晶体相位匹配 Crystal Phase Match
相位匹配及实现方法

相位匹配及实现方法相位匹配(Phase Matching)是光学领域中一个重要的概念,指的是将不同波长或频率的光束进行匹配,使其在特定的光学介质中具有相同的相位速度,并能够有效地进行光学交互或干涉。
在光学器件或系统中,相位匹配是实现各种光学效应和应用的关键步骤,如广义的非线性光学过程(如和二次谐波,差频,和和频,以及光学参量放大等),光学波导中的耦合效应,以及光学分子束松弛和谐变等。
相位匹配是基于光波的相位速度相等原理,即在特定的介质中,不同波长的光束的相位速度差等于零。
光波的相位速度是指波前通过其中一点的速度,一般用vg表示。
相位速度等于光速c除以折射率n,即vg = c/ n。
在普通的介质中,折射率随波长而变化,从而导致不同波长的光束具有不同的相位速度。
为了实现相位匹配,需要通过选择合适的光学材料、设计合理的结构或施加特殊的相位调制手段,来调节不同波长光束的相位速度,使其相等。
相位匹配的实现方法有多种,下面列举几种常用的方法:1.正常相位匹配:正常相位匹配是最简单的相位匹配方式,即通过选择合适的光学材料,使得光束在该材料中的折射率随波长的变化足够小,从而实现相位匹配。
这种方法适用于波长较长(红外或中红外)的光束。
2.利用非线性光学晶体:非线性光学晶体具有特殊的频率响应特性,可以实现泵浦光和信号光在特定波长下的相位匹配。
这种方法常用于二次谐波,和差频等非线性光学过程。
3.使用光学波导:光学波导是一种能够限制光的传播方向和有效控制光传输的器件。
通过选择合适的波导材料和结构,可以实现不同波长光束在波导中的相位匹配,从而实现光的耦合和传输。
4.利用光栅或光子晶体:通过在特定的光学材料中制作周期性的光栅结构或光子晶体结构,可以实现不同波长光束的衍射,使其相位速度相等化。
这种方法常用于光学滤波器和光学分光仪等光学设备。
5.使用光学段通用接口(OBCI)技术:OBCI技术是一种基于宏观时间相位匹配思想的光传输接口。
bbo晶体的一类相位匹配

bbo晶体的一类相位匹配
【实用版】
目录
一、什么是相位匹配
二、相位匹配的重要性
三、BBO 晶体的一类相位匹配
四、总结
正文
一、什么是相位匹配
相位匹配是光学领域中一个非常重要的概念,尤其是在非线性光学中。
当两束光线通过非线性介质时,它们会发生相互作用,产生新的光束。
在这个过程中,如果两束光线的相位关系能够使得能量从基频光向倍频光单向转移,那么就可以大大提高倍频光的转化效率。
这种使能量转移的过程被称为相位匹配。
二、相位匹配的重要性
相位匹配在非线性光学中起着至关重要的作用。
在光学倍频、光参量放大和光纤通信等领域,如果能够实现相位匹配,就可以提高光的转换效率和传输效率。
因此,研究相位匹配对于理解和应用非线性光学有着重要的意义。
三、BBO 晶体的一类相位匹配
BBO 晶体是一种常用的非线性光学晶体,能够实现一类相位匹配。
在一类相位匹配中,两束入射光的偏振方向是平行的。
这种匹配方式可以使得产生的倍频光具有较高的转化效率。
在 BBO 晶体中,通过适当的角度设计和光束的调整,可以实现一类
相位匹配。
具体来说,当两束入射光的偏振方向平行时,它们在 BBO 晶
体中的传播方向会发生相互干涉,从而产生较强的倍频光。
这种相位匹配方式在 BBO 晶体中被广泛应用。
四、总结
相位匹配是非线性光学中一个非常重要的概念,能够提高光的转换效率和传输效率。
090323 相位匹配

2ω
ω
0.000 -0.002 -0.004 -0.006 -0.008 -0.010 -0.012 250 300 350 400 450 500
Temperature /K
z
ne
e光 偏振方向
光轴
Refractive
2.5
T=358K
0.532µm
2.4 2.3 2.2 2.1 0.2
no ne
1 cos 2 θ sin 2 θ = 2 + 2 2 ne (θ m , 0.532 ) no ( 0.532 ) ne ( 0.532 )
1 cos 2 θ sin 2 θ = 2 + ne2 (θ m ,1.064 ) no ( 1.064 ) ne2 ( 1.064 )
n = A + B / ( λ − C ) + Dλ
0
Wavelength /µm
KDP晶体的倍频(1.064µm→0.532µm)双折射相位匹配 晶体的倍频( 晶体的倍频 µ µ 双折射相位匹配
ne (θ ,2ω ) no (2 ω )
z 光轴 k
s
θ
α
x,y
no ( ω ) n e (θ , ω )
折射率椭球
L ω α
d 2ω
Lα
离散效应
离散角
在相位匹配 ∆k = 0 条件下, 条件下, 二次谐波产生过程效率最高; 二次谐波产生过程效率最高; 条件下, 而相位失配 条件下, ∆k ≠ 0 二次谐波产生过程效率大大 降低
I 2ω
∆kL sin 2 ∝ 2 ∆kL 2
2
1.0 0.8
I2ω(a.u.)
ε xx ≠ ε yy ≠ ε zz
极化电极均匀化设计调控铌酸锂周期极化占空比

用十通道电极进行极化实验,通过表征每个通道的占空比,发现内部八个通道的占空比大小均匀且在 50% ± 5% 范
围,通过晶体的倍频实验验证发现十通道周期极化样品中中间通道相对边缘通道的非线性转换效率明显提升并分布
Cycle of Periodically Poled Lithium Niobate
LIU Qilu1 , ZHENG Mingyang2 , GAO Yang2 , ZHANG Longxi1 , SONG Yukun1 , WANG Fulei2 ,
LIU Hong1,2 , WANG Dongzhou2 , SANG Yuanhua1
体材料中,铌酸锂晶体具有大的非线性光学系数( d33 = 25. 2 pm / V) 、宽的通光范围(0. 35 ~ 5 μm) 和低廉的
制备成本,尤其在掺杂 MgO 后得到的 MgO∶ LN 晶体,其抗光损伤阈值得到了大幅提高,是基于 QPM 的非线
性光学晶体材料的理想选择 [4-7] 。
我国从 20 世纪 80 年代就开始了周期极化铌酸锂晶体探索,南京大学闵乃本院士团队生长出了周期性
学转换效率低。 准相位匹配( quasi phase match, QPM) 则可以通过周期性地调制非线性光学晶体中非线性
光学系数的方向补偿由于材料色散造成的不同光波之间的相位失配。 理论上 QPM 可以实现所有透光范围
的频率转换,并且可以充分利用晶体的非线性光学系数,在实际应用中具有非常大的优势。 在众多非线性晶
计获得的周期极化铌酸锂晶体( PPLN) 成为准相位匹配技术的理想选择。 目前制备 PPLN 晶体最常用的方法是外加
BIBO晶体非临界相位匹配的研究

BIBO晶体非临界相位匹配的研究韩永飞;陈振强;李景照;林浪;李真;王国富【摘要】为了研究BIBO晶体的非临界相位匹配的特点及应用,采用MATLAB编程的精确计算方法,在BIBO的热光色散方程的基础上,以波长为532nm的绿光作为抽运光,计算了BIBO在非临界相位匹配下的温度调谐、有效非线性系数和允许参量.计算得出,当匹配角θ=90°时,信号光的温度调谐范围为0.65μm~3.0μm;当信号光波长为670nm时,BIBO的差频Ⅱ类(B)相位匹配的最佳匹配条件为:Tm=22.3℃,φ=35°,deff=1.904pm/V.结果表明,BIBO的非临界相位匹配有望应用于激光电视等可见波段激光产品.【期刊名称】《激光技术》【年(卷),期】2009(033)005【总页数】4页(P466-469)【关键词】非线性光学;非临界相位匹配;MATLAB计算;硼酸铋【作者】韩永飞;陈振强;李景照;林浪;李真;王国富【作者单位】暨南大学,光电工程研究所,广州,510632;暨南大学,光电工程研究所,广州,510632;暨南大学,光电工程研究所,广州,510632;暨南大学,光电工程研究所,广州,510632;暨南大学,光电工程研究所,广州,510632;中国科学院,福建物质结构研究所,福州,350002【正文语种】中文【中图分类】O734引言BIBO(BiB3O6)晶体作为一种新型的非线性光学晶体,不仅具有不潮解、物化性能稳定、光损伤阈值高的特点,而且其突出优势是有效非线性系数deff可达3.32pm/V,高于目前被普遍应用的BBO、LBO晶体,在1064nm 的腔外倍频实验中其转换效率可达到近70%[1-2]。
BIBO晶体双折率较大,相位匹配波长随角度的变化灵敏,因此不仅可作为高效倍频、和频器件,而且在光参量振荡(optical parametric oscillator,OPO)领域也具有广阔的应用前景。
bbo晶体相位匹配

BBO晶体相位匹配1. 介绍BBO(β-BaB2O4)晶体是一种非线性光学晶体,具有广泛的应用领域,包括激光技术、光通信、光学成像等。
在这些应用中,相位匹配是一个重要的概念,它可以帮助优化光学器件的性能。
本文将深入探讨BBO晶体的相位匹配原理、方法和应用。
2. 相位匹配原理在非线性光学中,相位匹配是指将入射光波的相位与晶体中的非线性极化相位进行匹配,以实现最大的非线性效应。
BBO晶体具有正交非线性极化,因此需要满足相位匹配条件才能实现最大的非线性转换效率。
相位匹配条件可以通过相位匹配角度和相位匹配温度来实现。
相位匹配角度是指入射光波矢量与晶体中的非线性极化矢量之间的夹角,而相位匹配温度是指晶体的温度,使得晶体的折射率与入射光波的折射率相匹配。
3. 相位匹配方法相位匹配方法主要包括类型-I相位匹配和类型-II相位匹配。
在类型-I相位匹配中,入射光波和非线性极化矢量具有相同的偏振态,而在类型-II相位匹配中,入射光波和非线性极化矢量具有正交的偏振态。
对于BBO晶体,类型-I相位匹配是最常用的方法。
在类型-I相位匹配中,需要选择适当的入射光波波长、角度和温度,以实现最佳的相位匹配效果。
可以使用光学参数计算软件或实验方法来确定最佳的相位匹配条件。
4. 相位匹配应用BBO晶体的相位匹配技术在许多光学应用中发挥着重要作用。
以下是一些常见的应用示例:4.1 高效二次谐波产生通过相位匹配技术,可以在BBO晶体中实现高效的二次谐波产生。
二次谐波产生是一种将入射光波频率加倍的方法,利用BBO晶体的非线性效应可以将红外激光转换为可见光激光。
相位匹配条件的选择可以实现最大的转换效率。
4.2 光学参量放大器BBO晶体可以用作光学参量放大器的非线性介质。
通过相位匹配技术,可以实现在特定波长范围内的高增益放大效果。
这在激光技术和光通信中具有重要的应用,可以实现高效的信号放大和传输。
4.3 光学波长转换相位匹配技术可以实现光学波长转换,将输入光波的频率转换为不同的频率。
相位匹配

§2.5 相位匹配在三波非线性耦合波方程中,相位失配因子312k k k k ∆=--起重要作用。
若0k ∆=非线性相互作用就会得到增强;若0k ∆≠,三波相互作用则会减弱。
为获得强的非线性光学过程,通常希望0k ∆=,此称相位匹配条件。
如何满足相位匹配条件,是实用中需要解决的关键问题之一。
一般情况下,三波非线性相互作用发生在介质的透明区,即介质与光场无能量交换,此时三波应满足能量守恒定律和动量守恒定律。
123123,k k k ωωω+= += (2.5.0-1)这里动量守恒就是相位匹配条件0k ∆=,若三波共线传播,相位匹配条件为312123n n n λλλ+= (2.5.0-2)本节主要讨论实现相位匹配的方法,包括利用晶体双折射的角度相位匹配,晶体折射率对温度较敏感的温度相位匹配,将铁电畴晶体极化方向进行周期性反转的准相位匹配方式。
2.5.1 晶体的菲涅尔法线方程设光波为单色平面波,电位移矢量D 、电场矢量E 和磁场强度H 表示为:()()()000i k e r t i k e r t i k e r tD D eE E eH H eωωω⋅-⋅-⋅-=== (2.5.1-1)式中:e 为波矢方向上的单位矢量,上式代入Maxwell 方程组0B H E t tDH t μ∂∂∇⨯=-=-∂∂∂∇⨯=∂ (2.5.1-2)相当于用i ω-置换t ∂∂,用ike 置换算符∇,并利用n k cω= 0ce E Hnce H Dnμ⨯=-⨯= (2.5.1-3)消去H ,并利用2001c με=()()()202020D n e e En e e E Ee e n E e e E εεε=-⨯⨯⎡⎤=-⋅-⋅⎣⎦⎡⎤=-⋅⎣⎦(2.5.1-4)上式是Maxwell 方程组的直接推论,决定了电磁波在晶体中的传播性质,是描述晶体光学性质的基本方程。
()()1001rD E E εχεε=+= (2.5.1-5)()1χ是一个对称张量,因而晶体的相对介电张量r ε也是一个对称张量,经过主轴变换后的介电常数张量是对角张量,0000xx r yyzz εεεε⎛⎫ ⎪= ⎪ ⎪⎝⎭ (2.5.1-6) ,,xx yy yy εεε称为相对主介电常数。
如何在晶体中实现相位匹配

相位匹配技术在光学二次谐波过程中经常要求倍频光和基频光满足相位匹配条件,下面我们将讨论一下如何在晶体中实现相位匹配条件。
倍频光和基频光共线的相位匹配条件是:0231=-=∆k k k(1.1) 由波矢公式nck ω=,得到ωωωω222n c n c=或 ωω2n n = (1.2)为描述光波在各向异性介质中传播可以用折射率椭球方法。
设想在主轴坐标系xyz o 中建立方程,即1222222=++zyxn zn yn x(1.3)y图 1-1对于各向异性的单轴晶体,若选z 轴为光轴c ,则有0n n n y x ==,0n n n e z ≠= 折射率椭球为:1222222=++eoonz ny nx (1.4)若o e n n >,为正单轴晶体;若o e n n <为负单轴晶体。
取椭球在zoy 面上的投影椭圆y图 1-2椭圆方程为:12222=+eonz ny (1.5)如图(1-2)[][]1sin )(cos )(2222=+-ee oe nn nn θθθθ (1.6)22222cos sin )(1oee n n n θθθ+=(1.7)令θπβ-=2/则方程(1.7)可化为:[][]1sin )(cos )(2222=+oe ee nn nn βθβθ(1.8) 以β为极角,)(θe n 为极径建立极坐标系,则图形仍为椭圆。
图1-3对负单轴晶体,即e o n n >,其o 光折射率与e 光折射率椭圆如图1-4所示图1-4很显然,图中ω2的e 椭圆与ω的o 椭圆的交点处满足相位匹配条件 由方程组[]22222222)(cos )(sin )(1ωωωθθθo m e m en n n +=(1.9)[]22222)()2/(cos )()2/(sin )2/(1ωωωπππo e en n n+=(1.10)得 222222222)()()()()(sin ωωωωωωθe o o o oem n n n n n n --= (1.11)这称为第一类相位匹配,表示为e o o →+图1-5如图1-5,可以通过调节光轴C 和和入射波矢之间的夹角θ,使之满足式(1.11),实现角度相位匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相位匹配及实现方法
实验证明,只有具有特定偏振方向的线偏振光,以某一特定角度入射晶体时,才能获得良好的倍频效果,而以其他角度入射时,则倍频效果很差,甚至完全不出倍频光。
根据倍频转换效率的定义
ω
ω
2ηP P =,(15)
经理论推导可得
2
ω
22
2)2/()2/(sin ηE L d k L k L •••∆•∆•∝。
(16)η与L ·∆k/2关系曲线见图1。
图中可看出,要获得最大的转换效率,就要使L ·∆k/2
=0,L 是倍频晶体的通光长度,不等于0,故应∆k =0,即
0)n n (4221
21=−λπ=
−=∆ωω
k k k ,
(17)
就是使
ωω=2n n ,(18)
n ω和n 2ω分别为晶体对基频光和倍频光的折射率。
也就是只有当基频光和倍频光的折射率相等时,才能产生好的倍频效果,式(18)是提高倍频效率的必要条件,称作相位匹配条件。
由于v ω=c/n ω,v 2ω=c/n 2ω,v ω和v 2ω分别是基频光和倍频光在晶体中的传播速度。
满足(18)式,就是要求基频光和倍频光在晶体中的传播速度相等。
从这里我们可以清楚地看出,所谓相位匹配条件的物理实质就是使基频光在晶体中沿途各点激发的倍频光传播到出射面时,都具有相同的相位,这样可相互干涉增强,从而达到好的倍频效果。
实现相位匹配条件的方法:由于一般介质存在正常色散效果,即高频光的折射率大于低频光的折射率,如n 2ω―n ω大约为10-2数量级。
∆k ≠0。
但对于各向同性晶体,由于存在双折射,我们则可利用不同偏振光间的折射率关系,寻找到相位匹配条件,实现∆k =0。
此方法常用于负单轴晶体,下面以负单轴晶体为例说明。
图2中画出了晶体中基频光和倍频光的两种不同偏振态折射率面间的关系。
图中实线球面为基频光折射率面,虚线球面为倍频光折射率面,球面为o 光折射率面,椭球面为e 光折射率面,z 轴为光轴。
图1倍频效率与L ·∆k/2的关系
相对光强
-2π2ππ-πL ·∆k/2
折射率面的定义:从球心引出的每一条矢径到达面上某点的长度,表示晶体以此矢径为波法线方向的光波的折射率大小。
实现相位匹配条件的方法之一是寻找实面和虚面交点位置,从而得到通过此交点的矢径与光轴的夹角。
图中看到,基频光中o 光的折射率可以和倍频光中e 光的折射率相等,所以当光波沿着与光轴成θm 角方向传播时,即可实现相位匹配,θm 叫做相位匹配角,θm 可从下式中计算得出
2
2o 2
2e 2
2o 2o m 2)n ()n ()n ()n (sin −ω−ω−ω−ω−−=θ,
(19)
式中ω
ωω2e 2o o n ,n ,n 都可以查表得到,表1列出几种常用的数值。
表1相位匹配角
晶体λ/μm n o n e θm 铌酸锂 1.06 2.231 2.15087o
0.53 2.320 2.230碘酸锂 1.06 1.860 1.71929o 30′0.53 1.901 1.750KD*P
1.06 1.495 1.45530o 57′0.53
1.507
1.467
注意,相位匹配角是指在晶体中基频光相对于晶体光轴z 方向的夹角,而不是与入射面法线的夹角。
为了减少反射损失和便于调节,实验中一般总希望让基频光正入射晶体表面。
所以加工倍频晶体时,须按一定方向切割晶体,以使晶体法线方向和光轴方向成θm ,见图3。
以上所述,是入射光以一定角度入射晶体,通过晶体的双
折射,由折射率的变化来补偿正常色散而实现相位匹配的,
这称为角度相位匹配。
角度相位匹配又可分为两类。
第一类是入射同一种线偏振光,负单
轴晶体将两个e 光光子转变为一个倍频的o 光光子。
第二类是入射光中同时含有o 光和e 光两种线偏振光,负单轴晶体将两个不同的光子变为倍频的e 光光子,正单轴晶体变为一个倍频的o 光光子。
见表2
表2单轴晶体的相位匹配条件
晶体种类第一类相位匹配第二类相位匹配
偏振性质相位匹配条件偏振性质相位匹配条件正单轴o e e →+ωω=θ
2o m e n )(n o e o →+ω
ωω=θ+2o
m e o n )](n n
[2
1图2负单轴晶体折射率球面
图3非线性晶体的切割
晶体
图5基频光与倍频光的脉宽及相对线宽的比较
I ωI 2ω
t 1t 2t 1t t 1′t 2′t 2t
ν1ν1′
ν2′ν2νν
负单轴
e
o o →+)
(n n m 2e o θ=ω
ωe
o e →+)(n ]n )(n [2
1m 2e o m e θ=+θω
ωω本实验用的是负单轴铌酸锂晶体第一类相位匹配。
相位匹配的方法除了前述的角度匹配外,还有温度匹配,这里不作细述。
在影响倍频效率的诸因素中,除前述的比较重要的三方面外,还需考虑到晶体的
有效长度L s 和模式状况。
图4为晶体中基频光和倍频光振幅随距离的变化。
如果晶体过长,例L>L s 时,会造成倍频效率饱和;晶体过短。
例L<L s ,则转换效率比较低。
L s 的大小基本给出了倍频技术中应该使用的晶体长度。
模式的不同也影响转换效率,如高阶横
模,方向性差,偏离光传播方向的光会偏离
相位匹配角。
所以在不降低入射光功率的情况下,以选用基横模或低阶横模为宜。
1.5.倍频光的脉冲
宽度和线宽
通过对倍频光脉冲宽度t 和相对线宽v 的观测,还可看到两种线宽都比基频光变窄的现象。
这是由于倍频光强与入射基频光强的平方成比例的缘故。
图5中,假设在t =t 0时。
基频和倍频光具有相同的极大值。
基频光在t 1和t 1'时,功率为峰
值的1/2,脉冲宽度∆t 1=t 1'―t 1,而在相同的时间间隔内,倍频光的功率却为峰值的1/4,倍频光的半值宽度t 2'―t 2<t 1'―t 1,即∆t 2<∆t 1,脉冲宽度变窄。
同样道理可得到倍频后的谱线宽度也会变窄。
1064→532:
I 类匹配为theta=90phi=11.4@25C II 类为theta=20.9phi=90@25C
LBO 匹配分两种,一种为非临界相位匹配,一种为临界相位匹配即角度匹配.后一种都是在常温下使用的,也可以根据不同的工作温度进行角度的调整。
L s L 2L s
图4晶体中基频光和倍频光振幅随距离的变化。