9-03-函数的可积性问题(I)

合集下载

高等数学-定积分的概念与性质

高等数学-定积分的概念与性质

= σ=1 ( ) .
→0
其中()称为被积函数,()称为被积表达式,称为积分变量,
[, ]称为积分区间,称为积分下限,称为积分上限.
15
02 定积分的定义


注(1)定积分‫)( ׬‬是一个数值,它只与被积函数()

和积分区间[, ]有关,而与积分变量的符号无关,即
(2)近似(“以直代曲”)
在区间 [−1 , ] 上任取一点 ,以 ( ) 为高,
y
y=()
以 为底,作小矩形.小矩形的面积为
( ) ,用该结果近似代替[−1 , ]上的小
O
a
x i -1 ξ i x i
b
x
曲边梯形的面积 ,即
≈ ( ) ( = 1, 2, ⋯ , ).

‫)( ׬‬
=

‫)( ׬‬
=

‫)( ׬‬.
(2)定积分存在,与区间的分法和每个小区间内 的取法无关.
Hale Waihona Puke (3)按照定积分的定义,记号‫)( ׬‬中的, 应满足关系
< ,为了研究的方便,我们补充规定:
① 当 =
② 当 >


时,‫ = )( ׬ = )( ׬‬0;
在区间 [1,2] 内, 0 ≤ < 2 < 1 ,
则( )3 < .由性质5.5的推论1,得
2
‫׬‬1
>
2
‫׬‬1 ( )3 .
28
极限,得 σ=1 ( ) .
→0
如果对于[, ]的任意分法及小区间[−1 , ]上点 的任意
取法,上述极限都存在,则称函数()在区间[, ]上可积,

定积分可积准则定积分性质

定积分可积准则定积分性质

物理应用
速度与加速度
定积分在物理中常用于计算速度和加速 度,例如匀加速直线运动的速度和位移 。
VS
功与热量
定积分也可用于计算力在某个区间上所做 的功或物体吸收或释放的热量。
04
定积分的计算方法
直接法
总结词
直接法是计算定积分的基本方法,通过将积 分区间划分为若干小区间,再求每个小区间 的定积分,最后求和得到原定积分的值。
详细描述
直接法的基本思想是将积分区间[a, b]划分 为n个小区间,每个小区间的长度为$Delta x = frac{b-a}{n}$,然后在每个小区间上任 取一点$x_i$,$i=1,2,ldots,n$,计算该点 处的函数值$f(x_i)$与小区间的长度$Delta x$的乘积$f(x_i)Delta x$,再将所有这些乘 积相加,即得原定积分$int_{a}^{b}f(x)dx$ 的值。
定积分可积准则与定积分 性质
目录
• 定积分可积准则 • 定积分性质 • 定积分的应用 • 定积分的计算方法
01
定积分可积准则
有界性准则
总结词
如果被积函数在积分区间上有界,则该函数是可积的。
详细描述
有界性准则指出,如果函数在积分区间上既有上界又有下界,则该函数是可积的。这是因为有界函数的图像在x 轴上方和下方都有界限,不会出现无穷大或无穷小的值,因此可以通过有限个矩形来近似计算定积分。
$int_{c}^{d}g'(t)dt$,从而简化计算。
分部积分法
要点一
总结词
分部积分法是通过将两个函数的乘积进行求导,再对求导 后的结果进行积分,从而计算出原定积分的值。
要点二
详细描述
分部积分法的基本思想是将两个函数的乘积进行求导,再对 求导后的结果进行积分。具体来说,如果存在两个函数 $u(x)$和$v(x)$,且$u'(x)=f(x)$和$v'(x)=g(x)$,那么可以 将原定积分$int_{a}^{b}f(x)g(x)dx$转化为 $int_{a}^{b}[u(x)v'(x)-u'(x)v(x)]dx$,从而计算出原定积分 的值。

《数学分析Ⅲ》期末考试卷03.doc

《数学分析Ⅲ》期末考试卷03.doc

数学分析下册期末考试3(模拟试题)一、填空题(第1题每空2分,第2, 3, 4, 5题每题5分,共26分)du = ____________________ o2、设厶:x 2 + y 2 = a 2,则 j xdy - ydx =L4、 改变累次积分 pyj7(x, y )么的次序为 ________________________ o5、 设 £>:x+yW], 贝>J jj (A /5 + V )dxdy = _______________________ 二、断题(正确的打“O” ;错谋的打“X”;每题3分, 共15分) 判1若函数.f (x, y )在点/Xx 0, y°)连续,则函数.f (x, y )/?(x 0, y°)必存在一点阶偏导数。

() 2、 若函数/(x, y )在点〃(x (), y 0)可微,则函数/(x, y )在点/7(x (), y ())连续。

()3、 若函数/(x, y )在点p (x°, y°)存在二阶偏导数人(%,儿)和几(心儿),则 必有 几(勺,儿)二几(%‘儿)。

()4、 J f (x,y )dx= J /(x, y )dx o( )L (A 9B ) UB ,A )5、已知u = In Jx? +于,则冀 OXdu 3、 设厶: x 二3cost,则曲线积分J (x 2+y 2)ds = L若函数/(x, y)在有界闭区域D上连续,则函数/(x, y)在D上可积。

()1、用格林公式计算曲线积分I = j (e K sin y - 3y)dx + (e x cos y - 3)dy ,AO其中AO 为由A(a,0)到0(0,0)经过圆x 2 + y 2 =处上半部分的路线。

2、计算三重积分 + >,2 )dxdydz ,V其中是由抛物ilHz = x 24-/与平HHz 二4围成的立体。

每小题9分,共45分)三、计算题I = JJdS ,s4、计算第二型曲面积分其中S是球面宀于+二疋上被平面"d(OvdV/?)所截下的顶部(注0)。

二阶线性微分方程可积的一个条件

二阶线性微分方程可积的一个条件

定理2.4若P一1+IQdz,则(1)通解为
一IPaz
r lQaz
Y—P
(c1+C2 18 dx)
, I。Q“
定理2.5若P+xQ一÷P ,则(1)的通解为
一fP山
。 ^
一 — PP+xQLL1十2j o,十
3 应用
问题1解方程y”+(1+吾)了7+丢y—o

。P∞dzj]
解:P一1+导,Q一丢适合1~P+Q一一口-J纰,由定理2.3,方程组解为
2001年2月 第16卷第1期
咸阳师范专科学校学报 Journal of Xianyang Teachers’college
Feb.2001 V01.16 No.1
二阶线性微分方程可积的一个条件
冯录祥
(石河子大学数学系,新疆石河子832000)
摘要:用降阶法给出二阶变系数线性微分方程可积的一个条件,然后给出若干求解方程的通
下载时间:2010年8月8日
万方数据
二阶线性微分方程可积的一个条件
作者: 作者单位: 刊名:
英文刊名: 年,卷(期): 被引用次数:
冯录祥, Feng Luxiang 石河子大学数学系,新疆,石河子,832000
咸阳师范专科学校学报 JOURNAL OF XIANYANG TEACHERS COLLEGE 2001,16(1) 5次
数学的实践与认识2008,38(4)
在偏微分方程Riemann解法和微分方程裂变思想的启发下,引入了微分方程乘子函数(解)和乘子解法的概念,系统地讨论了二阶线性微分方程的乘子可 积性,得到了二阶线性微分方程乘子可积的条件以及Riccati方程可积的充分必要条件,并分别给出了二阶线性微分方程和Riccati方程在乘子解下的通积 分.

实变函数课件

实变函数课件
CHAPTER
实变函数在物理学中的应用
描述电磁场
通过实变函数,可以精确地描述电磁场的 分布和变化,为电磁学的研究提供数学工
具。
解决偏微分方程
实变函数可用于解决物理学中的偏微分方 程,如波动方程、热传导方程等,从而揭 示物理现象的数学规律。
量子力学
在量子力学中,实变函数被用于描述粒子 的波函数,揭示微观粒子的运动规律。
微观经济学
实变函数可用于描述消费者的 效用函数和生产者的成本函数 ,揭示微观经济行为的数学规
律。
宏观经济学
通过实变函数,可以建立宏观 经济模型,分析经济增长、通 货膨胀等宏观经济现象的数学
机制。
金融数学
实变函数在金融数学中有广泛 应用,如期权定价、投资组合 优化等,为金融市场的分析和
决策提供支持。
谢谢
积分的不等式与估计
介绍积分不等式和估计的基本方法,如Holder不等式、 Minkowski不等式、Chebyshev不等式等,并举例说明其应用。
05 实变函数的微分学
CHAPTER
导数与微分的概念
导数定义
详细阐述实变函数导数的定义及其几 何意义,包括左导数、右导数和导函
数等概念。
可导性判定
介绍判断函数在某点是否可导的方法 ,包括利用定义、导函数连续性等。
与连续性的区别
一致连续性是函数在整个区间上的性质,而连续性是函数在一点或一些点上的性质。一致连续的函数在整个区间上具 有“均匀”的连续性,即函数值的变化不会太快或太慢。
性质
一致连续的函数具有有界性、可积性等性质。
04 可测函数与积分
CHAPTER
可测函数的概念与性质
可测函数的定义
详细解释可测函数的定义,包括在给定集合上 的函数及其相关性质。

函数的奇偶性与周期性问题

函数的奇偶性与周期性问题

02
周期性基本概念
周期函数定义与性质
01
02
03
04
周期函数定义
周期性
对于函数$f(x)$,如果存在一 个正数$T$,使得对于所有$x$ 都有$f(x+T)=f(x)$,则称 $f(x)$为周期函数,$T$为它的 一个周期。
函数在每个周期内的图像和整 个函数的图像完全相同。
无界性
周期函数不一定有界,例如正 弦函数和余弦函数。
05
典型例题分析与解答
典型例题介绍及解题思路
例题1
判断函数$f(x) = x^3 - x$的奇偶性 ,并证明。
解题思路
首先根据奇偶性的定义,分别计算 $f(-x)$并与$f(x)$比较,判断其是否 满足奇函数或偶函数的条件。
例题2
求函数$f(x) = sin(2x) + cos(3x)$的 周期。
03
奇偶性与周期性关系探讨
奇偶性对周期性的影响
奇函数在一个周期内的图像关于原点对称,因此其 周期必须是原点的两倍。
偶函数在一个周期内的图像关于y轴对称,因此其周 期可以是任意正数。
对于非奇非偶函数,其周期性不受奇偶性的直接影 响,需要通过其他方式判断。
周期性对奇偶性的影响
02
01
03
如果一个函数具有周期性,那么它的奇偶性将在一个 周期内重复出现。
函数的奇偶性与周期性问题
汇报人:XX
20XX-01-26

CONTENCT

• 奇偶性基本概念 • 周期性基本概念 • 奇偶性与周期性关系探讨 • 判断方法与应用举例 • 典型例题分析与解答 • 练习题与自测题
01
奇偶性基本概念
奇函数定义与性质

复变函数的反常积分

复变函数的反常积分

高师理科学刊Journal of Science of Teachers' College and University 第41卷第1期2021年 1月Vol. 41 No.1Jan. 2021文章编号:1007-9831 (2020) 01-0056-03复变函数的反常积分苏新卫,翟羽(中国矿业大学(北京)理学院,北京100083)摘要:复变函数积分是复变函数论课程的重要内容之一,当积分路径是复平面上的光滑曲线,被 积函数在积分路径上连续时,复变函数积分存在且可以化为定积分.应用无界函数的反常实积分, 给出光滑曲线上复变函数反常积分的定义,并举例判断积分的收敛性.关键词:复积分;反常积分;定积分中图分类号:O172.2 : G642.0 文献标识码:A doi : 10.3969/j.issn.1007-9831.2021.01.014Abnormal integral of complex variable functionsSU Xinwei, ZHAI Yu(School of Science , China University of Mining and Technology (Beijing), Beijing 100083, China )Abstract : The integral of complex variable functions is one of the important contents of the course of complex function theory. When the integral path is a smooth curve on the complex plane and the integrand is continuous on the integral path, the complex integral exists and can be converted into definite integral. By the abnormal real integral of unbounded function , the definitions of abnormal integral of complex variable functions on smooth curve are given. Some examples are presented to judge their convergences.Key words : complex integral ; abnormal integral ; definite integral复变函数积分作为复变函数论课程的重要内容之一,积分公式是多种多样的[1-6].若积分路径是复平面 上光滑曲线,被积函数在积分路径上连续,则积分存在且可化为定积分计算.设C 是复平面上从点A 到点 B 且参数方程为z(t) = x(t) + iy(t)的光滑有向曲线,函数f ⑵=u(x , y ) + i v (x , y)在C 上连续,贝VJ c f (z )d z = J a f (z(t ))z '(t )d t = J a (u(x(t ), y(t)) + iv(x(t), y(t)))(x'(t ) + i y '(t ))d t其中:积分下限a 是起点A 对应的参数t 值;积分上限b 是终点B 对应的参数t 值.类似于实积分,学生初学复变函数积分过程中容易出现疑问:函数f (z )沿C 可积的必要条件为f (z )沿 C 有界,那么f (z )沿C 无界时是否可以定义一种广义积分.针对这种疑问,根据多年复变函数论课程教学 经验,受高等数学教材及有关文献中无界函数反常实积分的启发,给出当f (z )沿C 无界时反常积分的定义 ,并说明定义的合理性,然后应用定义举例判断积分[7-9]的收敛性,旨在拓宽学生解题思路,并为复变函数 论课程的教学提供一些参考.1反常复积分把无界函数的反常实积分推广到复变函数的情形.设C 是复平面上起点为A 终点为B 且参数方程为收稿日期:2020-07-14基金项目:中国矿业大学(北京)课程建设与教改项目(J190806, J190812)作者简介:苏新卫(1971-),女,山东宁津人,副教授,硕士,从事复变函数及微分方程研究.E-mail : *************第1期苏新卫,等:复变函数的反常积分57z(t) = x(t) + iy(t), t & [a, b]的光滑有向曲线,不失一般性,不妨假设C 的正方向和参数t 增加的方向一致, 并记 f (z(t)) = U (t ) + iV (t ), t e [a , b ].定义1设函数f (z )在C 上除去点A 外连续,f (z )沿路径C 在点A 的邻域内无界,对于e> 0,如果 极限lim 「f (z(t ))z'(t )d t 存在,则称此极限值为函数f ⑵在C 上的广义积分,即f f (z)dz =e ® +0 J a + eJ C l ®+0 f f (z (t ))z(t )d t ,此时称积分 f c f (z )d z 收敛.若极限 1i n +o f ^+e f (z (t ))z ,(t )d t 不存在,则称积分 f ©f (z )d z 发散.定义2设函数f (z )在C 上除去点B 外连续,f (z )沿路径C 在点B 的邻域内无界,对于1> 0,如果 极限lim 广1 f (z (t ))z\t )d t 存在,则称此极限值为函数f (z )在C 上的广义积分,即f f (z )d z = e ® +0」a J C lim 「’f (z (t ))z(t )d t ,此时称积分f f (z )d z 收敛.若极限lim P ' f (z (t ))z '(t )d t 不存在,则称积分 1®+0J a J C e ® +0 J af C f (z )d z 发散•定义3设函数f (z )在C 上除去内部点M 外连续,点M 对应的参数t = c ,f (z )沿路径C 在点M 的邻域内无界,对于e > 0,如果极限lim 「"f (z (t ))z ' (t )d t 和lim 「f (z (t ))z'(t)dt 都存在,则定义f f (z)dz =1®+OJ a 1®+OJ c +1 J C lim 「’f (z (t ))z '(t )d t + lim 「f (z (t ))z '(t )d t 为函数f ⑵在曲线C 上的广义积分,此时称积分f f (z )d z 收1®+0 a 1®+0 c +1C 敛 否则,称积分f C f (z )d z 发散.注1定义1~2是合理的,不失一般性,只说明定义1的合理性.事实上,如果函数f (z )在C 上除去 点A 外连续,f ⑵沿路径C 在点A 的邻域内无界,则有U(t ), V (t )在(a , b ]上连续,在a 的右邻域内至少 有一个无界.注意到函数f (z )在C 上连续时,有f C f (z)dz = f J (z (t )) z (t )d t = f b (U (t ) + i V (t ))( x - (t ) + i y(t )) d t =f b (U (t ) x '(t ) - V (t ) y -(t ) )d t + i f b(U (t ) y -(t ) + V (t ) x '(t) )d t 且x'(t)及y'(t )在[a , b ]上连续有界,根据无界函数反常实积分的定义可知,如果极限lim f ^(U(t )x '(t )一 V (t )y '(t ))d t + i lim f ^(U (t )y'(t ) + V (t )x(t ))d t即 f 1m i 0f b +1 f (z(t ))z '(t )d t 存在,则可说明积分 f :(U (t )x '(t )-V(t )y (t ))d t + i f b (U(t )y (t ) + V (t )x '(t )))d t 即 f C f (z )d z 收敛,故定义1是合理的.注2如果被积函数f (z )在C 上除去有限个点外连续,则当f (z )沿路径C 有界时,也可以应用定义 1~3中的方法计算积分.2应用举例例1计算积分f C 晋h ,C 是起点为z i = 0,终点为z 2 = i 的直线段.解 复变对数函数的主支ln (z ) = ln (|z |) + iarg z 是单值函数,其中: -n < arg z £ n .由于arg z 在原点和 负实轴上不连续,ln (z )在原点和负实轴上不连续,从而皿引在C 上的点z = 0不连续,并且四沿路径zzC 在z = 0的邻域内无界,因此按定义1计算积分f c罟d z . C 的参数方程为z (t ) = i t , t e [0, 1],对于 1> 0,有f 1 =f 1( t %=2(ln (t ))[+1 鈔(t )i 1=-2(ln (1)『-i 評(1) ⑴58高 师 理 科 学 刊第 41 卷显然,当e ® 0时,式(1)极限不存在,所以积分J c 罟d z 发散.例2计算积分J c|d z ,C 是起点为勺=-1 - i ,终点为z 2 = 0的直线段.解 由于1在C 上的点z = 0处不连续且沿路径C 在z = 0的邻域内无界,因此用定义2计算该积分.Cz的参数方程为z (t ) = t + i t , t g [-1, 0],对于e 〉0,有J 1 —1—(1 + i)d t = ln (t )| 1 = ln(-e ) 一 ln(-1) = ln (e ) + in 一 ln (1)- in = ln (e ) (2)当e ®0时,积分(2)极限不存在,所以积分Jc |d z 发散.例3计算积分J cln (z )d z ,C 是起点为z 1 =-i ,终点为z 2 = i 的直线段.解 注意到ln (z )在C 上的点z = 0处不连续且沿路径C 在z = 0的邻域内无界,因此用定义3计算积分 J C In (z )d z - C 的参数方程为 z (t ) = i t , t g [-1, 1],对于 e > 0,有J :iln(i t )d t =i J :]ln (t ) + i -2* = i t ln (t )|: -i(1 -e )-^-(1 -e )= -i e ln (e )-i(1 -e )-^-(1 -e ) (3)J ;iln (i t )d t =i J ;]ln(-t )-i -2^d t =i t ln (-t )| -i(1 -e ) + -2-(1 -e )= -i e ln (e )-i(1 -e ) + 2(1 -e )(4)求积分(3)〜(4)两端当e ® 0时的极限,再求和可得J cIn (z )d z = -2i .•xy 已知 f (z ) = ] x 2 + y 2z 丰0例4C 是从z 1 =-1+i 到原点,然后再从原点到z 2 = 1 + i 的折线段,计算0 z = 0积分 J Cln (z )d z -解 由于f (z )在C 上有不连续点z = 0,f (z )沿着C 在z = 0的邻域内有界,由注2可知,可按定义3 计算积分J © !n (z )d z - C 上从可=-1+i 到原点一段的参数方程为z (t ) = t - i t , t g [-1, 0],从原点到z ? = 1 + i一段的参数方程为z (t ) = t +i t , t e [0, 1].对于e >- -t 2 1 1120,有J 二市d-i )d t —JDd-e ),J e k (1+i)d t =2(1+i)(1 -e ),所以积分 J cIn (z )d z 收敛,且 J c f (z )d z = i .3结语本文给出了复变函数反常积分的定义,是实函数的无界函数反常积分到复变函数的推广.在计算沿着 指定路径的复变函数积分时,首先应判断被积函数在积分路径上的有界性、连续性及解析性,从而正确地 选用不同的方法进行计算.在复变函数反常积分中,牛顿-莱布尼兹公式、换元积分法和分部积分法仍然 成立,这里不再赘述.参考文献:[1]孙立伟,王晓华,张志旭.复变函数积分教学方法的探讨[J].高师理科学刊,2018, 38 (4): 60-63, 77[2]薛宾.关于复变函数积分的计算方法探讨[J].数学学习与研究,2017 (22): 3, 5[3]刘卉.复变函数中闭曲线积分的类型及求法归纳[J].课程教育研究,2018 (44): 235[4]邓冠铁.复变函数论[M].北京:北京师范大学出版社,2013[5]李红,谢松法.复变函数与积分变换[M] 5版.北京:高等教育出版社,2018[6]钟玉泉.复变函数论[M]. 3版.北京:高等教育出版社,2004[7]同济大学数学系.高等数学(上册)[M] 6版.北京:高等教育出版社,2007[8]李凤彦,戚晓秋.一个瑕积分的三种解法及推广[J].大学数学,2015, 31(6): 104-106[9] 龙爱芳.关于反常积分敛散性的一个判定方法[J].高等数学研究,2019 (6): 52-53, 60。

作用于微分形式的复合算子T。D。G的高阶可积性

作用于微分形式的复合算子T。D。G的高阶可积性

第28卷㊀第3期2023年6月㊀哈尔滨理工大学学报JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY㊀Vol.28No.3Jun.2023㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀作用于微分形式的复合算子T D G 的高阶可积性赵鹏飞,㊀毕淑娟,㊀刘振杰(哈尔滨学院信息工程学院,哈尔滨150080)摘㊀要:利用微分形式的Poincaré-Sobolev 不等式证明了当1<p <n 时复合算子T D G 的高阶L P 可积性,然后进一步讨论了p ȡn 的情形,获得了复合算子的高阶范数估计,并利用该结果对L p 可积微分形式证明了局部加权范数不等式成立㊂关键词:复合算子;高阶可积性;微分形式DOI :10.15938/j.jhust.2023.03.018中图分类号:O175.3文献标志码:A文章编号:1007-2683(2023)03-0144-05Higher Integrability of the Composite Operator T D Gfor Differential FormsZHAO Pengfei,㊀BI Shujuan,㊀LIU Zhenjie(School of Information Engineering,Harbin University,Harbin 150080,China)Abstract :We firstly prove the higher integrability of the composite operator T D G by using Poincaré-Sobolev inequalities when 1<p <n .Then further consider the case of p ȡn and obtain the higher order norm estimation of composite operators,by which theweighted norm inequality for L p integrable differential forms is proved.Keywords :the composite operator;higher integrability;differential forms㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-11-08基金项目:黑龙江省自然科学基金(LH2020A015).作者简介:毕淑娟(1970 ),女,博士,副教授;刘振杰(1969 ),男,博士,副教授.通信作者:赵鹏飞(1981 ),男,硕士,E-mail:pengfeizhao81@.0㊀引㊀言近年来,随着对微分形式算子理论研究的展开,算子的有界性及其高阶可积性对研究拟正则映射和微分形式A -调和方程理论有十分重要的意义[1-8]㊂2009年,Ding 等[9-10]首先对同伦算子与投影算子的复合算子的奇异积分问题进行了研究㊂之后,Bi 等[11-13]对同伦算子及其复合算子的强(p ,q )型不等式进行了研究,证明了算子在加权L p 空间的有界性㊂近几年,Y.Xing [14]㊁H.Gao [6-7,15]㊁Y.Lu [16-17]和Y.Tong [18]等对算子的高阶可积性以及拟线性椭圆方程解的全局可积性进行了研究,取得了一系列丰富的成果㊂本文的主要目的是研究同伦算子T ㊁Dirac 算子D 和Green 算子G 的复合算子T D G 的高阶可积性,并进一步得到当p ȡn 时,复合算子的高阶L p 范数估计㊂为了方便,首先介绍一些符号和术语㊂设E ⊂ℝn 为一有界域,|E |为E 的Lebesgue 测度,n ȡ2㊂Λl (ℝn )表示定义在ℝn 上的l -形式全体所构成的空间㊂D ᶄ(E ,Λl )表示定义在E 上的所有可微l -形式所构成的空间㊂L p loc (E ,Λl)表示定义在E 上的系数局部可积的l -形式全体所构成的空间㊂1㊀预备知识Hodge 星算子定义为∗u =ð1ɤi 1< <i k ɤn(-1)σu i 1, ,i k (x )dx j 1Λ Λdx j n -k其中j 1< <j n -k ,(i 1, ,i k ,j 1, ,j n -k )为(1, ,n )的全排列,σ为全排列的逆序数㊂利用外微分算子d 和Hodge 星算子可以定义Hodge 上微分算子d ∗=(-1)nl +1∗d ∗,Dirac 算子定义为D =d +d ∗㊂同伦算子T 为T.Iwaniec 和A.Lutoborski 在证明Poincaré引理过程中引入的一个重要算子㊂对每个y ɪE ,首先定义一个线性算子k y :C ɕ(E ,Λl)ңC ɕ(E ,Λl -1)为(k y u )(x ;ξ1, ,ξl -1)=ʏ10tl -1u (tx +y -ty ;x -y ,ξ1, ,ξl -1)d t定义1㊀同伦算子T :C ɕ(E ,Λl )ңC ɕ(E ,Λl -1)定义为Tu =ʏEφ(y )k yu d y其中φɪC ɕ0(E )且满足ʏEφ(y )d y =1㊂然后T.Iwaniec 等研究了同伦算子的L p理论,将同伦算子的定义拓展到T:L 1loc(E ,Λl)ңL 1loc(E ,Λl -1),并证明了对所有的u ɪΩq ,p (E ,Λl ),有如下分解u =dTu +Tdu(1)其中Ωq ,p (E ,Λl -1)表示满足u ɪL p(E ,Λl -1)且du ɪL p(E ,Λl)的全体(l -1)-形式所构成的集合㊂对于算子T 有如下估计式Tω s ,B ɤC diam(B ) ω s ,B (2)成立,其中B 为ℝn 中的球,1<p <n ㊂关于同伦算子的更多性质可参看文[1],[19]㊂令u ɪD ᶄ(E ,Λl ),l -形式u E ɪD ᶄ(E ,Λl )定义为u E =|E |-1ʏEu (y )d y ,l =0dTu ,l =1,2, ,n{定义2[2]㊀Green 算子G 定义为G :C ɕ(E ,Λl )ңΗʅɘC ɕ(E ,Λl )其中Gu 是ΗʅɘC ɕ(E ,Λl )中满足Poisson 方程ΔGu =u -H (u )的唯一解㊂如果w (x )>0a.e.且在ℝn 上局部可积,则称w (x )为权函数㊂L p (E ,Λl ,w )表示加权的L p 空间,其范数定义为 u p ,E ,w =(ʏE|u |pw (x )d x )1/p㊂1972年,B.Muckenhoupt [20]在研究极大算子的性质时给出了A r 权的概念㊂定义3㊀如果定义在E ⊂ℝn 上的权函数w (x )满足sup B ⊂E 1|B |ʏBw d x ()1|B |ʏB1w()1r -1d x()r -1<ɕ则称w (x )在E 上满足A r (E )条件㊂下面的Poincaré-Sobolev 不等式出现在文[1]中㊂引理1㊀若u ɪD ᶄ(B ,Λl ),du ɪL p (B ,Λl +1),l =0,1, ,n ,则u -u B ɪL npn -p (B ,Λl )且有不等式(ʏB|u -u B |np n -pd x )n -p npɤC p (n )(ʏB|du |pd x )1p其中B 为有界凸区域中的任意球体㊂引理2[2]㊀设u 为定义在E 上的光滑的微分形式,1<s <ɕ,则存在一个与u 无关而与s 有关的正常数C (s ),使得不等式dd ∗Gu s ,B + d ∗dGu s ,B + dGu s ,B + d ∗Gu s ,B + Gu s ,B ɤC (s ) u s ,B对所有满足B ⊂E 的球都成立㊂设φ(x )为定义在[0,ɕ)上的严格增凸函数,φ(0)=0,u 为定义在有界域E ⊂ℝn 上满足对任意λ>0及μ({x ɪE :|u -u E |>0})>0都有φ(λ|u |+|u E |)ɪL 1(E ,μ)的微分形式,其中,μ为由d μ=w (x )d x 定义的Radon 测度,w (x )为权函数㊂可以证明对任意的a >0,ʏEφ12|u -u E|()d μɤC 1ʏEφ(a |u |)d μɤC 2ʏEφ(2a |u -u E|)d μ(3)其中C 1,C 2为正常数㊂2㊀定理证明定理1㊀设u ɪL p loc (E ,Λl)为定义在E 上的光滑微分形式,1<p <n ,D 为Dirac 算子,G 为Green 算子,T 为同伦算子,0<s <np (n -p )-1,则存在与u 无关,与n ,s ,p 有关的常数C 使得TDGu s ,B ɤC u p ,σB其中:B ⊂σB ⊂E ,σ为某个大于1的常数㊂541第3期赵鹏飞等:作用于微分形式的复合算子T D G 的高阶可积性证明:这里将分成两步来完成证明㊂1)如果|{xɪB:|TDGu-(TDGu)B|>0}|>0则由引理1和引理2,有TDGu-(TDGu)B np n-p,BɤC p(n) dTDGu p,BɤC p(n) DGu-TdDGu p,BɤC p(n)( DGu p,B+ TdDGu p,B)ɤC p(n)( u p,B+C dDGu p,B)ɤC p(n)( u p,B+C u p,B)ɤC u p,B在式(3)中取φ(t)=t np n-p,则有(ʏB|TDGu|np n-p d x)n-p npɤC(ʏB|TDGu-(TDGu)B|np n-p d x)n-p np由L p空间的单调性,若0<s<np(n-p)-1,则(ʏB|TDGu|s d x)1sɤC(ʏB|TDGu|np n-p d x)n-p np 于是有(ʏB|TDGu|s d x)1sɤC(ʏσB|u|p d x)1p㊂2)假设|{xɪB:|TDGu-(TDGu)B|>0}|=0则TDGu=(TDGu)B㊀在B上几乎处处成立,因此TDGu为闭形式,进而TDGu为A-调和方程的解㊂于是由式(2)和引理2,有TDGu p,σBɤC diam(B) DGu p,σBɤC|B|1n u p,σB又由Hölder不等式有TDGu s,BɤC|B|1s-1p TDGu p,σB故TDGu s,BɤC|B|1n+1s-1p u p,σB于是定理得证㊂定理2 设uɪL p loc(E,Λl)是定义在E上的一个光滑微分形式,pȡn,T是同伦算子,D是Dirac算子,G是Green算子㊂则对于任意的实数s>1,有TDGuɪL s loc(E,Λl),进而存在一个与u无关的常数C使得,TDGu s,BɤC|B|1s+1n-1p u p,B其中B⊂E为E中的任意球㊂证明:首先当1<sɤp时,由引理2和式(3),有TDGu s,BɤC|B|1s+1n-1p u p,B显然成立㊂接下来证明当s>p时,TDGu s,BɤC|B|1s+1n-1p u p,σB成立㊂假设|{xɪB:|TDGu-(TDGu)B|>0}|>0令m=sp-1,记q=mnp/(n+mp)㊂因为n-p ɤ0,所以q-p=[p(m(n-p)-n)](n+mp)-1<0即q<p,而1<q=mnp/(n+mp)<n㊂于是由引理1㊁引理2和L p空间的单调性,有(ʏB|TDGu-(TDGu)B|nq(n-q)d x)(n-q)nqɤC2(ʏB|dTDGu|q d x)1q=C2(ʏB|DGu-T(d(DGu)|q d x)1qɤC3(ʏB|DGu|q d x)1q+C4(ʏB|T(d(DGu)|q d x)1qɤC5(ʏB|u|q d x)1q+C6(ʏB|u|q d x)1qɤC7|B|1q-1p(ʏB|u|p d x)1p(4)因为|{xɪB:|TDGu-(TDGu)B|>0}|>0,所以若在式(3)中取φ(t)=t nq(n-q),则对任意的微分形式ω,可得(ʏB|ω|nq(n-q)d x)(n-q)nqɤC8(ʏB|ω-ωB|nq(n-q)d x)(n-q)nq(5)在式(5)中用TDGu代替ω,有(ʏB|TDGu|nq(n-q)d x)(n-q)nqɤC9(ʏB|TDGu-(TDGu)B|nq n-q d x)n-q nq(6)因为nq/(n-q)=mp=s,再一次利用L p空间的单调性,式(6)和式(4),有(ʏB|TDGu|s d x)1s=(ʏB|TDGu|nq(n-q)d x)(n-q)nqɤC9(ʏB|TDGu-(TDGu)B|nq(n-q)d x)(n-q)nqɤC10|B|1q-1p(ʏB|u|p d x)1p=641哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀C10|B|1s+1n-1p(ʏB|u|p d x)1p因此有TDGu s,BɤC|B|1s+1n-1p u p,B于是定理得证㊂需要指出的是,以往得到的关于同伦算子和Green算子的高阶可积性结论均仅对A-调和方程的解成立,而定理1和定理2的结果表明对于满足一定条件的指数s,p,对任意在E上局部L s可积的微分l-形式,复合算子的高阶可积性仍然成立㊂3㊀应㊀用近年来,关于算子在加权微分形式L p空间有界性问题的研究已取得一些成果,但由于在证明过程中需要用到弱逆Hölder不等式,因此关于加权不等式的结论仅对A-调和方程的解成立㊂而由定理2,则可得到对任意L p可积的微分形式均成立的加权结果㊂引理3㊀如果w(x)ɪA r(E),则存在与w无关的常数γ>1和C>0,使得w γ,BɤC|B|(1-γ)γ w 1,B(7)对所有球B⊂E都成立㊂定理3㊀设E为有界凸区域,n<p<ɕ,T为同伦算子,D为Dirac算子,G为Green算子,如果权函数w(x)满足A r(E)条件,其中1<r<p/n,则对任意uɪL p(E,Λl),存在与u无关的常数C使得 TDGu p,B,wɤC u p,B,w对所有的球B⊂E都成立㊂证明:由于w(x)满足A r(E)条件,由引理3,存在常数γ>1和正数C1使得对所有的球B⊂E有 w γ,BɤC1|B|(1-γ)γ w 1,B取t=γp/(γ-1),则由Hölder不等式有 TDGu p,B,wɤ(ʏB|TDGu|t d x)1t(ʏB wγd x)1γp= TDGu t,B w 1pγ,B(8)这样,将式(7)代入式(8)中,有TDGu p,B,wɤC2|B|(1-γ)γp TDGu t,B w 1p1,B(9)记m=p/r,则由定理2可以得到TDGu t,BɤC3 u m,B(10)其中C3与t,m,n有关㊂再由式(9)和式(10),有 TDGu p,B,wɤC4|B|(1-γ)γp u m,B w 1p1,B 又由于1/p+(r-1)/p=1/m,于是由Hölder不等式有u m,Bɤ(ʏB(|u|w1p)p d x)1pʏB1w()1r-1d x()p r-1= u p,B,wʏB1w()1r-1d x()p r-1(11)注意到wɪA r(E),因此存在常数C5>0使得对所有的球B⊂E,有1|B|ʏB wdx()1p1|B|ʏB1w()1(r-1)d x()(r-1)p<C5<ɕ这样,再由式(10)和式(11),立即有TDGu p,B,wɤC6|B|1-γPγ|B|1P|B|r-1P u p,B,w=C6|B|r P+1-γPγ u p,B,wɤC6|D|r P+1-γPγ u p,B,wɤC7 u p,B,w结论得证㊂4㊀结论本文证明了微分形式L s空间同伦算子T㊁Green 算子和Dirac算子的复合算子T D G当1<p< n时的高阶可积性,并进一步证明了复合算子当pȡn时的高阶范数估计以及对L p可积微分形式成立的局部加权范数不等式㊂参考文献:[1]㊀IWANIEC T.,LUTOBORSKI A.Integral Estimates forNull Lagrangians[J].Arch.Ration.Mech.Anal.,1993,125(1):25.[2]㊀SCOTT C.Theory of Differential Forms on Manifolds[J].Transactions of the American Mathematical Society,1995,347(6):2075.[3]㊀毕卉,于冰,李贯锋.复合算子的Lipschitz和BMO范数不等式[J].黑龙江大学自然科学学报,2017,34(5):556.BI Hui,YU Bing,LI Guanfeng.Lipschitz and BMONorm Inequalities for the Composite Operator[J].Journalof Natural Science of Heilongjiang University,2017,34(5):556.[4]㊀AGARWAL R.P.,DING Shusen,NOLDER C.Ine-qualities Fordifferential Forms[M].Springer,2009.[5]㊀高红亚,褚玉明.拟正则映射与A-调和方程[M].北741第3期赵鹏飞等:作用于微分形式的复合算子T D G的高阶可积性京:科学出版社,2013.[6]㊀GAO Hongya,HUANG Miaomiao,DENG Hua,et al.Global Integrability for Solutions to Quasilinear EllipticSystems[J].Manuscripta Mathematica,2021,164:23.[7]㊀GAO Hongya,HUANG Miaomiao,REN Wei.GlobalRegularity for Minimizers of Some Anisotropic VariationalIntegrals[J].J.Optimization Theory and Applications,2021,188(2):523.[8]㊀NOLDER C.Global Integrability Theorems for A-harmon-ic Tensors[J].Journal of Mathematical Analysis and Ap-plications,2000,247(1):236.[9]㊀DING Shusen,LIU Bing.A Singular Integral of the Com-posite Operator[J].Applied Mathematics Letters,2009,22(8):1271.[10]DING Shusen,LIU Bing.Dirac-harmonic Equations forDifferential Forms[J].Nonlinear Analysis,2015,22:43.[11]BI Hui,XING Yuming.Poincare-type Inequalities withLp(logL)-norms for Greenᶄs Operator[J].Computers&Mathematics with Applications,2010,60(10):2764.[12]BI Hui,DING Shusen.Some Strong(p,q)-type Ine-qualities for the Homotopy Operator[J].Computers&Mathematics with Applications,2011,62(4):1780.[13]BI Hui,SUN Yuli.Imbedding Inequalities for the Com-posite Operator in the Sobolev Spaces of DifferentialForms[J].J.Inequalities and Applications,2015,2015(1):1.[14]XING Yuming,DING Shusen.Higher Integrability ofGreenᶄs Operator and Homotopy Operator[J].Journal ofMathematical Analysis and Applications,2017,446(1):648.[15]GAO Hongya,LIANG Shuang,CHI Yi.Global Integra-bility Related to Anisotropic Operators[J].Journal ofMathematical Analysis and Applications,2016,442(1):244.[16]LU Yueming,LIAN Pan.Variational Integral and SomeInequalities of a Class of Quasilinear Elliptic System[J].Advances in Applied Clifford Algebras,2020,30(4):62.[17]LU Yueming.On Weak Solutions to Dirac Harmonic E-quations for Differential Forms[J].Advances in AppliedClifford Algebras,2017,27(4):3167. [18]TONG Yuxia,LIANG Shuang,ZHENG Shenzhou.Inte-grability of Very Weak Solution to the Dirichlet Problemof Nonlinear Elliptic System[J].Electronic Journal ofDifferential Equations,2019,2019(1):1. [19]GOLᶄDSHTEIN V.,TROYANOV M.Sobolev Inequali-ties for Differential Forms and Lq,p-cohomology[J].Journal of Geometric Analysis,2006,16(4):597.[20]MUCKENHOUPT B.Weighted Norm Inequalities for theHardy-Littlewood Maximal Operator[J].Transactions ofthe American Mathematical Society,1972,165:207.(编辑:温泽宇)841哈㊀尔㊀滨㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第28卷㊀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明2 我们也可从正面来证明:可积
有界。
因为 f 在[a,b] 上可积,记f 在[a,b] 上的积分为I ,
则对于 =1, 必定存在[a,b] 的一个分割T ,使得
n
f i xi I 1
i 1
f
1
1
xk
I 1
n i2
f
i xi
此时,把在xi1, xi 中的i固定下来,i 2,3, , n,
定理 9.4 函数 f ( x) 在区间[a,b] 上连续,则 f ( x) 在区间[a, b]上可积。
定理 9.5 设函数 f ( x) 在区间[a, b] 上有界, 且只有有限多个间断点,则 f ( x) 在区间 [a, b]上可积。
定理 9.6 如果函数 f ( x) 是区间[a,b] 上的单调函 数,则函数 f ( x)在区间[a,b] 上可积。
f
k
GM
xk
G f i xi ik
于是有 n
f i xi f k xk f i xi
i 1
ik
GM
xk
xk
G
M
由此可见,对于无论多么小的 T ,按上述方
法选取点集 i 时,总能使得积分和的绝对值大
于任意给定的M>0,而这与 f 在[a,b] 上可积矛盾。
定理9.2 函数 f ( x) 在区间[a, b] 上可积,则 f ( x) 在区间[a, b]上有界。
x
n
n
于是我们分别称S T Mixi,s T mixi
i 1
i 1
为f 关于分割T的达布 Darboux上和与达布下和,
任取i i ,显然有s T f i xi S T
T
与积分和相比,达布和只与分割T 有关,而与i 无关。
定理 9.3 函数f 在a,b上可积的充要 条件是: 0, a,b的分割T i,
x x
1
,
2

2
0
f
( x)dx.
解 根据定理可知,该函数的定积分是存在 的。并且可以利用积分的区间可加性得到:
2
0
f
( x)dx
1 0
f
( x)dx
2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6
0
1
o 12x
休 息 , 休 息 一 会 !
符号 1 1 dx表示的不是一个定积分。 0x
例 1 在[0,1] 上 Dirichlet 函数 有界但不可积。
显然 D x 1, x 0,1。
D
x
1 0, x
, xQ R\Q
对于0,1的任一分割T,由有理数与无理数在实
数中的稠密性,在分割T的任一i上,当i都取有
n
理数时, D i xi 1,而当i都取无理数时, i 1
§3 函数的可积性问题(I)
牛顿—莱布尼茨公式的证明过程显示了: 闭区间上的连续函数是Riemann可积的。
那么,一般而言,闭区间上的函数需满 足怎样的条件,使其是Riemann可积的呢?
函数的可积性问题是一个复杂的问题。
1、可积的必要条件
定理9.2 函数 f ( x) 在区间[a, b] 上可积,则 f ( x)
使得S T s T .
记i Mi mi,称为是函数f 在i上的振幅,
S T s T ixi
T
定理 9.3 函数f 在a,b上可积的充要 条件是: 0, a,b的分割T i,
使得 ixi . T
3.可积的充分条件
在前面定理 9.1 证明的中我们已经看到了:函数
f ( x)在区间[a, b]上连续,则 f ( x) 在区间[a, b] 上可积。
在区间[a, b]上有界。
证明 用反证法。若f在[a,b] 上无界,则对于[a,b]
上的任意一个分割T ,必定存在属于T 的某个小区 间Δk , f 在Δk 上无界。在i≠k 的 各个小区间Δi上任
意取ξi ,并记
G f i xi ik
现在对于任意大的正数M,由于f 在Δk 上无界,故
存在ξkΔk ,使得
所以上式右边是一个确定的正数,而1 是在
x0 , x1上任意活动的. 这样,我们可以证明 f 在Δ1= [x0 , x1]上是有 界的,同样,可以证明 f 在Δi= [xi-1 , xi]上都是有 界的,所以 f 在[a,b]上是有界的。
在[a,b] 上f 有界是可积的必要条件,即有界未必可积。
比如,因为函数 1 在(0,1]上无界,所以 x
证明
不失一般性,设f 为增函数,且f b f a,
否则,如果f b f a,则 f 在a,b上为常数,
当然是可积的。
对a,b的任一分割T,f 在T所属的每个小区间
i xi1, xi 上的振幅为i f xi f xi1 .
n
于是有 ixi f xi f xi1 T
n
D i xi 0。所以无论 T 多么小,只要i取
i 1
法不同,积分和就有不同的极限,说明D x在
0,1上不可积。
2、可积的充要条件
设T i ,i 1, 2, , n为对a,b的任意一个分割,由
f 在a,b上有界,则 f 在每个i上有上、下确界:
Mi
sup
i
f
x,mi
inf i
f
T
1
f b f a T ,
由此可见, 0,只要 T

f b f a
就有 ixi ,所以f 在a,b上可积。
T
注1 单调函数如果有间断点,则其间断点 必定为第一类间断点。(P73/Ex6)
注2 单调函数可以有至多可列多个间断点, 但其仍然是Riemann可积的。
)
2x 5
0 1
相关文档
最新文档