激光加工技术在机械制造领域中的应用与发展

合集下载

激光加工技术的研究进展与应用前景

激光加工技术的研究进展与应用前景

激光加工技术的研究进展与应用前景激光加工技术是一种高新技术,具有高精度、高速度、高效率等优点,在制造、材料加工、医疗等领域有着广泛的应用前景。

本文将从激光加工技术的研究进展及其应用前景方面进行探讨。

一、激光加工技术的研究进展自从激光加工技术出现以来,其快速发展已有50多年的历史。

激光加工技术的研究重点包括激光加工光学系统、激光加工控制系统、激光加工数控技术等内容。

激光加工光学系统包括激光器、光纤、反射镜、平台等组件。

随着激光技术的不断发展,激光器的功率越来越高,光纤的传输损失也越来越小,反射镜和平台的准确度也得到了极大地提高,从而使得激光加工的高精度和高效率得到保证。

激光加工控制系统是激光加工技术中的关键环节,它涉及到激光加工过程中的位置控制、速度控制、功率控制等方面。

在这个领域,计算机的应用以及软硬件的提高,为激光加工技术的精度和效率提供了坚实的支撑。

激光加工数控技术是指数字化控制技术在激光加工领域的应用。

数控技术使得激光加工技术变得更加智能化,为精密加工提供了良好的手段。

目前,数控技术已广泛应用于激光加工领域,成为激光加工的主要手段之一。

二、激光加工技术的应用前景1. 制造领域在制造领域,激光加工技术可以用于各种各样的精密加工,如微细孔加工、激光切割、激光打标、激光焊接等处理过程。

激光加工技术可以实现高精度、高效率的加工,使得制造业实现了从传统的手工制造向智能化、数字化等方向的转型,从而在产品品质、生产效率等方面实现了质的飞跃。

2. 材料加工领域在材料加工领域,激光加工技术可以进行复杂的材料加工,如激光精密切割、激光打孔等。

激光加工技术对材料的切割、打孔等操作可以达到无损伤效果,避免了机械切割方式中可能产生的热变形、剪切毛刺等问题,同时也可以使材料加工速度快速的提高,从而为材料加工领域的进一步发展提供了重要的技术支撑。

3. 医疗领域在医疗领域,激光加工技术也得到了广泛的应用。

如激光治疗、激光切割等。

激光制造技术的应用与发展趋势

激光制造技术的应用与发展趋势

激光制造技术的应用与发展趋势激光制造技术是一项重要的现代制造技术。

它的应用范围广泛,可以用于制造各种高精度、高质量的零部件、元件和产品。

激光制造技术的发展趋势也非常明显,未来它将继续向着高效、高精度、智能化和多功能化的方向发展。

一、激光制造技术的应用激光制造技术主要包括激光切割、激光焊接、激光打标、激光烧结、激光雕刻和激光清洗等方面。

这些应用领域很广,可以应用到机械加工、电子、光学、医药、军事等领域。

下面就来详细介绍一下激光制造技术的主要应用。

1、激光切割激光切割是利用高能激光束对材料进行熔化、蒸发和燃烧,将材料切割成所需形状的加工技术。

激光切割技术具有高速、高精度、无残余、无变形等特点,广泛应用于金属材料、非金属材料和合金材料的切割加工。

激光切割已经成为大批量、高效的加工方式,例如在汽车零部件、电子设备、建筑材料等行业中广泛应用。

2、激光焊接激光焊接是利用激光束对金属材料进行加热和熔化,将两种或多种材料焊接在一起的一种加工方式。

激光焊接具有焊缝小、结构均匀、强度高等优点,被广泛应用在汽车、电子、航空航天、电力、医疗等工业领域中,尤其是在汽车制造和电子器件制造领域的应用更为广泛。

3、激光打标激光打标是利用激光束在材料表面进行刻印、打标的一种加工方式。

激光打标技术具有速度快、精度高、清晰度好等特点,在电子、航空、汽车、医疗等工业领域的标志、条形码、名称、编号等标识标记方面实现了生产自动化和信息化管理的目标。

4、激光烧结激光烧结是利用激光束对多层金属材料或复合材料进行加热和融合的一种加工方式。

这种加工方式可以用于制造各种高精度零部件和几何形态复杂的零部件,例如汽车发动机活塞、刀具等。

5、激光雕刻激光雕刻是利用激光束将图案、文字、图像等深度割刻在材料表面的一种加工方式。

激光雕刻技术广泛应用在商标、礼品、纪念品等的制造中。

6、激光清洗激光清洗是利用激光束对材料表面进行清洗、去污的一种加工方式。

激光清洗技术能够在金属表面清除氧化层、锈蚀、涂层、尘土等,使表面光洁度提高,广泛应用于汽车、机械、建筑材料等领域。

激光加工技术的发展及应用研究

激光加工技术的发展及应用研究

激光加工技术的发展及应用研究激光加工技术相信大家已经不会陌生了。

它是一种以激光束为工具进行加工的技术,由于具有高精度、高效率、无损伤、无污染、无接触等优点,激光加工技术在领域中被广泛应用,它有望成为未来工业制造的主流技术之一。

一、激光加工技术的历史与发展激光加工技术的历史可以追溯到20世纪60年代。

1965年,美国一位科学家发明了被称作激光的新型光源,由于其单色性、相干性和高亮度,很快就引起了工业界的关注。

1982年,德国的魏德梅尔(Karl-Otto Mende)博士首次将激光应用于金属加工中。

当时的激光能量仅为几十瓦,但其加工效率已经超过传统的加工方法。

随着激光技术的发展,其在工业制造中的应用也越来越广泛。

特别是现在的高功率激光技术,使得激光加工效率得到了大幅提升。

目前,激光加工技术已经被广泛应用于金属、非金属和复合材料的加工中,成为了现代制造业的一项重要技术。

二、激光加工技术的分类根据激光加工的模式和处理特点,激光加工可以分为以下几类:1. 激光切割技术:主要应用于金属材料的切割,具有高效、高精度、无接触且无热影响等优点,可以在制造过程中减少材料的浪费。

2. 激光钻孔技术:主要应用于金属材料的开孔、钻孔和放电加工,具有高精度、高效率、非接触性等优点,可以实现对规则和不规则形状的孔洞加工。

3. 激光焊接技术:主要应用于金属材料的焊接,具有高强度、高可靠性、无杂质、无变形等优点,可以实现对不同材料与不同厚度的焊接。

4. 激光刻蚀技术:主要应用于半导体微机电系统、热敏电路、4G手机行业等领域,具有高精度、无刻蚀液、无腐蚀残留等优点,可以实现对非接触性的刻蚀加工。

三、激光加工技术的应用1. 机械制造业激光加工技术在机械制造业中的应用领域很广,如金属零部件、工业机器人、汽车和航空零部件等制造中。

从机械加工的角度,激光加工的加工速度比传统加工快,精度高,能够研究制造一些新颖、微小、薄肉、复杂、高精度的工件,具有无可比拟的优势。

激光在工业加工领域中的应用

激光在工业加工领域中的应用

激光在工业加工领域中的应用激光作为一种重要的光学技术,在工业加工领域中得到了广泛的应用。

激光具有高能量、高光束质量、高单色性等优点,可以对各种材料进行切割、焊接、打孔等各种精密加工工艺,因此被誉为工业制造的“利剑”。

一、激光技术在工业加工中的应用1. 激光切割技术激光切割技术是利用激光在被切割材料表面产生高温和压力,使材料熔化、汽化并产生裂纹,从而实现对材料的分离。

这种加工方法适用于多种材料,如金属、非金属、塑料、木材等。

激光切割工艺具有精度高、速度快、效率高、加工深度可控等优点,被广泛应用于汽车制造、航空航天、机床制造等工业领域。

2. 激光焊接技术激光焊接技术是利用激光对被焊接材料进行高能量聚焦,将材料表面熔化并产生反应,从而实现材料的粘结。

激光焊接技术适用于各种金属、合金、非金属等材料的焊接。

激光焊接工艺具有高效率、低热影响区、焊接质量高等优点,被广泛应用于汽车制造、机器人制造、电子器件制造等领域。

3. 激光打孔技术激光打孔技术是利用激光在材料表面产生高热和气体压力,使材料表面产生熔融和汽化,从而实现对材料进行小孔的加工。

激光打孔工艺具有精度高、加工速度快、钻孔质量好等优点,被广泛应用于汽车零部件制造、航空航天制造、电子设备制造等工业领域。

4. 激光雕刻技术激光雕刻技术是利用激光在特定材料表面进行局部加热,使其表面产生不同的化学和物理变化,从而形成图案、字母和图像等效果。

激光雕刻工艺具有精度高、加工速度快、制作效果好等优点,被广泛应用于工艺品、礼品、家居装饰等领域。

二、激光技术在未来的应用前景随着先进制造技术的不断发展,激光技术在工业加工领域中的应用前景越来越广阔。

未来,激光技术将成为更多行业的突破口,其应用领域也将更加广泛。

以下是激光技术在未来的应用前景:1. 3D打印技术近年来,3D打印技术在制造业中得到了广泛应用,而激光技术作为其核心技术之一,必将继续发挥重要作用。

基于激光精确加工能力的3D打印机,可以根据客户需求快速生产出所需物品,满足复杂零部件的加工需求。

激光加工技术的应用综述

激光加工技术的应用综述

激光加工技术的应用综述激光加工技术是近年来备受关注的一种加工方式。

利用激光的高聚焦特性,可以实现对各种材料的精细加工。

激光加工技术已被广泛应用于制造业、医疗产业、航空航天等领域中。

本文将对激光加工技术的应用进行综述。

一、激光切割激光切割是激光加工技术中最常见的应用之一。

它是利用激光束的高能量和高密度来切割各种材料的一种方法。

激光切割广泛应用于金属材料、木材、塑料、陶瓷等材料的加工中。

与传统的机械切割方式相比,激光切割具有更高的精度和更少的浪费。

目前,激光切割已被广泛应用于汽车制造、建筑材料、电子器件等产业。

二、激光焊接激光焊接是将两种或两种以上的材料通过激光束的热作用进行精密焊接的一种方法。

激光焊接广泛应用于金属材料、塑料等材料的加工中。

相比于传统的焊接方式,激光焊接可以实现更高的精度和更少的材料损耗。

目前,激光焊接已被广泛应用于汽车制造、电子器件等产业。

激光焊接能够实现多种材料的焊接,如钢和铝、钢和铜等。

激光焊接还被应用于制造航空航天设备和医疗器械等领域。

三、激光打标激光打标是利用激光束的高能量在材料表面刻印图案或文字的一种方法。

激光打标具有非常高的精度和速度,并且可以用于切割及印刷生产。

激光打标已广泛应用于食品包装、饮料瓶等产品上的生产日期、批号等信息的刻印。

激光打标还被应用于汽车零件、电子器件等产品上的品牌、规格等信息的刻印。

四、激光雕刻激光雕刻是利用激光束的高密度和高能量在材料表面进行切割和细节雕刻的一种方法。

激光雕刻具有非常高的精度和速度,并且可以应用于各种材料的加工,如木材、玻璃、金属等。

激光雕刻已广泛应用于珠宝、玩具、艺术品等领域。

五、激光减薄激光减薄是利用激光束的高能量将材料表面进行微细减薄的一种方法。

激光减薄广泛应用于电子器件、汽车制造等产业中。

它可以实现对微小零件的精细加工,使得器件更加轻薄、高效。

总之,激光加工技术具有非常高的精度和速度,可以应用于各种材料的加工。

随着技术的不断发展和进步,激光加工技术在制造、医疗、航空航天等领域的应用将会越来越广泛。

激光加工技术在工程机械制造中的应用

激光加工技术在工程机械制造中的应用

激光加工技术在工程机械制造中的应用激光加工技术是一种现代高精密加工技术,利用激光束对工件进行切割、焊接、打孔等加工。

随着工程机械行业的不断发展和技术的进步,激光加工技术在工程机械制造中的应用越来越广泛。

本文将从激光加工技术的优势、在工程机械制造中的应用以及未来发展趋势等方面进行探讨。

一、激光加工技术的优势1. 高精度激光加工技术能够实现微米级甚至纳米级的加工精度,可以满足工程机械制造中对零部件精度要求的提高。

2. 高效率激光加工技术可以实现高速加工,提高了生产效率,缩短了加工周期,符合工程机械制造中对生产效率和产能的要求。

3. 无接触加工激光加工过程中不需要与工件发生接触,可以避免因接触而导致的变形和损伤,适用于对工件表面质量要求高的工程机械零部件加工。

4. 灵活性激光加工技术可以实现对各种材料的加工,涵盖了工程机械制造中常用的金属材料和非金属材料。

5. 可实现复杂几何形状加工激光加工技术可以实现对复杂几何形状的工件进行精密加工,满足了工程机械零部件加工中对复杂零件的加工要求。

1. 材料切割工程机械的制造需要对各种金属材料进行切割,传统的切割方法需要借助锯切、剪切等工具,工艺复杂且效率低。

而激光切割技术可以实现对各种材料的快速精密切割,提高了生产效率和切割质量。

2. 焊接激光焊接技术在工程机械制造中得到了广泛应用,可以对各种金属材料进行高品质的焊接,实现了对工件的精密连接,提高了工程机械的零部件质量和可靠性。

3. 孔加工工程机械零部件中常常需要进行孔加工,传统的孔加工方法需要借助钻、锉等工具,工艺繁琐且加工质量难以保障。

而激光孔加工技术可以实现对各种材料的快速精密孔加工,提高了加工质量和孔位精度。

4. 表面处理工程机械零部件需要经常进行表面处理,传统的表面处理方法存在着磨损大、工艺复杂等问题。

而激光表面处理技术可以实现对工件表面的高温熔化,使表面快速冷却,形成致密的涂层,提高了工件的耐磨性和抗腐蚀性。

新型激光加工技术研究与应用展望

新型激光加工技术研究与应用展望

新型激光加工技术研究与应用展望激光加工是一种利用激光束对材料进行加工的技术。

激光加工技术已经广泛应用于不同领域,例如汽车工业,微电子学,医学和航空航天等。

新型激光加工技术研究和应用的发展趋势是探究如何提高精度和效率,减少加工变形和损伤等问题。

本文将分析新型激光加工技术的研究和发展,以及它们在不同领域的应用展望。

一、激光成形技术激光成形技术可以通过激光束在材料表面熔化和烧蚀,使它进一步固化和成型。

这种技术可以有效地减少加工和后处理时间,同时提高精度和制造质量。

激光成形技术已经广泛应用于航空航天、能源和制造业等领域。

实验研究表明,激光成形技术可以制造出复杂的3D形状,如零件、模具、螺栓等。

二、激光微纳加工技术激光微纳加工技术是通过控制激光束的位置和强度,进行微米或纳米尺度的加工。

激光微纳加工技术可以实现高精度、高速和无损的加工效果,并且可以应用于制造微型元件、表面处理和纳米结构制造等领域。

例如,激光微纳加工技术已经应用于微电子学中的CMOS器件制造、纳米光电和MEMS制造等领域。

虽然激光微纳加工技术中存在一些难点问题,例如加工精度和加工速度等,但是未来将进一步提高技术的可靠性和应用性。

三、激光表面改性技术激光表面改性技术是将激光束聚焦在材料表面,通过在表面形成不同的熔化、汽化和重熔化区,从而改变材料的表面性质。

这种技术可以有效地提高材料的耐蚀性、防护性、引燃性和磨损性能。

激光表面改性技术已经广泛应用于航空航天、电子、机械制造和医疗器械等领域。

例如,激光表面改性可以使机械零件具有更好的磨损和腐蚀性能,从而延长零件的使用寿命。

未来,激光表面改性技术将进一步优化材料表面结构和性能,以满足不同领域的需要。

四、激光增材制造技术激光增材制造技术是一种通过控制激光束来进行立体加工的制造技术。

这种技术可以通过不断添加材料层,形成复杂的三维物体。

激光增材制造技术已经应用于航空航天、医疗器械、能源和制造业等领域。

例如,激光增材制造技术可以制造出各种复杂的结构件,如发动机叶片、立体模型和骨骼支撑器等。

机械设计基础了解机械设计中的激光加工与应用

机械设计基础了解机械设计中的激光加工与应用

机械设计基础了解机械设计中的激光加工与应用机械设计基础:了解机械设计中的激光加工与应用激光技术作为现代机械设计领域中的一项重要技术,具备高精度、高效率、无接触等优点,在各个领域的应用中发挥着至关重要的作用。

本文将从机械设计的角度,探讨激光加工技术的基础知识、应用领域以及未来发展趋势。

一、激光加工技术的基础知识激光加工技术是利用激光束对材料进行切割、打孔、焊接、表面处理等工艺的加工方法。

激光加工所涉及的基本元素包括激光源、光路系统、加工头和工件等。

其中,激光源是激光加工的核心部件,常见的激光源有气体激光器(CO2激光器)、固体激光器和半导体激光器等。

在激光加工过程中,激光束的特性对加工效果起着重要作用。

激光束具有高度聚焦、小散斑和单色性等特点,可以实现对细小部件的精确加工。

而激光的功率、频率和波长等参数的选择,则取决于材料的种类和加工目的。

二、激光加工的应用领域激光加工技术在机械设计中具有广泛的应用,以下是其中一些典型的应用领域:1. 切割与打孔激光切割技术以其高精度、高速度和无需接触等特点,在金属、非金属等材料的切割中得到广泛应用。

通过调整激光参数,可以实现对不同材料的精确切割和打孔。

2. 焊接与表面处理激光焊接技术可以实现对细小部件的高精度焊接,常用于汽车制造、电子设备制造等领域。

同时,激光表面处理技术可以通过改变材料表面的结构和性能,实现对材料的强化和改进。

3. 光刻与3D打印激光光刻技术是集成电路制造中的重要工艺,通过精密的激光刻蚀,实现对芯片上微米级器件的制作。

此外,激光3D打印技术可以将计算机模型转化为实物,为快速原型制作和定制化生产提供了可能。

4. 激光测量与检测激光测量与检测技术广泛应用于机械工程领域中的精密测量和无损检测。

例如,激光测距仪可以实现对目标的距离和位置的高精度测量;激光干涉仪可以用于测量工件的表面形貌和形状误差等。

三、激光加工技术的未来发展趋势随着科学技术的不断进步和工业需求的增长,激光加工技术也将呈现出更为广阔的发展空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金陵科技学院Jinling Institute of Technology课程论文论文题目激光加工技术在机械制造领域中的应用与发展学院机电工程学院年级10机械设计制造及其自动化1班姓名孙志会指导教师宇海英成绩2013 年 5 月 17 日目录摘要 (2)引言 (3)一、激光加工技术的原理和优势 (3)(一)激光加工的原理 (3)(二)激光加工的优势 (3)二、激光加工技术在机械制造业中的重要应用 (4)(一)激光切割机产品的飞速发展 (4)(二)激光焊接手段的广泛应用 (4)(三)激光表面强化与热处理技术的重要体现 (4)(四)激光打孔技术的成熟使用 (5)(五)激光标记技术的持续前冲 (5)(六)激光内腔加工技术的重要应用 (5)(七)激光快速成型技术的开发使用 (6)(八)用于再制造业的激光熔覆技术及装备 (6)三、激光加工技术在机械领域的发展展望 (6)结论 (7)致谢 (8)参考文献 (9)激光加工技术在机械制造领域中的应用与发展金陵科技学院机电学院孙志会[摘要]由于现代机械制造业的快速发展,机械制造已包含了一种新的意义。

它已经不是传统意义上的机械制造。

它是集机械、电子、光学、信息科学、材料科学、生物科学、激光学、管理学等最新成就为一体的一个新兴技术与新兴工业。

我们所了解的激光技术是20世纪60年代初发展起来的一门科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工,它是利用光的能量,经过透镜聚焦,在焦点上达到很高的能量密度,靠光热效应来加工各种材料的。

激光加工技术包括:激光快速成型技术、激光焊接技术、激光切割技术、激光打孔技术、激光标记技术、激光热处理技术和激光内腔加工技术。

现在,激光加工技术是国家重点支持和推动应用的一项高新技术,特别是政府强调要振兴制造业,这就给激光加工技术应用带来发展机遇。

在国家制定中长远期发展规划时,又将激光加工列为关键支撑技术,因为它涉及国家安全、国防建设、高新技术的产业化和科技前沿的发展,这就把激光加工提升到很高的重视程度,也必将给激光加工机的制造和升级带来很大的商机。

[关键词] 激光高新技术应用重视发展规划引言激光加工技术是一项集光学、电学、机械于一体的先进加工技术,被誉为“21世纪的万能加工工具”,“未来制造技术的共同加工手段”。

在激光技术发展的早起人们就开始了其机械工业的应用研究,激光加工技术的发展大大推进了整个机械制造业的迅速发展,并深刻地影响着世界各国科技水平的发展。

有人预测,在21世纪激光制造与加工技术将会引起一次新的工业革命。

本篇文章主要研究分析激光加工技术在机械制造业中的重要应用以及其更长远的发展展望,以此来了解激光加工技术在机械领域所体现的重要用途,希望能够为以后更深入开展激光加工制造研究打下基础。

通过对课题的研究分析,也希望能够牢牢地跟上激光技术迅速向前发展的脚步,并进一步促进激光技术的创新以及其应用领域的扩展。

一、激光加工技术的原理和优势(一)激光加工的原理激光加工是将激光束照射到工件表面,以激光的高能融化、切割材料以及改变材料的表面性能。

激光加工是无接触加工,工具与工件之间不会产生阻力,加工对象变形较小,在加工时不会产生噪声和振动。

激光束极细,可以加工极小的工件,并且可以保证加工质量。

(二)激光加工的优势1.它是无接触加工,高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。

2.它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。

3.激光加工过程中无“刀具”磨损,无“切削力”作用于工件。

4.激光加工过程中,其热影响区小,工件热变形小,后续加工量小。

5.它可以通过透明介质对密闭容器内的工件进行各种加工。

6.激光束易于导向。

聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此,它是一种极为灵活的加工方法。

7.使用激光加工,生产效率高,加工质量可靠,经济效益和社会效益显著。

二、激光加工技术在机械制造业中的重要应用激光加工技术在机械领域的零件生产和加工制造等方面可以用于切割、焊接、热处理、打孔、标记、内腔加工、快速成型以及修复等。

(一)激光切割机产品的飞速发展激光切割系统一直是激光加工应用最广泛的一项技术,这就致使激光切割机产品迅速发展起来。

随着各企业用户对激光切割技术特点的逐步深入了解和示范性采用,带动了国内多数机械制造企业纷纷转向生产激光切割机。

上海团结普瑞玛激光设备公司是我国产量最大的生产企业,年订货已超过100余台。

CO2激光切割机在二维切割方面应用很广,进行小批量生产时具有很好的柔性。

经过资料查阅了解到:欧洲已安装了12000多台,北美安装有11000多台,日本安装有10000多台,中国大陆安装数约为800台,功率逐渐由2KW提升到3KW、4KW,可见CO2激光切割机已经成为国内主要热门产品。

随着应用面扩大,高功率CO2激光器国内产品必将牵引我国激光销售快速增长。

激光切割技术用在零件生产线上,做平板切割等工序,配合其生产产品的一道工序,可为完成产品零件生产解决加工关键,或提高加工速度。

三维切割的应用主要在于管类零件的加工,在市场上已经有管类零件激光切割设备,采用这一设备可以实现自动加载和加工。

(二)激光焊接手段的广泛应用激光焊接技术在国内的应用正迅速扩大,主要用于电池、电器、仪表、五金工具及钢铁、航空航天、汽车等工业。

目前激光焊接应用主要分为三大类:第一类是用于移动通讯如手机电池的焊接,其他如电容、电器、仪器仪表元器件的焊接。

第二类主要是对金刚石锯片的激光焊接。

目前欧洲已大量采用CO2激光器将金刚石刀头焊接到锯片基体上,这种工艺符合安全要求。

第三类是对钢板的激光焊接。

这方面的应用多在钢铁工业(如钢板在线拼焊、带钢拼焊等)、汽车板拼焊(有的在钢铁厂、有的在汽车厂)以及各种壳体类零件焊接、其激光焊接系统不是定型产品,多为“量身定做”。

法利莱大功率激光科研基地生产的专用激光焊接机,能成倍提高焊接质量。

其焊接接头强度高,可以达到与母材等强度,设备性能稳定、可靠性高,并且在国内率先开发出汽车排气管、传动部件和生产工件的激光焊接成套设备,能成倍提升生产效率和使用寿命,经济效益显著。

(三)激光表面强化与热处理技术的重要体现激光表面强化与热处理技术是近20年来发展起来的一种新型材料表面处理技术。

其中一项技术激光相变硬化(激光淬火)是激光热处理研究最早、最多、进展最快、应用最广的一种工艺,适用于大多数材料和不同形状零件的不同部位,可提高零件的耐磨性和疲劳强度。

激光表面强化与热处理技术在汽车工业应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。

在农机生产中的作用也很大,有些机器(犁、中耕机、播种机和收割机)直接在磨料介质中工作,零件磨损很快。

为了获得足够强度,机器的材料用量较大,不仅浪费而且笨重。

对于此类零件,激光硬化处理后的硬度比常规淬火硬度高5%一20%,激光合金化可以加入新材料,形成新合金层,获得满意的性能。

此外,激光抛光表面技工艺的应用也十分重要,工业上生产的机械零件,在铣削的原始表面上,单个的铣削波纹清晰可见,激光抛光后这些波纹不复存在,最小抛光直径可达到Ra<0.3um。

而且激光抛光工艺的三维加工能力十分显著。

(四)激光打孔技术的成熟使用激光打孔通用性强,已成为现代制造领域的关键技术之一。

工业发达国家己将激光深微孔技术大规模地应用到航空航天、汽车制造、电子仪表等行业。

国内比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片等行业的生产制造中。

激光打孔正朝着多样化、高速度、孔径更微小的方向发展。

例如,在飞机机翼上打上5万个直径为 0.064mm的小孔,可以大大减小气流对飞机的阻力;高压水清洗环境多种多样,常常需要为特殊的清洗环境重新设计喷嘴,灵活多变的激光打孔正好可以满足这种需求;汽车工业的燃油过滤器的厚度为0.95mm,采用激光打孔速度可达120孔/s。

在燃油出口面没有凸起部分,也没有赃物,目前对于这一类质量零件还没有其他的加工方法可以做到。

(五)激光标记技术的持续前冲激光标记是近年发展最快的一项应用技术,按照全球对激光加工系统销售总量的统计,激光打标机(标记机)仅次于激光切割机,占第二位。

我国激光打标机的销售额一直占国内激光加工销售额的50%以上,在较大范围内占领了国内市场,并大大地开拓了应用领域。

已应用的行业有电子工业、汽车工业、工具量具、航空航天、仪器仪表等领域。

在机械领域的应用尤为广泛而重要。

值得一提的是激光内雕机也是迅速发展的产品之一,它是通过激光诱导在玻璃体内形成炸裂点的光散射构成白色立体内雕图像。

目前本技术已经取得进一步发展。

国内已经开发出彩色内雕技术,可在玻璃体内相继打出红、橙、黄、蓝、紫等色彩的图案,给内雕制品增添光彩。

(六)激光内腔加工技术的重要应用在光电通讯、制导和雷达等军工和医疗器械上,经常有一些高精度的内腔形体零件,这些零件口小型腔大,有的内腔形状还比较复杂。

用传统的工艺方法,将它一分为二分别进行加工,避免不了装配误差的存在,影响产品的使用性能。

借助激光加工技术,把激光对透明材料的作用机理运用到内腔加工上,使上述间题得到解决。

由于切割过程相当迅速,聚焦点周围热传递造成的热损伤几乎为零。

该方法是非接触加工,因而加工过程无变形,无噪声和化学污染,在机械制造中发挥很大用途。

(七)激光快速成型技术的开发使用激光快速成型技术在模具制造的应用最为广泛,可以用快速成型件直接用作模具,也可作母模,翻制软模具,或者直接翻制硬模具。

用激光快速成形技术制作形状复杂的精度模具,其优点尤为突出,该技术己在航空航天、电子、汽车、家电等工业领域得到广泛应用。

但是,目前还存在着模具寿命相对较短的缺点,即使是金属面、硬背衬模具,其使用寿命也不及真正的金属模,所以快速成形模具较适合于单件小批量生产。

(八)用于再制造业的激光熔覆技术及装备激光熔覆是一种新的表面改性技术,用于再制造业,有其不可替代的优点,并优高功率激光器及其系统。

这方面较突出于其它加工技术。

它主要是采用5KW~10KWCO2的是大陆激光,他们在实践中应用了激光显微仿形熔覆技术,较大范围应用到电力、石化、冶金、钢铁、机械的工业领域,修复了涡轮动力转动装置的重要零部件,一直到机组,如烟气轮机、离心式压缩机、螺杆压缩机、大型汽轮机、发电机、蒸汽轮机等近千台,同时还生产激光器及机组,成为这种技术的国内领头企业。

此外,用激光熔覆对模具进行修复,可以大大提高模具的寿命,又不受形状和尺寸的限制。

国内以激光加工站形式出现从事这方面业务的有中科院金属所、北京、天津、杭州等地高校激光工程中心都为激光加工应用于再制造业发挥了较大作用。

相关文档
最新文档