涡轮发动机喘振分析及预防措施
发动机喘振故障的形成原因及防范措施(正式)

编订:__________________单位:__________________时间:__________________发动机喘振故障的形成原因及防范措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-4642-29 发动机喘振故障的形成原因及防范措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。
发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。
本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。
关键词:发动机喘振空气压力故障1失速与喘振的概述工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。
影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方向)。
在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。
失速区九朝着与叶片旋转方向相反的方向移动。
这种移动失速比周围速度要小,所以站在绝对坐标系上观察时,失速区以较低的转速与压气机叶轮做同方向的旋转运动,称为旋转失速。
2发动机内部空气系统发动机工作时,外界空气经直升机上的进气道流入压气机,首先在轴流压气机中得到压缩,然后再进入离心压气机被进一步压缩。
某辅机增压器喘振故障分析与排除

柴油机增压器喘振故障分析与排除杜善刚洪哲(驻军某部装备部)在柴油机维修中,咱们常常碰到柴油机废气涡轮增压器喘振故障,在柴油机各个工况下都有可能发生。
装备一台增压器的可能会瞬时或在一段时刻内重复发生喘振,装备多台增压器的可能会显现交替喘振。
其中引发缘故比较复杂,与柴油机本身、系统及人员操纵等诸方面因素都有较大的关系。
现以某船右主机喘振为例,将其喘振故障的缘故分析及处置进程综述如下。
一、故障现象柴油主机型号为12E390VA 型,额定转速为463转/分,双主机呈左右舷布置。
增压器型号为GZ380型,共计4台,左右排各2台,左排2台增压器分为前左、后左,右排2台增压器分为前右、后右。
柴油机每3缸排气供给一台增压器,增压方式为脉冲式增压。
前左、前右两台增压器利用前空气冷却器,冷却空气进入左右扫气箱。
后左、后右两台增压器利用后空气冷却器,冷却空气进入左右扫气箱。
在某次修理后的海试期间右主机发生增压器喘振,具体情形为:在主机加至360转/分后,2台主机运转正常。
达到规按时刻后加至390转/分时,右主机前右增压器当即发生振动并显现呼哧呼哧噪音,用手可感觉到增压器压气端向外吐气,其相关一、二、3号缸排烟温度迅速上升,达430℃左右(单缸排温最大值)。
柴油机转速降至360转/分后,喘振现象当即消失。
二、故障分析与解决结合本机型的具体结构特点,从柴油机利用角度动身,将凡能够引发柴油机废气涡轮增压器喘振的缘故罗列如下:一、空气系统阻力增加。
如消音器滤网阻塞、空冷器污垢阻塞、喷嘴环结碳或变形。
二、负荷转变太快。
如操作人员急加速或急减速。
3、供油系统工作不正常。
如喷油泵柱塞咬死、喷油器喷油压力太低个别缸断油或高压油管断裂等。
4、船体污底严峻、超载、大风浪等。
五、大气条件转变。
如机舱通风机未开或通路受阻,压气机空气流量受阻。
六、两台增压器并联工作时,彼其间工作不平稳。
7、涡轮排气背压高。
如废气道阻塞或废热锅炉排烟受阻等。
八、供空冷器冷却的海水系统故障。
汽车涡轮增压器轻度喘振识别及噪声控制

汽车涡轮增压器轻度喘振识别及噪声控制s1、前言随着汽油价格的不断攀升和环境问题的日益突出,制造低油耗低排放的汽车,成为各汽车厂商提升产品竞争力的方向,其中的一个趋势就是采用涡轮增压技术。
涡轮增压技术可在不增加发动机排量的基础上,采用压缩空气的方式向发动机供应额外的新鲜空气,燃烧更多的燃料,从而发出更多的动力。
由于进入气缸的空气增多,燃烧过程得到改善,有害气体的排放减少。
虽然涡轮增压技术可以提高动力性、经济性和减少排放,但它同时会带来新的NVH 问题,涡轮增压器的喘振噪声问题就是其中之一。
目前国内对汽车涡轮增压器喘振的研究,主要集中在深度喘振上[1-3],关注重点是其对发动机动力性及涡轮增压器可靠性的影响,对于轻度喘振和喘振噪声的研究很少。
国外对涡轮增压器轻度喘振及喘振噪声的研究较为深入,但大多是在台架上进行单体的研究[4-5],针对整车上具体情况的研究较少。
本文先介绍了整车上涡轮增压器喘振识别工况及各种识别方式的优劣,再从源控制和路径控制两方面系统介绍了涡轮增压器喘振噪声的解决措施,后利用压缩机进口温度和出口压力的波动,识别出某汽车车内令人烦躁的“赫赫”声为涡轮增压器喘振引起,并针对此噪声进行控制。
本文提出了3种整车喘振噪声识别工况,并从压缩机进口温度、出口压力和车内噪声三个维度综合分析,识别出某车的噪声问题是增压器轻度喘振引起。
为解决此问题,设计了一种由多根四分之一波长管组合而成的新型消声器(排箫式消声器),成功的解决了该噪声问题,对后续整车开发具有一定的指导意义。
2、涡轮增压器喘振识别目前汽车行业对整车上的涡轮增压器喘振还没有统一的定义和识别标准,国内的汽车厂商一般都是在实验过程中依靠经验,通过喘振噪声来进行判断。
图1为压缩机运行特性示意图,转子转速一定,当流量减小时,增压比先是增大,随着流量的继续减小,压比值达到最大,最后随流量的减小开始下降。
当压缩机中气体流量减小到某一个值时,涡轮增压器运行工况进入轻度喘振区域,此种喘振对涡轮增压器运行效率影响很小,产生的主要问题是噪声问题。
船用柴油机废气涡轮增压器喘振现象分析

船用柴油机废气涡轮增压器喘振现象分析摘要:大型船用柴油机广泛应用废气涡轮增压技术, 喘振是增压器一种典型现象,本文阐述了增压器喘振产生的机理和成因,并结合多年来的实际经验对增压器的日常维护管理提出了使用建议。
关键词:船用柴油机;废气涡轮增压器;喘振现象一、概述目前,大型船舶上不论是主动力柴油机还是发电机组柴油机,都普遍采用废气涡轮增压器,其基本原理就是利用柴油机排出的废气能量,驱动涡轮高速旋转,带动与涡轮同轴的压气机叶轮高速旋转,压气机将空气压入发动机的气缸,增加了发动机的进气量,可供更多的燃油完全燃烧,从而提高了柴油机的功率,并且充分利用柴油机的废气能量,提高了柴油机的经济性。
涡轮增压器是柴油机上主要部件,目前一台柴油机根据气缸数和进气量可以装备有2台增压器和4台增压器(2至3个气缸使用一个增压器)。
增压器处在高温高压和高速运转的工作状况,工作环境恶劣,各种机械故障多发,比如叶片烧蚀、轴承抱死等故障,可以这样说增压系统工作的好坏,直接影响着柴油机的工作乃至整个船舶的正常运营。
近些年来,船舶柴油机上的涡轮增压器故障越来越令人关注,在废气涡轮增压器故障中,又以压气机的喘振最容易发生也最为常见。
因此,对涡轮增压器喘振分析十分必要。
二、喘振概念和机理概念:压气机在工作中,由于种种原因使进入压气机的空气流量减少,导致气流在扩压器中发生旋涡分离,甚至出现倒流,产生压力波动,因而引起涡轮增压器的结构振动,并发出喘叫声,这种现象称为喘振。
机理:当流量小于设计值很多时,叶轮进口和扩压器叶片内产生强烈的气流分离引起喘振。
在叶片扩压器进口处,当转速一定,而流量变化时的气体流动情况如图 1 所示。
当流量等于设计值时,气流速度 c2 的方向与叶片进口的构造角相一致,气流能平顺地进入叶片通道,如图 1(a)所示。
当流量大于设计值时,气流径向分速ω2 增加,使气流速度 c2 增加,且 c2 的方向也偏离设计值,导致气流以某一冲角进入叶道,并在叶片凸面引起气流脱离,如图 1(b)所示。
燃气轮机喘振故障分析

燃气轮机喘振故障分析摘要:喘振是燃气轮机运行过程中常见的故障之一,导致其发生的原因很多,而且一旦发生将会对设备的正常运行产生严重的影响,不但会增加能耗、降低生产效率,同时还会缩短设备使用年限。
为有效解决燃气轮机喘振故障的发生,就需要结合设备自身特点,从实际生产角度出发,对各项影响因素进行分析,选择合适的措施进行管理,争取不断提高燃气轮机运行效果。
本文对燃气轮机喘振故障原因以及处理措施进行了分析。
关键词:燃气轮机;喘振;振动特征燃气轮机是天然气和电力行业生产中重要设备,具有结构紧凑、运行安全、热效率高以及污染少等优点。
但是其在运行过程中会受外界因素影响,导致设备在运行时出现喘振故障,对设备性能与安全造成影响。
1.燃气轮机喘振故障分析燃气轮机出现喘振故障主要是因为气流脱离,在设备运行过程中,受叶轮旋转因素影响,会使得气流脱离情况迅速扩大到整个燃气轮机通道,造成通道堵塞。
因为前方通道被气流堵塞,出口反压降低,当出口反压降低到一定限度后,通道堵塞情况会解除,这样堵塞在通道内的气流会一涌而下,最终进入到压气机内的空气流量超过设备后方所能排泄的流量,反压急剧增高再次形成通道堵塞现象。
2.燃气轮机喘振故障原因分析2.1机组偏离设计工况在压气机中出现不稳定的喘振现象,主要是因为在压气机在启动和停止的过程中,气体流量减小到一定程度时,继而发生了气流的脱离现象而引起旋转失速,当气体体积流量持续减少时,旋转失速加剧从而引发了不稳定的喘振现象。
2.2防喘放气阀未打开防止喘振的主要方法为在压气机在启动和停止的过程中,压气机内部空气的空气流量和压力的变化幅度较大,用防喘阀通过对压气机进出口气流量的调节,从而防止喘振的发生。
然而在防喘阀失灵、空气流量和压力变化较大,喘振现象也会有发生的可能。
现实工作经常性的维护与巡视,可以有效的避免喘振发生。
2.3气流通道堵塞由于气流中杂质长期累积导致气流通道内结垢堵塞,从而导致了气体流动阻力增加,引起了体积流量减少,从而容易发生喘振的故障。
发动机喘振故障的形成原因及防范措施

发动机喘振故障的形成原因及防范措施姓名:XXX部门:XXX日期:XXX发动机喘振故障的形成原因及防范措施摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。
发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。
本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。
关键词:发动机喘振空气压力故障1失速与喘振的概述工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。
影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方向)。
在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。
失速区九朝着与叶片旋转方向相反的方向移动。
这种移动失速比周围速度要小,所以站在绝对坐标系上观察时,失速区以较低的转速与压气机叶轮做同方向的旋转运动,称为旋转失速。
2发动机内部空气系统发动机工作时,外界空气经直升机上的进气道流入压气机,首先在轴流压气机中得到压缩,然后再进入离心压气机被进一步压缩。
压缩后的高压空气进入燃烧室,与燃油混合燃烧,生成高压高温的燃气。
从燃烧室出来的燃气流向涡轮,首先在燃气发生器涡轮中膨胀做功,带动压气机工作;然后燃气进入自由涡轮中进一步膨胀做功,从而向外提供功率,驱动直升机旋翼等工作。
2.1篦齿(或称迷宫)封严装置的密封原理。
篦齿封严装置(或称第 2 页共 6 页迷宫封严装置)是利用篦齿前后空气的压差来达到密封目的。
增压空气从压力高的一侧通过篦齿装置很小的间隙流向压力低的一侧,空气的流量被限制得尽可能小,而且始终沿从压力高到压力低的方向流动,如此,压力较低的那一侧(例如滑油腔)就被空气密封,滑油不能从篦齿处泄出。
2.2发动机前部的内部空气流路。
引用轴流压气机后的压缩空气(p1′),用于压气机前后轴承篦齿封严装置的密封。
航空燃气涡轮发动机喘振问题分析

航空燃气涡轮发动机喘振问题分析学生:刘哲指导老师:周长春摘要随着我国民航的迅速发展,飞机的数量和种类越来越多,对飞行安全的要求更高,发动机的好坏是保证飞行安全的关键,发动机出问题,直接影响到整个飞行安全,本文通过分析喘振对发动机使用性能及发动机经济性能方面的影响,指出了发动机喘振形成的根本原因,喘振的形成及喘振对飞机的危害,并指出这些影响在飞行中的实际意义和避免喘振的措施。
关键词:发动机;喘振;气流分离;防喘;综述英文摘要:引言1903年12月7日“飞行者”1号,成功载入动力飞行,随着飞机广泛应用在军事、运输领域,航空工业尤其是民用航空业得到迅速发展,人们对飞机的性能也提出了更高的要求,如战斗机较高的机动性能,民用飞机较好的经济性及可靠性等。
飞机性能的提高,在很大程度上取决动力装置的发展,人们需要推力更大,速度、高度性能更好的动力装置。
实践证明。
燃气涡轮发动机能够满足这些要求。
发动机是现代飞机重要的组成部分,发动机的工作对飞机的飞行安全和效益起着决定性的作用,所以装在航线运输机上的燃气涡轮发动机应满足下列基本性能要求:1 发动机推力大,重量轻。
在发动机重量一定时,发动机发出尽可能大的推力,尤其是是起飞推力,可有效改善飞机的起飞、复飞及爬升性能。
2 发动机燃油消耗率低。
在一定的飞行条件下,发动机燃油消耗率越低,发动机工作效率越高,经济性越好;同时油耗越低,航线飞行载油量可相对减小,从而降低运行成本。
3 发动机应具有良好的高空性能和速度性能。
一方面,飞机应能爬升到11,000米左右,因随着高度上升,大气温度降低,可提高发动机的工作效率,改善发动机的经济性,同时,在平流层飞行,气象条件较稳定,增加了飞机安全性和舒适性;另一方面,在确保发动机的工作效率条件下,尽可能提高飞行速度,可缩短飞行时间,目前,高涵道涡扇发动机能确保飞机在高亚音速范围飞行。
4 发动机结构尺寸要小。
发动机的结构尺寸主要是指发动机的迎风面积和长度,适应缩小发动机结构尺寸可减小发动机飞行阻力,减轻发动机重量。
航空燃气涡轮发动机喘振问题分析

航空燃气涡轮发动机喘振问题分析学生:刘哲指导老师:周长春摘要随着我国民航的迅速发展,飞机的数量和种类越来越多,对飞行安全的要求更高,发动机的好坏是保证飞行安全的关键,发动机出问题,直接影响到整个飞行安全,本文通过分析喘振对发动机使用性能及发动机经济性能方面的影响,指出了发动机喘振形成的根本原因,喘振的形成及喘振对飞机的危害,并指出这些影响在飞行中的实际意义和避免喘振的措施。
关键词:发动机;喘振;气流分离;防喘;综述- 1 -航空燃气涡轮发动机喘振问题分析英文摘要:- 2 -航空燃气涡轮发动机喘振问题分析引言1903年12月7日“飞行者”1号,成功载入动力飞行,随着飞机广泛应用在军事、运输领域,航空工业尤其是民用航空业得到迅速发展,人们对飞机的性能也提出了更高的要求,如战斗机较高的机动性能,民用飞机较好的经济性及可靠性等。
飞机性能的提高,在很大程度上取决动力装置的发展,人们需要推力更大,速度、高度性能更好的动力装置。
实践证明。
燃气涡轮发动机能够满足这些要求。
发动机是现代飞机重要的组成部分,发动机的工作对飞机的飞行安全和效益起着决定性的作用,所以装在航线运输机上的燃气涡轮发动机应满足下列基本性能要求:1 发动机推力大,重量轻。
在发动机重量一定时,发动机发出尽可能大的推力,尤其是是起飞推力,可有效改善飞机的起飞、复飞及爬升性能。
2 发动机燃油消耗率低。
在一定的飞行条件下,发动机燃油消耗率越低,发动机工作效率越高,经济性越好;同时油耗越低,航线飞行载油量可相对减小,从而降低运行成本。
3 发动机应具有良好的高空性能和速度性能。
一方面,飞机应能爬升到11,000米左右,因随着高度上升,大气温度降低,可提高发动机的工作效率,改善发动机的经济性,同时,在平流层飞行,气象条件较稳定,增加了飞机安全性和舒适性;另一方面,在确保发动机的工作效率条件下,尽可能提高飞行速度,可缩短飞行时间,目前,高涵道涡扇发动机能确保飞机在高亚音速范围飞行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国民用航空飞行学院高等教育自学考试毕业论文论题涡轮发动机喘振分析及预防措施姓名王强专业航空维修工程管理准考证号************指导教师杜英杰完成日期 2012年6月16日中国民用航空飞行学院涡轮发动机喘振分析及预防措施摘要发动机是飞机的心脏,发动机的正常运转保证了飞机的安全。
发动机的喘振是发动机的所有故障中最有危害性的一个。
现就从喘振的形成,发生的条件,预防措施及使用维护中注意的事项做以下浅析。
压气机喘振是气流沿压气机轴线方向发生的低频率,高振幅的震荡现象。
这种低频率高振幅的气流振荡是一种很大的激振力来源,它会导致发动机机件的强烈机械振动和热端超温,并在很短的时间内造成机件的严重损坏,所以在任何状态下都不允许压气机进入喘振区工作。
喘振时的现象是:发动机的声音由尖哨转变为低沉;发动机的振动加大;压气机出口总压和流量大幅度的波动;转速不稳定,推力突然下降并且有大幅度的波动;发动机的排气温度升高,造成超温;严重时会发生放炮,气流中断而发生熄火停车。
因此,一旦发生上述现象,必须立即采取措施,使压气机退出喘振工作状态。
关键词:涡轮发动机;喘振;超温;预防措施;Abstract:The engine is the heart of the plane’s engines ensures the normal operation of the security. The engine surge is the engine of the most dangerous of all faults. Now from the formation of the surge, the change in condition, the preventive measures and use maintenance notices do the following analyzed.Air compressor surge is along the axis of the compressor happened low frequency and high amplitude the oscillation of the phenomenon. This kind of low frequency oscillation amplitude of high flow is a big shock source; it can lead to engine parts of strong mechanical vibration and hot end of overheating, and in a very short period of time cause serious damage to illustrate, so in any state are not allowed into the compressor surge area work.Surge is the phenomenon: the voice of the engine by whistle into deep pointed; The engine vibration increase; Compressor export total pressure and flow of the fluctuation of greatly; Speed is not stable, thrust down and suddenly there is a big wave; The engine exhaust temperature, cause overheating; Serious while happens, the air of interrupts occurred parking stall.Therefore, once the occurrence of the above phenomenon, must take immediate measures to make the compressor exit surge working state.目录摘要 (2)前言 (5)第一章喘振的认识 (6)1.1压气机工作原理 (6)1.1.1基元级速度三角形 (6)1.1.2增压原理 (6)1.2喘振的定义 (8)1.3喘振的表现及危害 (9)1.4案例 (9)第二章造成发动机喘振的原因 (11)2.1气流分离 (11)2.2叶片槽道的扩压性 (13)2.3旋转失速 (14)第三章喘振的预防及应采取的措施 (15)3.1通过改进发动机结构设计以预防喘振 (15)3.2 通过设计喘振控制系统来防止喘振的发生 (16)3.2.1压气机中间级放气 (16)3.2.2可旋转导向叶片 (17)3.2.3控制供油规律 (19)3.3正确操作, 精心维护发动机 (19)3.4 飞行过程中发动机喘振采取的措施 (19)3.4.1 选取合适的主、副油路节流嘴直径 (19)3.4.2 提高升压限制器退出工作点 (20)3.4.3 选择动态性能较好的定压活门 (20)3.4.4 选择合适的层板节流器 (21)第四章结论 (21)第五章致谢 (22)第六章参考文献 (23)前言近几十年来, 随着航空事业的发展, 飞行器的安全性和可靠性越来越引起人们的重视, 特别是民用客机,一旦发生故障,轻则影响飞机的性能,重则机毁人亡,后果不堪设想。
航空发动机是飞机的心脏, 而发动机的喘振问题一直制约着涡轮发动机的发展, 影响发动机的性能,同时发动机的喘振是发动机的所有故障中最有危害性的一个,是对民用客机安全以及整个航空事业发展的巨大威胁。
民用客机要求安全、可靠、经济。
安全是民用飞机设计首要考虑的问题。
要达到安全的目的,必须符合最基本的适航性要求, 即,要求航空器包括部件及子系统整体性能和操纵特性在预期运行环境和使用限制下具有安全性和物理完整性品质。
这种品质要求航空器应始终处于符合其型号设计和安全运行状态。
本篇论文从产品设计、修理工艺和维护使用三方面进行分析,使我们更能清楚的了解飞机发动机喘振的形成,发生的条件,预防措施及使用维护中注意的事项。
第一章喘振的认识1.1压气机工作原理1.1.1基元级速度三角形轴流压气机由多级组成,每级由一圈转子和静子级成。
如果我们用某直径的圆柱面取压气机的一个级,并展现为平面,即得一个两排平面叶栅组成的基元级。
基元级是压气机的基本元素当气流经过动叶栅(转子),在它的前后两个速度三角。
如图1-1-11-1-1V 表示绝对速度, w 为相对速度, u 为转缘速度由于轴流压气机级的增压比小,且在压气机级前后流程通道尺寸径向尺寸逐渐缩小,所假定在压气机级的进出口的轴向分速不变,即V2a=V3a。
如再假定V1 、V3 方向一致,就可将叶轮前后的两个速度三角形画在一起。
1.1.2增压原理从速度三角形看,气流经过动叶栅,相对速度从W1降为W2,绝对速度从V1升到V2,叶轮轮缘做功,下式右边第一项为气流经过转子所获动能,第二项表示气流经过转子有多少相对动能转化为气体静压的提高,由于转子叶片对气流做功增加气流速度,根据气动原理,它的冲压也增加,但这些增加量还比不上扩压的影响,如图1-1-2a1-1-2a当气流流过转子叶片时,叶片剖面形状决定了通道是扩散的。
根据伯努力原理,气流的静压增强。
当流过静子叶片时,动能没增加,气流速度冲压会下降,其下降数量是前一级转子中所增加的值,由于静子叶片形成通道也是扩散的,它的静压也增加,这样气流通过每一基元级时速度几乎不变,而压力(冲压和静压的总和)增加了,气流通过整个压气机时达到了压力增大的设计目的。
如图1-1-2b1-1-2b压气机能增加气流压力,主要是压气机涡轮输入的能量,而每个转子或静子与气流之间都要有一定攻角,这样就在每个叶片上下表面形成不同的压力区,如下图1-1-2c1-1-2c而这样排列又使相邻两个级的压力区相互影响,我们称它为瀑布效应,正是这种效应使气流进入压气机就像进入泵中一样,气流在第一级转子高压区被压入第一级静子低压区以此方式气流流过整个压气机。
1.2喘振的定义压气机喘振是指气流沿压气机轴线方向发生的低频率(通常有几赫或十几赫)、高振幅(强烈的压强和流量波动)的气流振荡现象。
我们在研究压气机特性线时已经指出:在压气机特性线中的左侧,有条喘振边界线。
假如流经压气机的空气流量减小到一定程度,而使运行情况进入到喘振边界线的左侧,那么,整台压气机就不能稳定工作。
那时,空流量就会出现波动,忽大忽小;压力出现脉动,时高时低;到严重时,甚至会出现气流从压气的进口处倒流出来的现象;同时还会伴随着低频的怒吼声响;这时还会使机组产生强烈的振动现象。
这种现象通常称为喘振现象。
在飞机的实际运行中,我们决不能容许压气机在进入喘振状况。
以上图片是发动机压气机特性曲线1-21-21.3喘振的表现及危害喘振时的现象是:发动机的声音由尖哨转变成为低沉;发动机的振动加大;压气机出口总压和流量大幅度的波动;转速不稳定,推力突然下降并且有大幅度的波动;发动机的排气温度升高,造成超温;严重时会发生放炮,气流中断而发生熄火停车。
因此,一旦发生上述现象,必须立即采取措施,使压气机退出喘振工作状态。
1.4案例① 2007年12月18日下午3点过,一架空中客车客机在飞行中引擎发生故障,5辆消防车、3辆救护车在广州白云国际机场等候该客机降落。
3点45分,飞机安全在原定地点降落。
这架杭州飞往广州的航班,航班号为CZ3804,正常情况下,航班下午1点20分从杭州起飞,3点在广州降落。
18日下午3点35分,广州白云国际机场工作人员黄先生告诉记者,CZ3804在广州白云国际机场上空盘旋,而机场上有5辆消防车、3辆救护车在等候飞机降落。
机场工作人员周先生也对此作了证实。
周先生说,飞机左发动机出现故障,不能正常降落。
下午3点45分左右,这架空客320飞机,在地面人群关注下,安全降落在广州白云国际机场。
飞机上数十名乘客走出机舱,面色平静。
随后,消防车和救护车离开现场。
18日下午4点25分,记者赶到广州白云国际机场时,远远看到一辆拖车,将这辆航班号为CZ3804的飞机拖走。
拖行过程中,飞机没有亮灯,飞机被拖到广州白云国际机场维修处后,发动机被取了下来,用货车运走。
据该航空公司广州分公司宣传部负责人说,这架飞机在飞行过程中出现了“机器疲劳”,发生“喘振”现象。
据其介绍,“喘振”现象全国民航每年大约发生60次。
此次事件中,飞机降落到预定地点,为避免给飞机上的乘客造成恐慌,事先并未知会乘客。
该负责人表示,机场方面之所以派出消防车和救护车,是启动了应急预案,是机场方面对此的重视,并不是说飞机遭遇了太大的危险。