )3(,2)2(D )3(1,ln 2)(,2)2e二、填空题(本题共4道小题,每小题5分,共20分)13. 已知实数x ,y 满足⎪⎪⎩⎪⎪⎨⎧≥≤≥+-≥+-0003042y x y x y x ,则目标函数32z y x =-的最大值为 . 14.在()6211⎪⎭⎫ ⎝⎛+-x x x 的展开式中,3x 项的系数是 .15.已知正方体ABCD-A 1B 1C 1D 1的一个面A 1B 1C 1 D 1在半径为3的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD-A 1B 1C 1D 1的体积为 . 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则数列{}n a 的通项公式n a = .x y =选择填空题训练四1.不等式(1+x )(1-|x|)>0的解集是 A .{}11<<-x x B. {}1<x x C. {}11>-<x x x 或 D. {}11-≠<x x x 且 2.等差数列}{n a 中,24321-=++a a a ,78201918=++a a a ,则此数列前20项和等于 A .160B .180C .200D .2203.已知向量)2,1(-=x a,()1,2=b, 则“0>x ”是“a与b夹角为锐角”的 A .必要而不充分条件 B .充分而不必要条件 C .充分必要条件D .既不充分也不必要条件4.对一切实数x ,不等式012≥++x a x 恒成立,则实数a 的取值范围是 A .(-∞,-2) B .[-2,+∞) C .[-2,2] D .[0,+∞) 5.命题2:,10p x R ax ax ∀∈++≥,若p ⌝是真命题,则实数a 的取值范围是 A .(0,4] B .[0,4] C .(][)+∞⋃∞-,40, D .()()+∞⋃∞-,40, 6.设点P ()00,x y 是函数tan y x =与()0y x x =-≠的图象的一个交点,则()()2011cos2xx ++的值为A. 2B. 2+D. 因为0x 不唯一,故不确定7.已知x 、y 为正实数,且x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则21221)(b b a a + 的取值范围是A .RB .(]4,0C .[)∞+,4D .(][)∞+⋃∞-,40,8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .0422=++x y xB .03222=--+x y xC .0422=-+x y xD .03222=-++x y x9.已知数列{}n a 的通项公式为n a =c bn an+,其中a 、b 、c 均为正数,那么n a 与1+n a 的大小是A .n a >1+n aB . n a <1+n aC . n a =1+n a D. 与n 的取值有关 10.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是A.1B.2C.D.11. 函数()12sin 1f x x xπ=--在区间[]2,4-上的所有零点之和等于 A. 2 B. 6 C. 8 D. 1012.已知函数()f x 的周期为4,且当(]1,3x ∈-时,()12f x x ⎧⎪=⎨--⎪⎩(](]1,11,3x x ∈-∈,,其中0m >.若方程3()f x x =恰有5个实数解,则m 的取值范围为A .⎪⎪⎭⎫ ⎝⎛38,315B .⎪⎪⎭⎫ ⎝⎛7,315 C .⎪⎭⎫ ⎝⎛38,34 D .⎪⎭⎫ ⎝⎛7,34 二.填空题:本大题共4小题,每小题5分。
高三理科数学周练四

高三理科数学周练四1.以下值域是(0,+∞)的函数是 ( ) A .151+=-x yB .xy -=1)31(C .1)21(-=xyD .xy 21-=2.下列大小关系正确的是 ( ) A.30.440.43log 0.3<< B.30.440.4log 0.33<<C.30.44log 0.30.43<< D.0.434log 0.330.4<<3.设a b c ,,均为正数,且122log a a =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<4.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a =( ) (A )42 (B )22 (C )41 (D )215.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) A.41 B. 21C. 22D. 236.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函 数,则()f x ( )A .在区间[21]--,上是增函数,在区间[34],上是增函数B .在区间[21]--,上是增函数,在区间[34],上是减函数C .在区间[21]--,上是减函数,在区间[34],上是增函数D .在区间[21]--,上是减函数,在区间[34],上是减函数 7.已知函数x x f x21log 2)(-=,且实数a >b >c >0满足0)()()(<⋅⋅c f b f a f ,若实数0x是函数y =)(x f 的一个零点,那么下列不等式中不可能...成立的是 ( ) A .a x <0 B .a x >0 C . b x <0 D .c x <08.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有( )A.()2xf x = B.()||f x x = C. 1()f x x=D.2()f x x = 9. 设函数)(x f 的定义域为R ,()000≠x x 是)(x f 的极大值点,以下结论一定正确的是( ) A.)()(,0x f x f R x ≤∈∀ B.0x -是)-(x f 的极小值点 C.0x -是)(-x f 的极小值点 D.0x -是)-(-x f 的极小值点10.设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足:)(i {}S x x f T ∈=)(;)(ii 对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )A. N T N S ==*,B. {}{}1008,31≤<-==≤≤-=x x x T x x S 或 C. {}R T x x S =<<=,10 D. Q T Z S ==,11.已知a 、b 、0>c ,则“a ln 、b ln 、c ln 成等差数列”是“a2、b2、c2成等比数列”的 条件.12.已知命题“,|||1|2x R x a x ∃∈-++≤”是假命题,则实数a 的取值范围是 .13.已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________.14.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围 .15.定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题:①若0,0a b >>,则ln ()ln b a b a ++= ②若0,0a b >>,则ln ()ln ln ab a b +++=+ ③若0,0a b >>,则ln ()ln ln a a b b+++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++ 其中的真命题有: (写出所有真命题的编号)高三理科数学周练四答题卷学号 姓名 一.选择题 题号 1 2 3 4 5 6 7 8 9 10 答案二.填空题11. 12. 13.14. 15.三.解答题16.已知方程24260x mx m -++=有且只有一根在区间()3,0-内,求m 的取值范围.17.设函数2()( 2.71828xxf x c e e =+= 是自然对数的底数,)c R ∈. (1)求()f x 的单调区间和最大值; (2)讨论函数()f x 的零点个数.高三理科数学周练四答案1—5 BCAAC 6-10 BDCDD11.既不充分也不必要条件 12.(,3)(1,)-∞-+∞ 13.10<<k 或41<<k 14.11m -≤≤ 15.①③④16、解:分析:①由()()()3003=0f f f -<- 即()()141530m m ++<得出15314m -<<-;②当(3)0f -=时1514m =-,此时成立。
高考理科数学试卷全套

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数y=f(x)的图象如下,则f(0)的值为()A. -1B. 0C. 1D. 22. 已知等差数列{an}的公差为d,且a1=3,a5=13,则d=()A. 2B. 3C. 4D. 53. 在平面直角坐标系中,点P的坐标为(2,3),点Q在直线y=2x上,且PQ的长度为5,则点Q的坐标为()A. (1,2)B. (3,6)C. (-1,2)D. (-3,6)4. 若复数z=3+4i,则|z|=()A. 5B. 7C. 9D. 115. 已知向量a=(2,3),向量b=(1,-2),则a·b=()A. 7B. -1C. -7D. 16. 函数y=2x^2-3x+1的对称轴为()A. x=1/2B. x=1C. x=-1/2D. x=-17. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 135°D. 165°8. 若等比数列{an}的首项a1=2,公比q=3,则第n项an=()A. 2×3^(n-1)B. 2×3^nC. 6×3^(n-1)D. 6×3^n9. 已知函数f(x)=x^3-3x+2,若f'(x)=0,则x=()A. -1B. 1C. -2D. 210. 在△ABC中,若a=3,b=4,c=5,则△ABC的面积S=()A. 6B. 8C. 10D. 12二、填空题(本大题共5小题,每小题5分,共25分。
把答案填写在题目的横线上。
)11. 已知等差数列{an}的首项a1=1,公差d=2,则第10项a10=______。
12. 函数y=√(x^2-1)的定义域为______。
13. 若复数z=1-i,则z的共轭复数为______。
届高三理科数学六大专题训练题含详解

届高三理科数学六大专题训练题含详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》一、选择题1.α为三角形的一个内角,,125tan -=α则=αcos ()A .1312-B .135-C .135D .13122.函数x y sin =和函数x y cos =都是增函数的区间是()A .)](22,232[Z k k k ∈++ππππB.)](232,2[Z k k k ∈++ππππC .)](22,2[Z k k k ∈+πππD .)](2,22[Z k k k ∈++ππππ3.已知,51)25sin(=+απ那么=αcos ()A .52-B .51-C .51D .524.在图中,A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A点的坐标为),54,53(且AOB ∆是正三角形.则COB ∠cos 的值为()A .10334+B .10334- C .10343+D .10343-5.将函数)(sin cos 3R x x x y ∈+=的图象向左平移)0(>m m 个长度单位后,所得到的图象关于y 轴对称,则m 的最小值是() A .12πB .6πC .3πD .65π6.下列关系式中正确的是() A .︒<︒<︒168sin 10cos 11sin B .︒<︒<︒10cos 11sin 168sinC .︒<︒<︒10cos 168sin 11sinD .︒<︒<︒11sin 10cos 168sin7.在锐角ABC ∆中,角A ,B 所对的边长分别为b a ,.若,3sin 2b B a =则角A 等于()A .3πB .4πC .6πD .12π8.已知函数),,0,0)(cos()(R A x A x f ∈>>+=ϕωϕω则“)(x f 是奇函数”是“=ϕ2π”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,则该扇形面积是____.10.设,sin 2sin αα-=),,2(ππα∈则α2tan 的值是________. 11.在锐角ABC ∆中,,1=BC ,2A B ∠=∠则AACcos 的值等于___,AC 的取值范围为___. 12.函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为________. 三、解答题 13.已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图象关于直线3π=x 对称,且图象上相邻两个最高点的距离为.π(1)求ω和ϕ的值;(2)若),326(43)2(παπα<<=f 求)23cos(πα+的值.14.已知向量),21,(cos -=x a ),2cos ,sin 3(x x b =,R x ∈设函数.)(b a x f ⋅=(1)求)(x f 的最小正周期; (2)求)(x f 在]2,0[π上的最大值和最小值.15.已知函数,),4sin()(R x x A x f ∈+=π且.23)125(=πf (1)求A 的值;(2)若),2,0(,23)()(πθθθ∈=-+f f 求).43(θπ-f16.已知函数,2cos 21cos sin 3)(x x x x f ωωω-=,0>ω,R x ∈且函数)(x f 的最小正周期为.π(1)求ω的值和函数)(x f 的单调增区间;(2)在ABC ∆中,角C B A ,,所对的边分别是,,,c b a 又,54)32(=+πA f ,2=b ABC ∆的面积等于3,求边长a 的值. 17.已知函数⋅+=2cos 34cos 4sin 2)(xx x x f(1)求函数)(x f 的最小正周期及最值;(2)令),3()(π+=x f x g 判断函数)(x g 的奇偶性,并说明理由. 18.在ABC ∆中,内角C B A 、、所对的边分别为.c b a 、、已知,3,==/c b a(1)求角C 的大小;(2)若,54sin =A 求ABC ∆的面积.高三数学(理科)专题训练二数列一、选择题1.数列,,11,22,5,2 的一个通项公式是()A .33-=n a nB .13-=n a n C .13+=n a n D .33+=n a n 2.已知等差数列}{n a 中,,1,16497==+a a a 则12a 的值是() A .15B .30C .31D .64 3.等比数列}{n a 中,,20,647391=+=a a a a 则11a 的值是()A .1B .64C .1或64D .1或324.ABC ∆的三边c b a ,,既成等差数列又成等比数列,则此三角形是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 5.已知数列}{n a 满足),2(11≥-=-+n a a a n n n ,3,121==a a 记,321n n a a a a S ++++= 则下列结论正确的是()A .2,120142014=-=S aB .5,320142014=-=S aC .2,320142014=-=S aD .5,120142014=-=S a6.如果在等差数列}{n a 中,,12543=++a a a 那么=+++721a a a ()A .14B .21C .28D .357.数列}{n a 中,,,10987,654,32,14321 +++=++=+==a a a a 那么=10a ()A .495B .505C .550D .5958.各项均为实数的等比数列}{n a 的前n 项和为,n S 若,1010=S ,7030=S 则=40S ()A .150B .200-C .150或200-D .400或50- 二、填空题9.在等差数列}{n a 中,,8,12543531=-=++a a a a a a 则通项=n a ________.10.设等比数列}{n a 的前n 项和为,n S 若,336=S S 则=69S S________.11.设平面内有n 条直线),2(≥n 其中任意两条直线都相交且交点不同;若用)(n f 表示这n 条直线把平面分成的区域个数,则=)2(f ______,=)3(f ______,=)4(f ______.当4>n 时,=)(n f ________. 12.已知数列}{n a 的通项公式为*).(21log 2N n n n a n ∈++=设其前n 项和为,n S 则使5-<n S 成立的最小自然数n 是________. 三、解答题13.等差数列}{n a 的前n 项和为,23,1=a S n 公差d 为整数,且第6项为正,从第7项起变为负. (1)求d 的值;(2)求n S 的最大值;(3)当n S 是正数时,求n 的最大值.14.设d a ,1为实数,首项为、1a 公差为d 的等差数列}{n a 的前n 项和为n S ,满足.01565=+S S(1)若,55=S 求6S 及;1a(2)求d 的取值范围.15.已知数列}{n a 的首项n S a a ,1=是数列}{n a 的前n 项和,且满足,0,32122=/+=-n n n n a S a n S (1)若数列}{n a 是等差数列,求a的值;(2)确定a 的取值集合M ,使M a 时,数列}{n a 是递增数列.16.已知}{n a 为递增的等比数列,且}.16,4,3,1,0,2,6,10{},,{531---⊆a a a(1)求数列}{n a 的通项公式; (2)是否存在等差数列},{n b 使得221123121--=+++++--n b a b a b a b a n n n n n 对一切*N n ∈都成立?若存在,求出n b ;若不存在,说明理由. 17.等差数列}{n a 各项均为正整数,,31=a 前n 项和为n S ,等比数列}{n b 中,,11=b 且,6422=S b }{n a b 是公比为64的等比数列. (1)求n a 与;n b(2)证明:⋅<+++4311121n S S S 18.已知数列},{n a n S 为其前n 项的和,,9+-=n n a n S .*N n ∈(1)证明数列}{n a 不是等比数列;(2)令,1-=n n a b 求数列}{n b 的通项公式n b ;(3)已知用数列}{n b 可以构造新数列.例如:},3{n b },12{+n b },{2nb },1{nb },2{n b },{sin n b …,请写出用数列}{n b 构造出的新数列}{n p 的通项公式,使数列}{n p 满足以下两个条件,并说明理由.①数列}{n p 为等差数列;②数列}{n p 的前n 项和有最大值.高三数学(理科)专题训练三<概率>一、选择题1.对满足B A ⊆的非空集合B A 、有下列四个命题:其中正确命题的个数为()①若任取,A x ∈则B x ∈是必然事件②若,A x ∉则B x ∈是不可能事件③若任取,B x ∈则A x ∈是随机事件④若,B x ∉则A x ∉是必然事件 A .4B .3C .2D .12.从1,2,…,9中任取两个数,其中在下列事件中,是对立事件的是()①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数A .①B .②④C .③D .①③ 3.如图所示,设D 是图中边长为4的正方形区域,E 是D 内函数2x y =图象下方的点构成的区域,向D 中随机投一点,则该点落入E 中的概率为() A .21B .31C .41D .51 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是() A .125B .21C .127D .43 5.如图所示,圆C 内切于扇形,3,π=∠AOB AOB 若在扇形AOB内任取一点,则该点在圆C 内的概率为() A .21B .31C .32D .43 6.已知随机变量ξ服从正态分布),,0(2σN 若,023.0)2(=>ξP 则)22(≤≤-ξP 的值为()A ....7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为() A .14-πB .π2C .214-πD .218.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布)10,80(~2N ξ,则下列命题中不正确的是()A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10 二、填空题9.盒子里共有大小相同的三只白球、一只黑球,若从中随机摸出两只球,则它们颜色不同的概率是__________. 10.在集合}10,,3,2,1,6|{ ==n n x x π中任取1个元素,所取元素恰好满足方程21cos =x 的概率是__________.11.在区间]3,3[-上随机取一个数x ,使得1|2||1|≤--+x x 成立的概率为______.12.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,209则参加联欢会的教师共有____人. 13.已知,4|),{(},0,0,6|),{(≤=≥≥≤+=Ωx y x A y x y x y x 若向区域Ω上随机投一点P ,则P 落入区域A 的概率是________. 三、解答题14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是,31得到黑球或黄球的概率是,125得到黄球或绿球的概率也是,125试求得到黑球、黄球、绿球的概率分别是多少?15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元.求该企业可获利润的分布列和数学期望. 16.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X . 17设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 18乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,落点在D 上记1分,其它情况记0分,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和 的分布列与数学期望.高三数学(理科)专题训练四《立体几何初步》一、选择题1.已知ABC ∆的三个顶点为、、)7,3,4()2,3,3(-B A ),1,5,0(C 则BC 边上的中线长为() A .5B .4C .3D .22.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .183.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可能是()A .球B .三棱锥C .正方体D .圆柱4.已知n m 、表示两条不同直线,α表示平面,下列说法中正确的是()A .若αα//,//n m ,则n m //B .若,,//n m m ⊥α,则α⊥nC .若,,n m m ⊥⊥α,则α//nD .若,,αα⊂⊥n m ,则n m ⊥ 5.已知一个几何体的三视图如图所示(单位:cm ),则该几何体的体积为() A .310cm πB .320cm πC .3310cm πD .3320cm π6.已知过球面上C B A ,,三点的截面和球心的距离等于球半径的一半,且,2===CA BC AB 则球的半径是()A .32B .34C .36D .17.用c b a ,,表示三条不同的直线,α表示平面,给出下列命题:其中正确的命题是()①若,//,//c b b a 则;//c a ②若,,c b b a ⊥⊥则;c a ⊥③若,//,//ααb a 则;//b a ④若,,αα⊥⊥b a 则.//b aA .①②B .②③C .①④D .③④ 8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥的轴截面顶角的余弦值是() A .43B .54C .53D .53-二、填空题9.已知三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若,4,3==AC AB,AC AB ⊥,121=AA 则球O 的半径为_______.10.在三棱锥ABC P -中,,1====BC PC PB PA 且,2π=∠BAC 则PA 与底面ABC 所成角为______.11.在长方体1111D C B A ABCD -中,,2,31cm AA cm AD AB ===则四棱锥D D BB A 11-的体积为____cm 3. 三、解答题12.如图所示,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,求切削掉部分的体积与原来毛坯体积的比值.ABCD P -与ABCD Q -的高都是2,.4=AB(1)求证:⊥PQ 平面;ABCD (2)求四面体QAD P -的体积. 14.如图所示,在直三棱柱111C B A ABC -中,,,901CC BC AC ACB o ===∠点M 为AB 的中点,点D 在11B A 上,且.311DB D A =(1)求证:平面⊥CMD 平面;11A ABB(2)求二面角M BD C --的余弦值.中,底面ABCD 为矩形,,ABCD PA 平面⊥E 为PD 的中点. (1)证明:AEC PB 平面//;(2)设二面角C AE D --为60°,,3,1==AD AP求三棱锥ACD E -的体积.16.如图所示,直二面角E AB D --中,四边形ABCD 是边长为2的正方形,,EB AE =点F 为CE 上的点,且⊥BF 平面.ACE (1)求证:⊥AE 平面;BCE (2)求二面角E AC B --的余弦值;(3)求点D 到平面ACE 的距离. 17.如图所示,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:平面PAC ⊥平面PBC . (2)若,1,1,2===PA AC AB 求二面角A PB C --的余弦值.18.如图所示,平行四边形ABCD中,.4,2,60===∠AD AB DAB 将CBD ∆沿BD 折起到EBD ∆的位置,使平面⊥EDB 平面ABD. (1)求证:⊥AB 平面;EBD (2)求三棱锥ABD E -的侧面积.高三数学(理科)专题训练五《圆锥曲线方程》一、选择题 1.已知双曲线)0,0(1:2222>>=-b a by a x C 的离心率为,25则C 的渐近线方程为()A .x y 41±=B .x y 31±=C .x y 21±=D .x y ±=2.已知,40πθ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22222=-θθx y C ()A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 3.椭圆1422=+y x的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ()A .23B .3C .27D .4 4.已知双曲线14222=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于() A .5B .24C .3D .5 5.设1F 和2F 为双曲线)0,0(12222>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为() A .23B .2C .25D .36.已知双曲线1222=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=⋅则点M 到x 轴的距离为() A .34B .35C .332D .37.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为()A .2B .3C .213+D .215+ 8.已知F 是抛物线x y =2的焦点,点A 、B 在该抛物线上,且位于x 轴的两侧,2=⋅(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是() A .2B .3C .8217D .10 二、填空题9.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的一个焦点,双曲线的离心率为2,则该双曲线的方程为_________. 10.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的两个焦点,P 为椭圆C 上一点,且.21PF ⊥若21F PF ∆的面积为9,则=b _________.11.抛物线)0(22>=p py x 的焦点为F ,其准线与双曲线13322=-y x 相交于A ,B 两点,若ABF ∆为等边三角形,则=p _________. 12.椭圆12222=+by a x 的四个顶点为,,,,D C B A 若菱形ABCD 的内切圆恰好经过它的焦点,则此椭圆的离心率是____. 三、解答题13.如图所示,动圆)31(:2221<<=+t t y x C 与椭圆19:222=+y x C 相交于DC B A ,,,四点,点21,A A 分别为2C 的左、右顶点,当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.14.已知双曲线)0,0(12222>>=-b a b y a x 的两条渐近线方程为,33x y ±=若顶点到渐近线的距离为1,求双曲线方程.15.如图,在平面直角坐标系xOy中,21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,顶点B 的坐标是),,0(b 连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结.1C F(1)若点C 的坐标为),31,34(且,2||2=BF 求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.16.椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为,,21F F 点P 在椭圆C 上,且,211F F PF ⊥ (1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.17.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,求FP OP ⋅的最大值.18.已知抛物线C 的顶点为原点,其焦点)0)(,0(>c c F 到直线02:=--y x l 的距离为.223设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点),(00y x P 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||BF AF ⋅的最小值.高三数学(理科)专题训练六《导数及其应用》一、选择题1.若,)(3x x f =,6)('0=x f 则=0x () A .2B .2-C .2±D .1± 2.函数133+-=x x y 的单调递减区间是()A .)2,1(B .)1,1(-C .)1,(--∞D .),1(+∞3.与直线052=+-y x 平行的抛物线2x y =的切线方程是()A .032=+-y xB .032=--y x C .012=+-y x D .012=--y x4.已知曲线x x y ln 342-=的一条切线的斜率为,21则切点的横坐标为()A .3B .2C .1D .215.曲线x y cos =与x 轴在区间]23,2[ππ-上所围成的图形的面积是()A .1B .2C .3D .46.设)(),(x g x f 是定义域为R 的恒大于零的可导函数,且,0)(')()()('<-x g x f x g x f 则当x a <b <时,有()A .)()()()(b g b f x g x f >B .)()()()(x g a f a g x f >C .)()()()(x g b f b g x f >D .)()()()(a g a f x g x f >7.若)2ln(21)(2++-=x b x x f 在区间),1(+∞-内是减函数,则实数b 的取值范围是()A .),1[+∞-B .),1(+∞-C .]1,(--∞D .)1,(--∞8.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为()A .x x y 5312513-=B .x x y 5412523-= C .x x y -=31253D .x x y 5112533+-=二、填空题9.若曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为,2x y =则=a ______. 10.若曲线xbax y +=2(a 、b 为常数)过点),5,2(-P 且该曲线在点P 处的切线与直线++y x 2703=平行,则=+b a ______. 11.若,)(2)(12dx x f x x f ⎰+=则=⎰dx x f )(1______.12.设,R a ∈若函数)(3R x x e y ax ∈+=有大于零的极值点,则a 的取值范围是______. 三、解答题13.设函数)0()(=/=k xe x f kx .(1)求曲线)(x f y =在点))0(,0(f 处的切线方程;(2)求函数)(x f 的单调区间.14.已知函数x=xxxf-+ln.1()1)(+(1)若,1xxf求实数ax)('2++≤ax的取值范围;(2)证明:.0f-xx)()1(≥15.设,12321ln )(+++=x x x a x f 其中,R a ∈曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴. (1)求a 的值;(2)求函数)(x f 的极值.16.如图所示,已知曲线21:x y C =与曲线)1(2:22>+-=a ax x y C 交于点O 、A ,直线)10(≤<=t t x 与曲线21C C 、分别相交于点D 、B ,联结.AB DA OD 、、(1)写出曲边四边形ABOD (阴影部分)的面积S 与t 的函数关系式);(t f S =(2)求函数)(t f S =在区间]1,0(上的最大值.17.某村庄拟修建一个无盖圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.18.已知函数.)2(ln )(2x a ax x x f -+-=(1)讨论)(x f 的单调性;(2)设,0>a 证明:当ax 10<<时,);1()1(x ax a f ->+(3)若函数)(x f y =的图象与x 轴交于A 、B 两点,线段AB 中点的横坐标为,0x证明:.0)('0<x f高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》参考答案9.2cm 210.311.2,)3,2(12.1 三、解答题13.(1)因)(x f 的图象上相邻两个最高点的距离为,π所以)(x f 的最小正周期,π=T 从而.22==Tπω又因)(x f 的图象关于直线3π=x 对称,所以,,2,1,0,232 ±±=+=+⋅k k ππϕπ因≤-2π2πϕ≤得,0=k 所以⋅-=-=6322πππϕ(2)由(1)得=-⋅=)622sin(3)2(πααf ,43所以⋅=-41)6sin(πα由326παπ<<得,260ππα<-< 所以=--=-)6(sin 1)6cos(2παπα⋅=-415)41(12 因此+-==+)6sin[(sin )23cos(πααπα6sin )6cos(6cos )6sin(]6ππαππαπ-+-= 14.(1)π=T (2)21)(,1)(min max -==x f x f15.(1)==+=32sin )4125sin()125(ππππA A f ,23233sin )3sin(===-A A A πππ所以=A ,3所以).4sin(3)(π+=x x f(2))()(θθ-+f f )4sin(3)4sin(3πθπθ+-++=,23cos 6==θ所以,46cos =θ因为,0sin ),2,0(>∈θπθ则=θsin ,410)46(1cos 122=-=-θ 故=+-=-]4)43sin[(3)43(πθπθπf ⋅=⨯==-4304103sin 3)sin(3θθπ16.(1)1=ω)](3,6[Z k k k ∈+-ππππ(2)13=a17.(1)因),32sin(22cos 32sin)(π+=+=x x x x f 故)(x f 的最小正周期.4212ππ==T当1)32sin(-=+πx 时,)(x f 取得最小值;2-当1)32sin(=+πx 时,)(x f 取得最大值2.(2)由(1)知⋅+=)32sin(2)(πx x f 又⋅+=)3()(πx f x g故]3)3(21sin[2)(ππ++=x x g ⋅=+=2cos 2)22sin(2xx π故).(2cos 2)2cos(2)(x g xx x g ==-=-所以函数)(x g 是偶函数. 18.(1)由题意得,=+-+22cos 122cos 1BA ,2sin 232sin 23B A - 即=-A A 2cos 212sin 23-=--B A B B 2sin()62sin(,2cos 212sin 23π),6π 由b a =/得,,B A =/又),,0(π∈+B A 得,6262πππ=-+-B A 即,32π=+B A 所以⋅=3πC(2)由,3=c Cc A a A sin sin ,54sin ==得58=a ,由,c a <得,C A <从而,53cos =A故=+=+=C A C A C A B sin cos cos sin )sin(sin ,10334+ 所以ABC ∆的面积为==B ac S sin 21⋅+251838高三数学(理科)专题训练二《数列》参考答案9.133-n 10.3711.4;7;11;222++n n 12.63 三、解答题13.(1)由已知,0076⎩⎨⎧<>a a 得,06230523⎩⎨⎧<+>+d d 解得,623523-<<-d 又d 为整数,故.4-=d (2)nn n n n S n 252)4(2)1(232+-=-⨯-+=,8625)425(22+--=n当6=n 时,;78=n S 当7=n 时,.77=n S 取最大值为78. (3)令,0>n S 得,02522>+-n n 解得<<n 0*),(225N n ∈ 故n 的最大值为12. 14.(1)由题意知:.31556-=-=S S .8566-=-=S S a所以,85510511⎩⎨⎧-=+=+d a d a 解得,71=a 所以.7,316=-=a S(2)因为,01565=+S S 所以,015)156)(105(11=+++d a d a即.0110922121=+++d da a 故.8)94(221-=+d d a 所以.82≥d故d 的取值范围为22-≤d 或.22≥d15.(1)在21223-+=n n n S a n S 中分别令,2=n 3=n 及,1a a =得++=+a a a a a (,12)(2222.)(27)223232a a a a a ++=+因为,0=/n a 所以2a ,212a -=.233a a +=因为数列}{n a 是等差数列,所以+1a ,223a a =即,23)212(2a a a ++=-解得.3=a经检验3=a 时,,2)1(3,3+==n n S n a n n ,2)1(31-=-n n S n 满足.32122-+=n n n S a n S(2)由,32122-+=n n n S a n S 得,32212n n n a n S S =--即,3))((211n n n n n a n S S S S =-+--因为,0=/n a ,2≥n 所以,321n S S n n =+-①所以,)1(321+=++n S S n n ② ②-①得,361+=++n a a n n 所以=+-1n n a a ,3)1(6+-n两式相减得:).2(611≥=--+n a a n n即数列 642,,a a a 及数列 ,,,753a a a 都是公差为6的等差数列,因为,23,21232a a a a +=-=所以⎪⎩⎪⎨⎧+-≥-+==.,623,3,623,1,为偶数为奇数且n a n n n a n n a a n要使数列}{n a 是递增数列,须有,21a a <且当n 为大于或等于3的奇数时,1+<n n a a且当n 为偶数时,1+<n n a a 即⎪⎩⎪⎨⎧-++<+-≥+-+<-+-<为偶数为奇数且n a n a n n n a n a n a a ,62)1(36233,62)1(3623,212 解得⋅<<41549a所以M 为),415,49(当Ma ∈时,数列}{n a 是递增数列.16.(1)12-n (2)存在17.(1)设}{n a 公差为d ,由题意易知,0>d 且∈d *,N则,)1(3d n a n -+=.2)1(3d n n n S n -+=设}{n b 公比为q ,则.1-=n n q b 由,6422=S b 可得64)6(=+d q …①又}{n a b 是公比为64的等比数列,所以6411111====---+++d a a a a a a q q qq b b n n n n n n …② 由①②,且*,N d >,0>d 可解得.2,8==d q所以,12+=n a n .*,81N n b n n ∈=- (2)由(1)知),2(22)1(3+=⨯-+=n n n n n S n .*N n ∈所以),211(21)2(11+-=+=n n n n S n 所以+-=+++)311[(2111121n S S S )]211()5131()4121(+-++-+-n n 18.(1)略(2)1)21(4-=n n b (3)=n p )1(log >a b n a高三数学(理科)专题训练三《概率》参考答案一、选择题BCBCCCAB 二、填空题9.2110.5111.3212.120人13.278三、解答题14.设得到黑球、黄球的概率分别为,y x 、由题意得⎪⎪⎩⎪⎪⎨⎧=---+=+,125)311(,125y x y y x 解得⎪⎪⎩⎪⎪⎨⎧==,61,41y x 故41)6141311(=---,所以得到黑球、黄球、绿球的概率分别是⋅416141、、15解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P ,31)(=E P ,53)(=F P ,52)(=F P .且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .11521001562201541201531001520)(==⨯+⨯+⨯+⨯=X E .16(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=.2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=. (Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,=,方差D (X )=3××()= 17解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =B 表示事件:甲需使用设备C 表示事件:丁需使用设备D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅ 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅ (2)X 的可能取值为0,1,2,3,40(0)()P X P B C A ==⋅⋅0()()()P B P C P A =2(10.6)(10.4)0.50.06=-⨯-⨯=. 0.25=,2(4)()P X P B C A ==⋅⋅2()()()P B P C P A =20.50.60.40.06=⨯⨯=,(3)()(4)0.25P X P D P X ==-==, 所以(X)(2)0(0)1(1)2(3)3(3)4(4)E P X P X P X P X P X P X ===⨯=+⨯=+⨯=+⨯=+⨯=0.2520.3830.2540.06=+⨯+⨯+⨯2=.18解:(I )设恰有一次的落点在乙上这一事件为A高三数学(理科)专题训练四《立体几何初步》参考答案9.21310.3π11.6三、解答题12.底面半径为3cm ,高为6cm 的圆柱体的体积为:1211h R V ⋅=π632⋅⋅=π.54π=从某零件的三视图可知:该几何体为左边是一个底面半径为2cm 、高为4cm 的圆柱体,右边是一个底面半径为3cm 、高为2cm 的圆柱体.其中左边的圆柱体的体积为:所以切削掉部分的体积为:.204322ππ=-⋅⋅=V V因此切削掉部分的体积与原来毛坯体积的比值为:⋅==271054201ππV V 13.(1)如图所示,取AD 的中点M ,连接.,QM PM因为ABCD P -与ABCDQ -都是正四棱锥,所以,,QM AD PM AD ⊥⊥ 从而.PQM AD 平面⊥又,PQM PQ 平面⊂所以.AD PQ ⊥同理,AB PQ ⊥所以.ABCD PQ 平面⊥(2)连接OM ,则,21221PQ AB OM ===所以,90o PMQ =∠即⋅⊥MQ PM由(1)知,PM AD ⊥所以,QAD PM 平面⊥从而PM 就是四面体QAD P -的高,在直角PMO ∆中,.22222222=+=+=OM PO PM又,242242121=⋅⋅=⋅=∆QM AD S QAD故⋅=⋅⋅=⋅=∆-31622243131PM S V QAD QAD P14.(1)在ABC ∆中,,BC AC =点M 为AB 的中点,故.AB CM ⊥又因三棱柱111C B A ABC -是直三棱柱,故,11ABC A ABB 平面平面⊥又,ABC CM 平面⊂故11A ABB CM 平面⊥,而,CMD CM 平面⊂故11A ABB CMD 平面平面⊥ (2)以点C 为原点,分别以1,,CC CB CA 所在直线为z y x ,,轴,建立如图所示的空间直角坐标系,令,11===CC BC AC则),0,0,0(C ),0,0,1(A ),1,0,1(1A ),0,1,0(B ),1,1,0(1B故),0,1,0(=CB )1,43,41(=CD设平面CBD 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00CD n CB n ⇒⎪⎩⎪⎨⎧=++=043410z y x y ⇒⎩⎨⎧=+=040z x y ,取,1-=z 则,4=x ,0=y 故)1,0,4(-=n ,而平面MBD 的法向量是),0,21,21(=CM故>=<n ,cos 1722)1,0,4()0,21,21(⨯-⋅⋅=17342 即二面角M BD C --的余弦值为⋅17342 15.(1)连结BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以.//PB EO又,AEC EO 平面⊂,AEC PB 平面⊂/所以.//AEC PB 平面(2)因为,ABCD PA 平面⊥ABCD 为矩形,所以AP AD AB ,,两两垂直.如图所示,以A 为坐标原点,的方向为x 轴的正方向,||AP 为单位长,建立空间直角坐标系,xyz A -则),21,23,0(),0,3,0(E D ⋅=)21,23,0( 设),0)(0,0,(>m m B 则),0,3,(m C ).0,3,(m =设),,(1z y x n =为平面ACE 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅011n n ,即⎪⎩⎪⎨⎧=+=+.02123,03z y y mx 可取),3,1,3(1-=m n 又)0,0,1(2=n 为平面DAE 的法向量,由题设,21|,cos |21=><n n 即=+2433m ,21解得⋅=23m因为E 为PD 的中点,所以三棱锥ACD E -的高为⋅21所以三棱锥ACD E -的体积为:⋅=⨯⨯⨯⨯=83212332131V16.(1)因⊥BF 平面.ACE 故.AE BF ⊥又因二面角E AB D --为直二面角,且,AB CB ⊥故⊥CB 平面.ABE故.AE CB ⊥⊥AE 平面.BCE (2)以点A 为原点,建立如图所示的空间直角坐标系.因⊥AE 面,BCE ⊂BE 面,BCE故.BE AE ⊥则),0,0,0(A ),0,1,1(E ,2,0(C ).2),0,1,1(=AE ⋅=)2,2,0(AC设平面AEC 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00AC n AE n ,即,0220⎩⎨⎧=+=+z y y x 解得⋅⎩⎨⎧=-=xz x y令,1=x 得=n )1,1,1(-是平面AEC 的一个法向量,又平面BAC 的一个法向量为),0,0,1(=m且n m ,所成的角就是二面角E AC B --的平面角,因>=<n m ,cos ||||n m n m ⋅⋅,3331==故二面角E AC B --的余弦值为⋅33 (3)因),2,0,0(=AD 故点D 到平面ACE 的距离=d .33232||||==⋅n n 17.(1)略(2)4618.(1)证明:如图所示,在ABD ∆中,因,60,4,2o DAB AD AB =∠==故=∠⋅-+=DAB AD AB AD AB BD cos 2222,32故,222AD BD AB =+故.BD AB ⊥又因,ABD EBD 平面平面⊥,BD ABD EBD =平面平面,ABD AB 平面⊂故.EBD AB 平面⊥(2)解:由(1)知,//,AB CD BD AB ⊥故,BD CD ⊥从而.DB DE ⊥在DBE Rt ∆中, 因,2,32====AB DC DE DB 故.3221=⋅=∆DE DB s BDE又因,EBD AB 平面⊥,EBD BE 平面⊂故.BE AB ⊥因,4===AD BC BE 故.421=⋅=∆BE AB S ABE 因,BD DE ⊥平面EBD ⊥平面ABD ,故.ABD ED 平面⊥而,ABD AD 平面⊂故,AD ED ⊥故.421=⋅=∆DE AD S ADE 综上得三棱锥ABDE -的侧面积为.328+=S高三数学(理科)专题训练五《圆锥曲线方程》参考答案9.1322=-y x 10.3=b 11.612.215-三、解答题13.设),,(00y x A 则矩形ABCD 的面积||40x S =.||0y由192020=+y x 得,,912020x y -=故202020x y x =,49)29(91)91(22020---=-x x当21,292020==y x 时,,6max =S故当5=t 时,矩形ABCD 的面积最大,最大面积为6.14.根据几何性质有.1=cab又因,33=a b 解得⎪⎩⎪⎨⎧==34422b a 故双曲线的方程为.143422=-y x15.(1)由题意,),,0(),0,(2b B c F =||2BF ,222==+a c b又)31,34(C 在椭圆上,所以,1)31(2)34(222=+b 解得.1=b 所以椭圆方程为.1222=+y x(2)直线2BF 方程为,1=+byc x 与椭圆方程12222=+by a x 联立方程组,解得A 点坐标为),,2(223222c a b c a c a +-+则C 点坐标为,2(222c a c a +),223ca b + 又,c bk AB -=由AB C F ⊥1得⋅+3233c c a b ,1)(-=-cb 即,34224c c a b += 所以=-222)(c a ,3422c c a +化简得.55==ac e 16.(1)由于点P 在椭圆上,故.3,6||||221==+=a PF PF a 在21F PF Rt ∆中,.52||||||212221=-=PF PF F F 解得,5=c 从而.4222=-=c a b因此椭圆C 的方程为.14922=+y x (2)设A ,B 的坐标分别为).,(),,(22]1y x y x已知圆的方程为,5)1()2(22=-++y x 圆心).1,2(-设直线l 方程为,1)2(++=x k y代入椭圆C 的方程得273636)1836()94(2222-+++++k k x k k x k 0=由于A ,B 关于点M 对称,所以,29491822221-=++-=+k kk x x 解得98=k因此直线l 的方程为,1)2(98++=x y 即.02598=+-y x 17.由题意,),0,1(-F 设点),,(00y x P 则有,1342020=+y x 解得)41(32020x y -=因为),,1(00y x +=),,(00y x =所以200)1(y x x ++=⋅,34)41(3)1(0202000++=-++=x x x x x此二次函数对应的抛物线的对称轴为.20-=x因为,220≤≤-x 所以当20=x 时,⋅取得最大值.632422=++ 18.(1)y x 42=(2)02200=--y y x x (3)29高三数学(理科)专题训练六《导数及其应用》参考答案9.310.-311.31-12.)3,(--∞三、解答题13.(1),)1()('kx e kx x f +=,1)0('=f ,0)0(=f故曲线)(x f y =在点))0(,0(f 处的切线方程为.x y =(2)由0)1()('=+=kx e kx x f 得).0(1=/-=k kx ①若,0>k 则当)1,(kx --∞∈时,,0)('<x f 函数)(x f 单调递减;当),1(+∞-∈kx 时,,0)('>x f 函数)(x f 单调递增,②若,0<k 则当)1,(kx --∞∈时,,0)('>x f 函数)(x f 单调递增;当),1(+∞-∈kx 时,,0)('<x f 函数)(x f 单调递减.14.(1)因为),0(1ln 1ln 1)('>+=-++=x xx x x x x f 所以.1ln )('+=x x x xf 由,1)('2++≤ax x x xf 得.ln x x a -≥令,ln )(x x x g -=则11)('-=xx g 当10<<x 时,;0)('>x g 当1>x 时,.0)('<x g所以1=x 是最大值点,.1)1()(max -==g x g 故,1-≥a即a 的取值范围是).,1[+∞- (2)由(1)知,1)1(ln )(-=≤-=g x x x g 故.01ln ≤+-x x当10<<x 时,x x x x x x f ln 1ln )1()(=+-+=;01ln ≤+-+x x当1≥x 时,+=+-+=x x x x x f ln 1ln )1()(.0)111(ln ln 1ln ≥-+-=+-xx x x x x x综上,.0)()1(≥-x f x15.(1)因为,12321ln )(+++=x x x a x f 故⋅+-=2321)('2x x a x f由于曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴,故该切线斜率为0,即,0)1('=f 从而,02321=+-a 解得.1-=a(2)由(1)知)0(12321ln )(>+++-=x x x x x f 令,0)('=x f 解得,11=x 312-=x (因312-=x 不在定义域内,舍去).当)1,0(∈x 时,,0)('<x f 故)(x f 在)1,0(上为减函数;当),1(+∞∈x 时,,0)('>x f 故)(x f 在,1()∞+上为增函数.故)(x f 在1=x 处取得极小值.3)1(=f16.(1)由⎩⎨⎧+-==axx y x y 222得点).,(),0,0(2a a A O又由已知得).,(),2,(22t t D at t t B +-故)(t f S =+⋅⋅-+-=⎰2221)2(t t dx ax x t)()2(2122t a t at t -⋅-+-(2).221)('22a at t t f +-=令,0)('=t f即,022122=+-a at t 解得a t )22(-=或.)22(a t +=因为,10≤<t ,1>a 所以a t )22(+=舍去.若,1)22(≥-a 即222221+=-≥a 时,对,10≤<t 有.0)('≥t f故)(t f 在区间]1,0(上单调递增,S 的最大值是⋅+-=61)1(2a a f若,1)22(<-a 即2221+<<a 时,对,)22(0a t -<<有;0)('>t f当t a <+)22(1≤时,有.0)('<t f 故)(t f 在))22(,0(a -上单调递增,在]1,)22((a +上单调递减,)(t f 的最大值是.3222))22((3a a f -=- 综上所述,=max)]([t f ⎪⎪⎩⎪⎪⎨⎧+<<-+≥+-222132222226132a a a a a 17.(1)),4300(5)(3r r r V -=π定义域为);35,0((2))(r V 在区间)5,0(上单调递增,在区间)35,5(上单调递减;当,5=r 8=h 时,蓄水池的体积最大18.(1))(x f 的定义域为-=+∞xx f 1)('),,0(⋅-+-=-+xax x a ax )1)(12()2(2若,0≤a 则,0)('>x f 所以)(x f 在),0(+∞单调递增.若,0>a 则由0)('=x f 得,1ax =且当∈x )1,0(a时,,0)('>x f 当ax 1>时,.0)('<x f 所以)(x f 在)1,0(a单调递增,在),1(+∞a单调递减.(2)设函数),1()1()(x af x a f xg --+=则,2)1ln()1ln()(ax ax ax x g ---+=.12211)('2223x a x a a axa ax a x g -=--++=当ax 10<<时,,0)('>x g 而,0)0(=g 所以.0)(>x g故当ax 10<<时,⋅->+)1()1(x af x a f (3)由(1)可得,当0≤a 时,函数)(x f y =的图象与x 轴至多有一个交点,故,0>a 从而)(x f 的最大值为),1(a f 且.0)1(>af 不妨设,0),0,(),0,(2121x x x B x A <<则⋅<<<2110x ax 由(2)得=>-+=-)()11()2(111x f x a a f x a f ).(02x f =又,1,1221ax a x a >>-从而,212x ax ->于是⋅>+=ax x x 12210由(1)知,.0)('0<x f。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理科数学限时训练
一、选择题(本大题共10小题,每题5分,共50分.每题都给出四个结论,其中有且只有一个
结论是正确的.)
1. 复数z 满足(2)z z i =+,则z =( )
A .1i +
B .1i -
C .1i -+
D .1i --
2. 已知实数a ≠0,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩
,若f (1-a )=f (1+a ),则a 的值为( ) A.
23 B. 23- C. 34 D.34- 3. 曲线y =sin x sin x +cos x -12
在点M ⎝⎛⎭⎫π4,0处的切线的斜率为 ( ) A .-12 B. 12 C .-22 D. 22
4.若,a b 为实数,则“01ab <<”是“1b
a
<”的 ( ) A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件
D. 不充分不必要条件
5. 一个空间几何体的三视图如右上图所示,则该几何体的表面积为( )
A .48
B .32+817
C .48+817
D .80
6. 设F 1,F 2分别为椭圆x 23
+y 2=1的左,右焦点,点A ,B 在椭圆上.若 F 1A →=5F 2B →,则点A 的坐标是( )
A. (0,1)±
B. (0,1)
C. (0,1)-
D. (1,0)±
7. 若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出
下列三个函数:1()3x f x =,2()43x f x =⨯,385()log 53log 2x f x =⋅⋅,则( )
A . 123(),(),()f x f x f x 为“同形”函数
B . 12(),()f x f x 为“同形”函数,且它们与3()f x 不为“同形”函数
C . 13(),()f x f x 为“同形”函数,且它们与2()f x 不为“同形”函数
D . 23(),()f x f x 为“同形”函数,且它们与1()f x 不为“同形”函数
8. 函数b x A x f +ϕ+ω=)sin()(的图象如图,则)(x f 的解析式和
++=)1()0(f f S )2006()2(f f +⋯+的值分别为( )
A .12sin 2
1)(+π=x x f , 2006=S B .12sin 21)(+π=x x f , 2
12007=S C .12sin 21)(+π=x x f , 2
12006=S D .12
sin 21)(+π=x x f , 2007=S 9. 在区间[—1,1]上任取两数a 、b ,则二次方程02=++b ax x 的两根都是正数的概率是
( )
A.
128 B.148 C.132 D.18
10. 已知函数32()(f x x bx cx d b =+++、c 、d 为常数),当(,0)(4,)k ∈-∞+∞时,()0f x k -=只有一个实根,当(0,4)k ∈时,()0f x k -=有3个相异实根,现给出下列4个命题:①函数()f x 有2个极值点;②函数()f x 有3个极值点;③()4f x =和()0f x '=有一个相同的实根;④()0f x =和()0f x '=有一个相同的实根.
其中正确命题的个数是 ( )
A. 1
B. 2
C. 3
D. 4
二、填空题(本大题共有4小题,每题5分,共20分.只要求直接填写结果.)
(一)必做题(11—14题)
11. 设函数c bx ax x f ++=2)()0(≠a ,对任意实数t 都有)2()2(t f t f -=+成立,在函数值、)1(-f 、)1(f 、)2(f )5(f 中最小的一个不可能是_____________
12. 若5255(1)110ax x bx a x +=++++,则b = .
13. 若平面向量i a 满足 1(1,2,3,4)i a i ==且10(1,2,3)i i a a i +⋅==,则1234a a a a +++可能的值有____________个.
14. 定义:函数)(x f y =,D x ∈。
若存在常数c ,对任意D x ∈1,存在唯一的D x ∈2,使
c x f x f =+2
)()(21,则称函数)(x f 在D 上的均值为c 。
已知x x f lg )(=,]100,10[∈x ,求函数x x f lg )(=在]100,10[上的均值为 (二)选做题,从15、16题中选做一题
15. 在平行四边形ABCD 中,E 为CD 上一点,DE :EC =2:3,连结AE 、BE 、BD ,且AE 、BD 交于
点F ,则ABF EBF DEF S S S ∆∆∆::= .
16. 以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单
位.已知直线的极坐标方程为()4R π
θρ=∈,它与曲线12cos 22sin x y αα=+⎧⎨=+⎩(α为参数)相交于两点A 和B ,则|AB |=_______.
三、解答题
17. 如果存在常数a 使得数列}{n a 满足:若x 是数列}{n a 中的一项,则x a -也是数列}{n a 中的一项,称数列}{n a 为“兑换数列”
,常数a 是它的“兑换系数”. (1)若数列:)4(,4,2,1>m m 是“兑换系数”为a 的“兑换数列”,求m 和a 的值;
(2)若有穷递增数列}{n b 是“兑换系数”为a 的“兑换数列”,求}{n b 的前n 项和n S ;
(3)已知有穷等差数列}{n c 的项数是)3(00≥n n ,所有项之和是B ,试判断}{n c 是否是“兑换数列”?如果是的,给予证明,并用0n 和B 表示它的“兑换系数”;如果不是,说明理由.。