机械制图第三章
机械制图 第三章 立体及立体表面交线

第三章立体及立体表面交线目的要求:1)掌握平面立体和回转体的投影特性,以及表面取点线的方法2)熟悉立体表面上常见交线的画法(截交线、相贯线)重点难点:1)掌握和熟练运用各种立体的投影特性求解表面取点线的方法2)熟练求解立体表面上截交线和相贯线授课学时:8学时主要作图练习:1)完成平面立体、回转体的三面投影,平面立体、回转体表面找点、找线。
2)单个截平面截棱柱、棱锥后的三面投影。
3)多个截平面(切口)截棱柱、棱锥的三面投影,尤其是长方体截切后的三面投影。
4)单个和多个截平面截切圆柱、圆锥、圆球后的三面投影,尤以带槽的圆柱和圆球为主。
5)圆柱与圆柱相贯、同轴回转体相贯的各种情况作图、综合作图。
6)授课内容:机件形状是多种多样的,经过分析,都是由一些基本几何体所组成。
而几何体又是由一些表面所围成,根据这些表面的性质,几何体可分为两类:平面立体——由若干个平面所围成的几何体,如棱柱、棱锥等。
曲面立体——由曲面或曲面与平面所围成的几何体,最常见的是回转体,如圆柱、圆锥、圆球、圆环等。
用投影图表示一个立体,就是把围成立体的这些平面和曲面表达出来,然后根据可见性判别哪些线是可见的,哪些线是不可见的,把其投影分别画成粗实线和虚线,即可得立体的投影图。
§3-1 平面立体的投影平面立体各表面都是平面图形,各平面图形均由棱线围成,棱线又由其端点确定。
因此,平面立体的投影是由围成它的各平面图形的投影表示的,其实质是作各棱线与端点的投影。
一、棱柱以正六棱柱为例,其顶面、底面均为水平面,它们的水平投影反映实形,正面及侧面投影积聚为一直线。
棱柱有六个侧棱面,前后棱面为正平面,它们的正面投影反映实形,水平投影及侧面投影积聚为一直线。
棱柱的其它四个侧棱面均为铅垂面,水平投影积聚为直线,正面投影和侧面投影为类似形。
图3-1 正六棱柱的投影二、棱锥以四棱锥为例,其底面为一长方形,呈水平位置,水平投影反映底面的实形。
左右两个棱面是正垂面,其正面投影积聚为直线,水平和侧面投影均为类似三角形,前后两个棱面为侧垂面,其侧面投影积聚为直线,水平和正面投影同样为类似的三角形。
机械制图(工程图学)第三章 直线与平面、平面与平面

f
f
f
(a)
(b) (c) 图3-12铅垂面与一般位置平面相交 铅垂面与一般位置平面相交
南京师范大学xws 17
3.3垂直问题 垂直问题
3.3.1直线与平面垂直 直线与平面垂直
垂直于平面的直线被称为该平面的垂线或法线,解题时的关键是在投影图 中如何定出法线的方向。 直线与平面垂直,则直线垂直平面上的任意直线(过垂足或不过垂足)。 反之,如直线垂直于平面上的任意两条相交直线,则直线垂直于该平面。
b' b' b' 1' 1' c' e(f) a' a' a' k' e'(f') c' k' 1' e'(f') 2' c'
X f b
X X f g c k a h e (a) e a b 1 c k h 1(2) c f g b 1
a
e (b) 图3-11铅垂线与一般位置平面相交 铅垂线与一般位置平面相交
f' d' n' m' c' a' k' e' X e k n a m b d 图3-5两平面平ቤተ መጻሕፍቲ ባይዱ的投影图 两平面平行的投影图 f c
机械制图第三章 几何元素间的相对位置关系

二、点的投影变换规律
1.点的一次变换 2.点的投影变换规律 3.点的两次变换
1.点的一次变换
V1⊥H,投影轴为O1X1
a1′ax1⊥o1x1, aax1⊥o1x1, a1′ax1=a′ax
V1 a1
ax
ax1
X1
V1 a1
a1
aa1′⊥o1x1
2. 点的投影变换规律
(1) 点的新投影和不变投影的连线,必垂直于新投影轴。
c
a
k
k a
c
n
[例题9] 试过定点K作特殊位置平面的法线。
h
h
h
h
(a)
h
(b)
h
(c)
[例题10] 试求定点A到一般位置直线EF的距离。
分析
过已知点A作平面垂直于已知直线EF,并交于点K,连接AK,
AK即为所求直线的投影,在由直角三角形求出实长。
A
E
K
F
作图
2
f 2 k
a2 b2
b1
V1
a1
X1
作图过程
把一般位置直线变为投影面垂直线 a2 b2
[例题2] 求点C到直线AB的距离(例题11)
提示
作图过程
作图
a1 c1
k1 b1
k'
b'2 k'2
a'2
c'2
距离
k
[例题3] 求两直线AB与CD的公垂线 。
b 1
2
1
2
c2
22
12
c'1
2'1
d'1
d2
平行,则该直线与该平面平行。
直线与平面平行
机械制图第3章

第 3 章 基本体及其表面交线
3.3 平面与立体相交
平面与平面体相交 3.3.1 平面与平面体相交 平面与立体表面相交而产生的交线称为截交线。 这个截 交线是一个平面多边形,此多边形的各个顶点就是截平面与平 面体的棱线的交点, 称为贯穿点。在求作棱柱或棱锥的截交线 时,常常先求出贯穿点, 即侧棱线或底棱与截平面的交点, 然 后依次连成截交线。 棱柱的截交线 1. 棱柱的截交线 例 3-1 图3-7所示的L形棱柱被正垂面P切割, 求作切割后 棱柱的三视图。
第 3 章 基本体及其表面交线
图 3-1 正三棱柱及其表面上点的投影
第 3 章 基本体及其表面交线 投影分析 1. 投影分析 如图3-1所示,正三棱柱的两端面(顶面和底面)平行于水平 面, 后侧棱面平行于正面, 另外两个棱面垂直于水平面。 在这 种位置下, 三棱柱的投影特征是: 顶面和底面的水平投影重合, 并反映实形——正三角形。三个侧棱面的水平投影积聚为三角 形的三条边。
第 3 章 基本体及其表面交线
图 3-10 正垂面切割三棱锥的截交线的作图步骤
第 3 章 基本体及其表面交线 作图 作图 (1) 根据三棱锥的三视图以及p′的位置, 由s′a′和s′c′与p′的交 点d′和f′,分别在sa、 sc和s″a″、s″c″上直接求出d、 f和d″、 f″, 如图3-10(a)所示。 (2) 由于SB是侧平线, 因此必须由s′b′与p′的交点e′在s″b″ 上求出e″, 再由45°线或利用宽相等的投影关系在sb上求出e, 如 图3-10(b)所示。 (3) 连接各点的同面投影即为所求交线的三面投影,擦去作 图线, 将切割后三棱锥的图线描深, 如图3-10(c)所示。
第 3 章 基本体及其表面交线 2. 作图方法 作图方法 画圆锥的三视图时, 应先画各投影的中心线, 再画底面圆的 各投影, 然后画出锥顶的投影和等腰三角形, 完成圆锥的三视图。 3. 圆锥体表面上点的投影 圆锥体表面上点的投影 如图3-5所示,已知圆锥体表面上点M的正面投影m′,求作m和 m″。根据M点的位置和可见性, 可确定点M在前、左方圆锥面上, 点M的三面投影均为可见。
机械制图-第三章第四版

【例3-9】绘制如图所示顶尖的三视图。
解题步骤
§3-3 相贯线的投影作图
两回转体相交,常见的是圆柱与圆柱相 交、圆锥与圆柱相交以及圆柱与圆球相交, 其交线称为相贯线。
一、圆柱与圆柱相交 *二、圆锥与圆柱相交 三、相贯线的特殊情况 四、综合举例
一、圆柱与圆柱相交
【例3-10】两个直径不等的圆柱正交,求作相贯 线的投影。
解题步骤
圆柱穿孔后相贯线的投影
两圆柱正交时相贯线的变化
国家标准规定,允许采用简化画法作出相贯线的投影, 即以圆弧代替非圆曲线。
*二、圆锥与圆柱相交
【例3-11】求作圆台和圆柱轴线正交的相贯线投 影。
解题步骤
三、相贯线的特殊情况
1.相贯线为平面曲线
同轴回转体的相贯线——圆
两回转体公切于一个球面的相贯线——椭圆
2.相贯线为直线
相交两圆柱轴线平行的相贯线——直线
相交两圆锥共顶的相贯线——直线
四、综合举例
【例3-12】已知相贯体的俯、左视图,求作主视 图。
图3-32 已知俯、左视图,求作主视图
【例3-13】求作半球与两个圆柱三体相交的相贯 线的投影。
图3-33 作半球与两个圆柱 的组合相贯线
§3-1 立体表面上点的投影
一、棱柱表面上点的投影 二、棱锥表面上点的投影 三、圆柱表面上点的投影 四、圆锥表面上点的投影 五、球面上点的投影
§3-2 截交线的投影作图
截交线的基本特性: (1)封闭性 截交线为封闭的平面图形。 (2)共有性 截交线既在截平面上,又在立体表 面上,是截平面与立体表面的共有线,截交线上 的点均为截平面与立体表面的共有点。
作图步骤:先作出截交线上的特殊点,再作出若干中 间点,然后光滑连成曲线。
机械制图第3章-基本几何体

b' A
ABC是水平面,在俯视图的上各反个映投影均为类似形。 实两形个。侧侧 棱棱面C面为ca""S一A般C为位侧置垂平其面面棱侧,。面面另△投S影AsC”为a侧”垂c”面,
a
s B c b"
重影为一直线。
b
Y
正三棱锥的投影
16
V
a' X
Z s'
S
s"
W
b'
Ca"
A
c"
a
s B c b"
b
Y
正三棱锥的投影
d
X
a
d” a”b” c”
Cb
c
22 Y
2)圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、m′和n′,求 它们的其余两投影。
b’ a’
(b”) a”
b
a
在圆柱表面上取点
23
2、圆锥体
1) 圆锥的投影
圆锥表面由圆锥面和底圆组成。它是一母线绕与它相交
的轴线回转而成。
Z
如图所示,圆锥轴 线垂直H面,底面为水 平面,它的水平投影 反映实形,正面和侧 面投影重影为一直线。
成的平面。 讨论的问题:截交线的分析和作图 。
32
一、 平面立体的截切
1、平面截切的基本形式
截断面 截交线
截平面
截交线与截断面
33
截交线的性质:
• 截交线是一个由直线组成的封闭的平面多边形,其 形状取决于平面体的形状及截平面相对平面体的截
切位置。 •平面立体的截交线是一个多边形,它的顶点是平 面立体的棱线或底边与截平面的交点。截交线的每 条边是截平面与棱面的交线。 • 共有性:截交线既属于截平面,又属于立体表面。
机械制图第三章

V
a
Z
a
Z
a
A
b
b
b
a
W
X
O
YW
X
b
B
a(b)
YH
a(b)
投影特性:1. a b 积聚 成一点 Y
2. a bOX ; a b OYW 3. a b = a b = AB
正垂线— 垂直于正面投影面的直线
ab
z a
b
X
O
YW
a
b YH
投影特性: 1. ab 积聚 成一点
2. ab OX ; ab OZ
k
a K
B
A
X
O
因k不在a b上,
a k
故点K不在AB上。
b
另一判断法?
例4 判断点K是否在线段AB上。
V b
k
a K
B
A
X
O
a k
b
因k不在a b上, 故点K不在AB上。
三、两直线的相对位置
空间两直线的相对位置分为:平行、相交、交叉。
1、平行两直线
b
d
V
d
b c
D a
c
B
a
X
o
X
A
CO
b
d
b
d
2. a b、ab、a b 均倾斜于投影轴
3.不反映 、 、 实角
3.投影面平行线
水平线 正平线 侧平线
水平线 — 只平Z 行于水平投影面的Z 直线
V
a b
a
b
a
b
A
a W
B
b X
O
YW
X
a
a
机械制图 第2版 第3章 换面法

第三章 换面法
一、点的一次换面 1.更换V面
V a'
V1 A a1'
a'
X
a
X
a
X1
H
H
换面规律:
X1 V1
a1'
1) 新投影和不变投影的连线垂直于新轴;
2)新投影到新轴的距离等于旧投影到旧轴的距离
2.更换H面
第三章 换面法
X1
V a'
A
a1 H1
X1 H1
a1
V
a'
X
a H
X
a
第三章 换面法
b'
c'
a' X
b
d'
O d
a
c
d'1
H V1 a'1
X1
b'1(c’1)
所求夹角
B
C b(c)
D
d A a
P
分析:
△ABC与△ABD的交线 AB→垂直线
第三章 换面法
本次作业共1页
第三章 换面法
本章学习目标:
熟悉换面法的基本原理,掌握用一次换面法求一般位置直线实长、 投影面垂直面实形&倾角的方法 。
主要内容:
支撑知识点
换面法的基本知识 点的一次换面 直线的一次换面 平面的一次换面
扩展知识点
1.换面法概念 2.换面原则 1.更换V面 2.更换H面 1.一般直线→新投影面平行线 2.投影面平行线→新投影面垂直线
投影面垂直面→新投影面平行面
第三章 换面法 换面法的基本知识
V b'
X
a'
A
a1' V1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面切割回转曲面体 1、截平面与圆柱轴线平行,截交线为矩形。
2、截平面与圆柱轴线倾斜,截交线为椭圆 或椭圆加直线
3、截平面与圆锥轴线倾斜,当α<θ时,截 交线为椭圆或椭圆加直线
4、截平面垂直于圆锥轴线,截交线为圆
5、截平面与圆锥轴线平行或倾斜,当α>θ时 ,截交线为双曲线加直线
6、截平面与圆锥轴线倾斜,当α=θ时,截交线 为抛物线加直线
第三章 立体表面交线的投影作图
§3-1 立体表面上点的投影 §3-2 截交线的投影作图 §3-3 相贯线的投影作图
零件表面都是由一些平面或曲面构成,两表面相交 形成表面交线,有的是平面与立体表明相交形成的截 交线,有的是两立体表面相交且两部分相互贯穿而形 成的相贯线。
图3-1 立体表面交线示例
§3-1 立体表面上点的投影
a
b
c
d
§3-3 相贯线的投影作图
两回转体相交,常见的是圆柱与圆柱相交、圆锥与 圆柱相交以及圆柱与圆球相交,其交线称为相贯线。
一、圆柱与圆柱相交 *二、圆锥与圆柱相交 三、相贯线的特殊情况 四、综合举例
一、圆柱与圆柱相交 【例3-10】两个直径不等的圆柱正交,求作相贯线的投影。
圆柱穿孔后相贯线的投影
a
b
c
d
e
3.平面与圆球相交
平面切割圆球时,其交线 均为圆,圆的大小取决于平 面与球心的距离。当平面平 行于投影面时,在该投影面 上的交线圆的投影反映实形, 另外两个投影面上的投影积 聚成直线。
【例3-8】如图所示,已知半球开槽的主视图,补 全俯视图,并作出左视图。
a
b
c
【例3-9】绘制如图所示顶尖的三视图。
截平面与立体表面的共有线,截交线上的点均为截平面 与立体表面的共有点。
一、平面切割平面体ቤተ መጻሕፍቲ ባይዱ
二、平面切割回转曲面体
一、平面切割平面体 六棱柱被切割
正四棱锥被切割
【例3-1】画出图示平面切 割体的三视图。
图3-10 平面切割体的作图过程
【例3-2】在四棱柱上切割一个通槽,已知通槽的 正面投影,求作水平和侧面投影。
c
d
【例3-5】补全接头的三面投影。
a
b
c
d
2.平面与圆锥相交
根据截平面对圆锥轴线的位置不同,截交线有五种情 况:椭圆、圆、双曲线、抛物线和相交两直线。
作图步骤:先作出截交线上的特殊点,再作出若干中 间点,然后光滑连成曲线。
【例3-6】补全正平面切割圆锥后的正面投影。
a
b
c
d
【例3-7】求作圆锥被切割后的水平和侧面投影。
7、截平面过圆锥锥顶,截交线为等腰三角形
8、截平面与圆球相交,截交线是圆
1.平面与圆柱相交 平面与圆柱相交时,根据平面与圆柱轴线相对位置的
不同可形成两种不同形状的截交线。
【例3-3】如图所示为圆柱被正垂面斜切,已知主、 俯视图,求作左视图。
a
b
c
d
【例3-4】求作带切口圆柱的侧面投影。
a
b
图3-33 作半球与两个圆柱 的组合相贯线
一、棱柱表面上点的投影
a
b
二、棱锥表面上点的投影 棱锥的表面可能是特殊位置平面,也可能是 一般位置平面。
a
b
三、圆柱体表面上点的投影
四、圆锥表面上点的投影
a
b
五、球面上点的投影
§3-2 截交线的投影作图
截交线的基本特性: (1)截交线为封闭的平面图形。 (2)截交线既在截平面上,又在立体表面上,是
同轴回转体的相贯线——圆
两回转体公切于一个球面的相贯线——椭圆
2.相贯线为直线 相交两圆柱轴线平行的相贯线——直线
相交两圆锥共顶的相贯线——直线
四、综合举例
【例3-12】已知相贯体的俯、左视图,求作主视图。
图3-32 已知俯、左视图,求作主视图
【例3-13】求作半球与两个圆柱三体相交的相贯线 的投影。
两圆柱正交时相贯线的变化
国家标准规定,允许采用简化画法作出相贯线的投影, 即以圆弧代替非圆曲线。当轴线垂直相交且平行于正面的 两个不等径圆柱相交时,相贯线的正面投影以大圆柱的半 径为半径画圆弧即可。
二、圆锥与圆柱相交
【例3-11】求作圆台和圆柱轴线正交的相贯线投影。
三、相贯线的特殊情况 1.相贯线为平面曲线
图3-11 四棱柱开槽
二、平面切割回转曲面体 平面切割曲面体时,截交线的形状取决于曲面体表面的
形状以及截平面与曲面体的相对位置。
平面与回转曲面体相交时,其截交线一般为封闭的平面 曲线,特殊情况下是直线,或直线与平面曲线组成的封闭 的平面图形。
作图的基本方法:求出曲面体表面上若干条素线与截平 面的交点,然后顺次光滑连接即得截交线。