光刻加工与光刻技术
光刻技术

光刻机总体结构
照明系统 掩模台系统 环境控制系统 掩模传输系统 投影物镜系 统
自动对准系 统
调平调焦测 量系统 框架减振系 统
硅片传输系 统
工件台系统
整机控制系统
整机软件系统
图为CPU内部SEM图像
图为硅芯片集成电路放大图像
图为在硅片上进行的光刻图样
图为Intel 45nm高K金属栅晶体 管结构
SU-8交联示意图
正胶与负胶性能对比
正胶 缺点 (DQN) 特征 优点 优点 分辨率高、对比度好 粘附性差、抗刻蚀能力差、高成本 近紫外,365、405、435nm的波长曝 光可采用 良好的粘附能力、抗蚀能力、感光能 力以及较好的热稳定性。可得到垂直 侧壁外形和高深宽比的厚膜图形 显影时发生溶胀现象,分辨率差 对电子束、近紫外线及350-400nm紫 外线敏感
投影式印刷:在投影式印刷中,
用镜头和反光镜使得像聚焦到硅平 面上,其硅片和掩模版分得很开。
三种方法的比较
接触曝光:光的衍射效应较小,因而分辨率高;但易损
坏掩模图形,同时由于尘埃和基片表面不平等,常常存 在不同程度的曝光缝隙而影响成品率。
接近式曝光:延长了掩模版的使用寿命,但光的衍射效
应更为严重,因而分辨率只能达到2—4um 左右。
坚膜也是一个热处
理步骤。 除去显影时胶膜 吸收的显影液和水分, 改善粘附性,增强胶 膜抗腐蚀能力。 时间和温度要适 当。 时间短,抗蚀性 差,容易掉胶;时间 过长,容易开裂。
刻蚀就是将涂胶前所
沉积的薄膜中没有被 光刻胶覆盖和保护的 那部分去除掉,达到 将光刻胶上的图形转 移到其下层材料上的 目的。
等离子体去胶,氧气在强电场作用下电离产生的活性氧, 使光刻胶氧化而成为可挥发的CO2、H2O 及其他气体而被 带走。
微纳加工原理

微纳加工原理一、微纳加工的定义微纳加工是指将材料进行微小尺度处理和制造,通常包括微米和纳米级别的加工过程。
它是一种技术,用于制造各种各样的微型器件,如芯片、传感器、MEMS等。
二、微纳加工的分类1.光刻技术:光刻技术是利用光学系统将图形转移到光敏化材料中,然后通过化学反应来形成图案。
2.薄膜沉积:薄膜沉积是将物质沉积在基底表面上,以形成所需的结构和功能。
3.离子束雕刻:离子束雕刻是利用高能离子束对材料进行磨削和雕刻来形成所需的结构。
4.扫描探针显微镜(SPM):SPM是一种通过扫描探针来测量材料表面形貌和性质的技术。
三、微纳加工原理1.光刻技术原理光刻技术使用紫外线或电子束照射在光敏化材料表面上,通过化学反应来形成图案。
该过程包括以下步骤:(1)光敏化材料涂覆:将光敏化材料涂覆在基底上。
(2)曝光:使用掩模将紫外线或电子束照射在光敏化材料表面上,形成所需的图案。
(3)显影:使用显影剂去除未曝光的部分,形成所需的结构。
2.薄膜沉积原理薄膜沉积是将物质沉积在基底表面上,以形成所需的结构和功能。
该过程包括以下步骤:(1)气相沉积:利用化学反应将气体转化为固体,在基底表面上形成一层薄膜。
(2)物理气相沉积:利用高温或真空条件下,将固态物质直接转移到基底表面上,形成一层薄膜。
(3)溅射沉积:利用离子束轰击靶材,产生粒子并将其转移到基底表面上,形成一层薄膜。
3.离子束雕刻原理离子束雕刻是利用高能离子束对材料进行磨削和雕刻来形成所需的结构。
该过程包括以下步骤:(1)离子束的产生:利用离子源产生高能离子束。
(2)加速器:将离子加速到高能状态。
(3)控制系统:控制离子束轨迹,使其精确地磨削和雕刻材料。
4.扫描探针显微镜原理扫描探针显微镜(SPM)是一种通过扫描探针来测量材料表面形貌和性质的技术。
该过程包括以下步骤:(1)扫描探针:将扫描探针移动到要测量的位置。
(2)测量信号:通过测量信号来确定材料表面形貌和性质。
光刻工艺流程

光刻工艺流程
《光刻工艺流程》
光刻工艺是半导体制造中至关重要的一步,它通过光刻机将芯片上的图案转移到光敏材料上,从而实现对芯片表面的加工。
光刻工艺流程是一个复杂的过程,需要经过多个步骤来完成。
首先是准备工作,包括清洁硅片、涂覆光刻胶,以及对光刻胶进行预烘烤,以保证后续的光刻过程能够顺利进行。
接着是对光刻胶进行曝光,这一步需要使用光刻机来对硅片上的光刻胶进行曝光,将图案转移到光刻胶的表面。
曝光完成后,需要进行显影处理,将未曝光部分的光刻胶去除,留下需加工的图案。
接下来是进行蚀刻,将光刻胶下面的硅片层进行加工,形成所需的结构。
最后是清洗去除光刻胶残留物,以及对加工后的芯片进行质检。
光刻工艺流程中的每一个步骤都需要精密的设备和严格的操作,任何一个环节出现偏差都有可能导致芯片的质量受损。
因此,光刻工艺是半导体制造中至关重要的一环,需要经验丰富的工程师来进行调控和优化。
总的来说,光刻工艺流程是半导体制造中不可或缺的重要环节,它直接影响到芯片的性能和质量。
随着半导体技术的不断发展,光刻工艺也在不断更新和优化,以应对日益复杂的芯片结构和制造需求。
第四章光刻技术

二,光刻版(掩膜版)
基版材料:玻璃,石英. 要求:在曝光波长下的透光度高,热膨胀系数 与掩膜材料匹配,表面平坦且精细抛光.
二,光刻版(掩膜版)
掩膜版的质量要求 若每块掩膜版上图形成品率=90%,则 6块光刻版,其管芯图形成品率=(90%)6=53% 10块光刻版,其管芯图形成品率=(90%)10=35% 15块光刻版,其管芯图形成品率=(90%)15=21% 最后的管芯成品率当然比其图形成品率还要低 ①图形尺寸准确,符合设计要求; ②整套掩膜版中的各块版应能依次套准,套准误差应尽可能小; ③图形黑白区域之间的反差要高; ④图形边缘要光滑陡直,过渡区小; ⑤图形及整个版面上无针孔,小岛,划痕等缺陷; ⑥固耐用,不易变形.
三,光刻机(曝光方式)
④1:1扫描投影光刻机(美国Canon公司)
三,光刻机(曝光方式)
⑤分步重复投影光刻机--Stepper DSW:direct-step-on-wafer ⅰ)原理: 采用折射式光学系统和4X~5X的缩小透镜. 曝光场:一次曝光只有硅片的一部分,可以大大 提高NA(0.7),并避免了许多与高NA有关的聚 焦深度问题,加大了大直径硅片生产可行性. 采用了分步对准聚焦技术.
一,光刻胶
4.感光机理 ①负胶
聚乙烯醇肉桂酸脂-103B,KPR
一,光刻胶
双叠氮系(环化橡胶)-302胶,KTFR
一,光刻胶
②正胶 邻-叠氮萘醌系-701胶,AZ-1350胶
二,光刻版(掩膜版)
掩膜版在集成电路制造中占据非常重要的地位,因为 它包含着欲制造的集成电路特定层的图形信息,决定 了组成集成电路芯片每一层的横向结构与尺寸. 所用掩膜版的数量决定了制造工艺流程中所需的最少 光刻次数. 制作掩膜版首先必须有版图.所谓版图就是根据电路 ,器件参数所需要的几何形状与尺寸,依据生产集成 电路的工艺所确定的设计规则,利用计算机辅助设计 (CAD)通过人机交互的方式设计出的生产上所要求 的掩膜图案.
光刻技术的研究与应用

光刻技术的研究与应用随着现代半导体工艺的发展,光刻技术已经成为制造芯片不可或缺的关键工艺之一。
光刻技术是一种通过激光或光源照射在硅片表面上的技术,通过对光刻胶进行曝光、显影等加工,形成芯片图形的过程。
光刻技术可以实现微米级甚至纳米级的结构制备,广泛应用于半导体集成电路、光子学、MEMS等领域。
下面我们将从光刻技术的原理、优势、发展历程以及应用等方面进行详细论述。
一、光刻技术的原理光刻技术是一种通过照射光线控制光刻胶的化学反应,从而在硅片表面上形成需要的图形的加工技术。
通俗地讲,就是通过光线实现对光刻胶的印刷,使其在硅片上形成等级线。
光刻胶的选择需要根据具体的硅片设计需求,并根据加工流程的要求进行精确设计。
光刻胶的化学反应主要包括曝光、显影、退胶三个环节:1. 曝光:通过控制光线的照射,使光线通过掩模形成等级线的过程。
2. 显影:通过化学反应使光刻胶中没有曝光的部分被迅速去除,从而对曝光部分进行保护。
3. 退胶:在显影完毕后,根据需要还需要将光刻胶中残留的曝光部位进行去除,以便于进行后续加工。
二、光刻技术的优势与传统制造芯片的加工技术相比,光刻技术有以下几个优势:1. 操作简单:光刻加工过程主要依赖于光刻机,操作比较简单,不需要进行复杂的化学反应。
2. 制造精度高:光刻技术可以达到微米甚至纳米级别的加工精度,可以应用于制造芯片上高密度、高准确度的图形。
3. 生产效率高:由于加工自动化程度高,生产效率较传统制造技术要高得多。
4. 生产成本低:光刻技术生产成本比传统制造技术要低得多,这也是其能够广泛应用的主要原因之一。
三、光刻技术的发展历程光刻技术自20世纪50年代开始被引入半导体领域以来,经历了几十年的发展。
50年代,光刻技术主要应用于半导体材料的薄膜厚度测试;60年代,先进的微影技术被开发出来,并应用于集成电路的制造;70年代,槽栅光刻技术被开发,可以制造出更加精细的集成电路图形;80年代,步进式光刻技术的发明,大大提高了制造芯片的生产效率;90年代,深紫外光刻技术得到普及,制造出的芯片更加精细;2000年以后,纳米级别的光刻技术逐渐成为研究热点。
光刻工艺资料整理

光刻工艺资料整理光刻工艺资料整理上一篇/ 下一篇 2007-12-10 20:10:25 / 个人分类:光刻查看( 121 ) / 评论( 0 ) / 评分( 0 / 0 )光刻工艺资料整理概述:光刻技术是集成电路的关键技术之一,在整个产品制造中是重要的经济影响因子,光刻成本占据了整个制造成本的35%。
光刻也是决定集成电路按照摩尔定律发展的一个重要原因,如果没有光刻技术的进步,集成电路就不可能从微米进入深亚微米再进入纳米时代。
所以说光刻系统的先进程度也就决定了光刻工程的高低。
1.光刻工艺简介光刻是通过一系列生产步骤将晶圆表面薄膜的特定部分除去的工艺。
在此之后,晶圆表面会留下带有微图形结构的薄膜,被除去的部分可能形状是薄膜内的孔或是残留的岛状部分。
光刻工艺也被称为大家熟知的Photomasking, masking, photolithography, 或microlithography。
在晶圆的制造过程中,晶体三极管、二极管、电容、电阻和金属层的各种物理部件在晶圆表面或表层内构成。
这些部件是每次在一个掩膜层上生成的,并且结合生成薄膜及去除特定部分,通过光刻工艺过程,最终在晶圆上保留特征图形的部分。
光刻生产的目标是根据电路设计的要求,生成尺寸精确的特征图形,并且在晶圆表面的位置正确且与其它部件(parts)的关联正确。
光刻是所有四个基本工艺中最关键的。
光刻确定了器件的关键尺寸。
光刻过程中的错误可造成图形歪曲或套准不好,最终可转化为对器件的电特性产生影响。
图形的错位也会导致类似的不良结果。
光刻工艺中的另一个问题是缺陷。
光刻是高科技版本的照相术,只不过是在难以置信的微小尺寸下完成。
在制程中的污染物会造成缺陷。
事实上由于光刻在晶圆生产过程中要完成5层至20层或更多,所以污染问题将会放大。
光刻工艺过程包括有:涂胶、前烘、曝光、显影、坚膜、腐蚀、去胶等。
课程内容:1 光刻前的准备工作1.1 准备要求1.2 准备方法1.2.1 光刻前待光刻片子置于干燥塔中1.2.2 氧化片出炉后可立即送光刻工序涂胶1.2.3 对氧化片可在涂胶前重吹段时间干氧(氧化温度)1.2.4 涂胶前片子置于80度烘箱中烘30分钟2 涂胶2.1 涂胶的要求2.2 涂胶的方法2.2.1 旋转涂胶法2.2.2 喷涂法2.2.3 浸涂法3 前烘3.1 前烘要求3.2 前烘的方法3.2.1 在80度烘箱中烘15分钟-20分钟3.2.2 在红外烘箱中烘3分钟-5分钟4 曝光4.1 曝光的要求4.2 曝光的方法5 显影5.1 显影的要求5.2 显影的方法6 坚膜6.1 坚膜的要求6.2 坚膜的方法6.2.1 置于恒温箱中,在180度烘30 分钟左右6.2.2 置于红外烘箱中烘10分钟左右7 腐蚀7.1 腐蚀的要求7.2 腐蚀的方法7.2.1 腐蚀二氧化硅的方法7.2.2 腐蚀铝电极的方法8 去胶8.1 去胶的要求8.2 去胶的方法课程重点:本节介绍了光刻工艺及对各光刻工艺步骤的要求。
光学光刻技术

光刻技术的原理
集成电路制造中利用光学-化学反应原理和化学、物理刻蚀方法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。
随着半导体技术的发展,光刻技术传递图形的尺寸限度缩小了2~3个数量级(从毫米级到亚微米级),已从常规光学技术发展到应用电子束、X射线、微离子束、激光等新技术;使用波长已从4000埃扩展到0.1埃数量级范围。
光刻技术成为一种精密的微细加工技术。
光刻技术是在一片平整的硅片上构建半导体MOS管和电路的基础,这其中包含有很多步骤与流程。
首先要在硅片上涂上一层耐腐蚀的光刻胶,随后让强光通过一块刻有电路图案的镂空掩模板(MASK)照射在硅片上。
被照射到的部分(如源区和漏区)光刻胶会发生变质,而构筑栅区的地方不会被照射到,所以光刻胶会仍旧粘连在上面。
接下来就是用腐蚀性液体清洗硅片,变质的光刻胶被除去,露出下面的硅片,而栅区在光刻胶的保护下不会受到影响。
随后就是粒子沉积、掩膜、刻线等操作,直到最后形成成品晶片(WAFER)。
光刻技术是集成电路制造中利用光学-化学反应原理和化学、物理刻蚀方法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。
随着半导体技术的发展,光刻技术传递图形的尺寸限度缩小了2~3个数量级(从毫米级到亚微米级),已从常规光学技术发展到应用电子束、X射线、微离子束、激光等新技术;使用波长已从4000
埃扩展到0.1埃数量级范围。
光刻技术成为一种精密的微细加工技术。
光刻加工的工艺过程

光刻加工的工艺过程光刻制程是一种基于光敏感化学物质的加工技术,广泛应用于半导体制造、屏幕制造、光学元件制造等领域。
下面将介绍光刻加工的主要工艺过程。
第二步是涂覆光刻胶。
将光刻胶溶液倒在基板表面并旋转,使其均匀地覆盖整个表面。
通常会使用一台称为光刻胶旋涂机的设备来实现这一步骤。
涂覆后,通过烘烤将剩余的溶剂去除,使光刻胶形成薄膜。
第三步是准备掩模。
掩模是一种具有特定图案的光刻掩膜,可以通过光照将图案转移到光刻胶上。
掩模通常是由玻璃或石英制成的,上面有一个透明的图案结构。
通过投影仪或激光绘制工艺将图案转移到掩模上。
第四步是对光刻胶进行曝光。
将掩模和光刻胶放置在光刻机上,掩模上的图案通过紫外线或激光照射到光刻胶上。
光刻机会在特定时间和能量下曝光光刻胶,使得光刻胶发生化学或物理变化,覆盖光刻胶的部分被固化。
第五步是显影光刻胶。
将经过曝光的光刻胶放入显影液中进行显影,显影液会溶解未固化的光刻胶,只留下曝光过的图案结构。
显影液通常是一种酸或碱性溶液,根据光刻胶的材料不同,选择不同的显影液。
第六步是清洗和后处理。
将显影后的光刻胶通过清洗步骤去除显影液和残留的光刻胶,以及任何其他杂质。
清洗通常使用化学溶液或超声波清洗。
完成清洗后,可以进行后处理,如烘干或氧等离子处理,以进一步改善光刻胶的性能。
通过上述工艺过程,光刻加工可以实现高分辨率的图案转移,制造出微小的器件和结构。
在半导体制造业中,光刻加工是生产微型集成电路的关键步骤之一、随着技术的不断发展,光刻加工的分辨率和精度也在不断提高,为微电子和光电子领域的创新和进步提供了重要支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 Final Inspection
光学光刻技术的发展
436nm
365nm
R = kλ/ NA
分辨率 曝光光源波长
248nm
193nm
极紫外
(13-14nm)
超大规模集成电路己光刻技术发展趋势
436nm(g线)、365nm(i线)抗蚀剂:
O
OH OH
N2
*
*
+
SO2 Ar
n
R
由重氮萘醌磺酸酯作为感光剂的传统光化学反应体系:
集成电路光刻加工过程:
光致抗蚀剂
溶解性、熔融性、附着力
感光性树脂
Substrate
Photo
Substrate
这种作为抗蚀涂层用的感光性树脂组成物 ——光致抗蚀剂(又称光刻胶)
Positive Lithography
Ultraviolet Light
Areas exposed to light become soluble.
Figure 7: Pattern micrograph with line width of 0.75µm
Figure 1. SEM images of positive-tone patterns with 0.35 µm line and space obtained from the resist formulation of 1a and 4-DNQ (3:1, w/w), (a) top-view, and (b) cross-section.
HMDS
1 Surface Preparation
2 Photoresist Application
3 Soft Bake CF4
4 Align & Expose O2
5 Develop
l
plasma plasma
6 Hard Bake
7 Develop Inspection
8 Etch
9 Resist Strip
Shadow on photoresist
photoresist
photoresist oxide silicon substrate
oxide silicon substrate
Resulting pattern after the resist is developed.
Ten Basic Steps of Photolithography
光致抗蚀剂概念:
在半导体器件和集成电路制造中,要在硅 片等材料上获得一定几何图形的抗蚀保护层, 是运用感光性树脂材料在控制光照(主要是 UV光)下,短时间内发生化学反应,使得这 类材料的溶解性、熔融性和附着力在曝光后 发生明显的变化;再经各种不同的方法显影 后获得的。这种方法称为“光刻法”。这种 作为抗蚀涂层用的感光性树脂组成物称为 “光致抗蚀剂”(又称光刻胶)
O N2 hv - N2 SO2 Ar SO2 Ar C O
+ H2O O C OH 稀碱水显影成像 SO2 Ar
重氮萘醌磺酸酯酯化反应:
O HO O OH N2
+
OH
SO2 Cl R1 O OR2
base
O OR3
PS版分辨率:10~12µ(显净3段)
i-线光刻图形:
Figure 6: Pattern micrograph with line width of 0.5µm
集成电路加工- 光刻技术与光刻胶
集成电路加工主要设备和材料: 光刻设备 半导体材料:单晶硅等 掩膜 化学品:光刻胶(光致抗蚀剂) 超高纯试剂 封装材料
光刻机:
From Canon website,
The most recent scanners are step and scan systems. Canon FPA-6000Aith 0.85NA. Overlay precision is ≤ 15nm.