智能控制(神经网络)-作业
智能控制试卷及答案

智能控制试卷及答案一、试卷一、选择题(每题2分,共20分)1. 下列哪项不是智能控制的主要类型?A. 人工智能控制B. 模糊控制C. 神经网络控制D. 逻辑控制2. 以下哪种控制方法适用于处理具有不确定性、非线性和时变性等特点的复杂系统?A. PID控制B. 模糊控制C. 串级控制D. 比例控制3. 神经网络控制的核心思想是利用神经网络实现控制规律的映射,以下哪种神经网络模型适用于动态系统的控制?A. BP神经网络B. RBF神经网络C. 感知器D. Hopfield神经网络4. 模糊控制中,模糊逻辑推理的核心部分是?A. 模糊集合B. 模糊规则C. 模糊推理D. 解模糊5. 以下哪种方法不属于智能控制系统的建模方法?A. 基于模型的建模B. 基于数据的建模C. 基于知识的建模D. 基于经验的建模二、填空题(每题2分,共20分)6. 智能控制的理论基础包括________、________和________。
7. 模糊控制的基本环节包括________、________、________和________。
8. 神经网络控制的主要特点有________、________、________和________。
9. 智能控制系统的主要性能指标包括________、________、________和________。
10. 智能控制技术在工业生产、________、________和________等领域有广泛应用。
三、判断题(每题2分,共10分)11. 模糊控制适用于处理具有确定性、线性和时不变性等特点的复杂系统。
()12. 神经网络控制具有较强的自学习和自适应能力。
()13. 智能控制系统不需要考虑系统的稳定性和鲁棒性。
()14. 智能控制技术在无人驾驶、智能家居等领域具有广泛应用前景。
()15. 模糊控制的核心思想是利用模糊逻辑进行推理和决策。
()四、简答题(每题10分,共30分)16. 简述模糊控制的基本原理。
(完整版)智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
智能控制作业

1、已知某一炉温控制系统,要求温度保持在600度恒定。
针对该控制系统有以下控制经验:(1)若炉温低于600度,则升压;低的越多升压越高。
(2)若炉温高于600度,则降压;高的越多降压越低。
(3)若炉温等于600度,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表。
解:1)确定变量定义理想温度为600℃,实际温度为T,则温度误差为E=600-T。
将温度误差E作为输入变量2)输入量和输出量的模糊化将偏差E分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将偏差E的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到温度模糊表如表1所示。
表1 温度变化E划分表控制电压u也分为5个模糊集:NB、NS、ZO、PS、PB,分别为负小、负大、零、正小、正大。
将电压u的变化分为7个等级:-3 -2 -1 0 1 2 3,从而得到电压变化模糊表如表2所示。
表2 电压变化u划分表表3 模糊控制规则表E PB PS ZO NS NB u PB PS ZO NS NB2、利用MATLAB,为下列两个系统设计模糊控制器使其稳态误差为零,超调量不大于1%,输出上升时间≤0.3s 。
假定被控对象的传递函数分别为:255.01)1()(+=-s e s G s)456.864.1)(5.0(228.4)(22+++=s s s s G解:在matlab 窗口命令中键入fuzzy ,得到如下键面:设e 的论域范围为[-1 1],de 的论域范围为[-0.1 0.1],u 的论域范围为[0 2]。
将e 分为8个模糊集,分别为NB ,NM, NS, NZ, PZ, PS, PM, PB; de 分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB;u分为7个模糊集,分别为NB ,NM ,NS, Z ,PS ,PM ,PB; MATLAB中的设置界面如下:模糊规则的确定:模糊控制器的输出量在simulink中调用模糊控制器,观察输出结果运行结果为ScopeScope1 Scope23、利用去模糊化策略,分别求出模糊集A 的值。
智能控制(神经网络)-作业

智能控制作业学生姓名: 学号: 专业班级:(一)7-2 采用BP网路、RBF网路、DRNN网路逼近线性对象, 分别进行matlab 仿真。
(二)采用BP网络仿真网络结构为2-6-1。
采样时间1ms, 输入信号, 权值的初值随机取值, 。
仿真m文件程序为:%BP simulationclear all;clear all;xite=0.5;alfa=0.5;w1=rands(2,6); % value of w1,initially by randomw1_1=w1;w1_2=w1;w2=rands(6,1); % value of w2,initially by randomw2_1=w2;w2_2=w2_1;dw1=0*w1;x=[0,0]';u_1=0;y_1=0;I=[0,0,0,0,0,0]'; % input of yinhanceng cellIout=[0,0,0,0,0,0]'; % output of yinhanceng cellFI=[0,0,0,0,0,0]';ts=0.001;for k=1:1:1000time(k)=k*ts;u(k)=0.5*sin(3*2*pi*k*ts);y(k)=(u_1-0.9*y_1)/(1+y_1^2);for j=1:1:6I(j)=x'*w1(:,j);Iout(j)=1/(1+exp(-I(j)));endyn(k)=w2'*Iout; %output of networke(k)=y(k)-yn(k); % error calculationw2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2for j=1:1:6FI(j)=exp(-I(j))/(1+exp(-I(j))^2);endfor i=1:1:2for j=1:1:6dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation endendw1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1% jacobian informationyu=0;for j=1:1:6yu=yu+w2(j)*w1(1,j)*FI(j);enddyu(k)=yu;x(1)=u(k);x(2)=y(k);w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;u_1=u(k);y_1=y(k);endfigure(1);plot(time,y,'r',time,yn,'b');xlabel('times');ylabel('y and yn');figure(2);plot(time,y-yn,'r');xlabel('times');ylabel('error');figure(3);plot(time,dyu);xlabel('times');ylabel('dyu');运行结果为:(三)采用RBF网络仿真网路结构为2-4-1, 采样时间1ms, 输入信号, 权值的初值随机取值, , 高斯基函数初值, 。
智能控制技术作业1

智能控制11.已知系统的传递函数为:G(s)=^^e g。
假设系统给定为阶跃值r=30,10S+1系统的初始值r(0)=0。
试分别设计常规的PID控制器;常规的模糊控制器;比较两种控制器的控制效果。
解:(1).利用Ziegler-Nichols 整定公式整定PID调节器的初始参数表1.调节器Ziegler-Nichols 整定公式KP TI TDPT /(K T)PI0.9T/(K T) 3.3 TPID1.2T/(K T)2.2 T0.5 T由公式可得\ /常规PID控制器的设计:P=18Ti=1.65Td=O SIMULINK仿真图^Bl*ck FardBCtcrsL Step]—S-tn 口tiJM:F:n且!valae.|35Saocrle tiae:pP iRt^Tpret vect{}r pEiTKHteri AB 1-D1*7 二「二匕二匸匚rzzrinb c -二:"〔二r.QBl*ck rarutt«rs: Tr^nsstrl Dclarp Tf Dfrlaj丄口sir <PE匚LT;td do:口T tp the qrpvt ;iEnJl- n;匚ur*cr i;au订:<hiTi tm delay i i lariE^r t郎an tJifr iinlat^on it»口i;£«上冒itlA* Ln^tLBl iTlDUt'I偌斗设定仿真时间为10s仿真结果CdX1C«l M*lp ApplyU2SJ 厂Direct r*fr;throi;ch at input liiXiiu liJieaxisttian.Pndfl prdflh tfo-T ;incari;ftt iQTL;:A也Q何丹ASS S昌嘩ffl 也| ** C? ® e附币■(2).模糊控制器的设计:1.在matlab命令窗口输入“ fuzzy ”确定模糊控制器结构:即根据具体的系统确定输入、输出量。
智能控制BP神经网络实验报告

神经网络实验报告一、实验目的通过在matlab 下面编程实现bp 网络逼近标准正弦函数,来加深对BP 网络的了解和认识,理解信号的正向传播和误差的反向传递过程。
二、实验原理由于传统的感知器和线性神经网络有自身无法克服的缺陷,它们都不能解决线性不可分问题,因此在实际应用过程中受到了限制。
而BP 网络却拥有良好的繁泛化能力、容错能力以及非线性映射能力。
因此成为应用最为广泛的一种神经网络。
BP 算法的基本思想是把学习过程分为两个阶段:第一阶段是信号的正向传播过程;输入信息通过输入层、隐层逐层处理并计算每个单元的实际输出值;第二阶段是误差的反向传递过程;若在输入层未能得到期望的输出值,则逐层递归的计算实际输出和期望输出的差值(即误差),以便根据此差值调节权值。
这种过程不断迭代,最后使得信号误差达到允许或规定的范围之内。
基于BP 算法的多层前馈型网络模型的拓扑结构如上图所示。
BP 算法的数学描述:三层BP 前馈网络的数学模型如上图所示。
三层前馈网中,输入向量为:Tn i x x x x X),...,,...,,(21=;隐层输入向量为:Tm j y y y y Y),...,...,,(21=;输出层输出向量为:Tl k o o o o O),...,...,,(21=;期望输出向量为:Tl k d d d d d),...,...,(21=。
输入层到隐层之间的权值矩阵用V 表示,Ym j v v v v V),...,...,(21=,其中列向量j v 为隐层第j 个神经元对应的权向量;隐层到输出层之间的权值矩阵用W 表示,),...,...,(21l k w w w w W =,其中列向量k w 为输出层第k 个神经元对应的权向量。
下面分析各层信号之间的数学关系。
对于输出层,有∑====mj x v net mj netf yi ij jjj,...,2,1,,...,2,1),(对于隐层,有∑=====mj i jkkkk lk y wnetl k netf O 0,...,2,1,,...,2,1),(以上两式中,转移函数f(x)均为单极性Sigmoid 函数:xex f -+=11)(f(x)具有连续、可导的特点,且有)](1)[()('x f x f x f -=以上共同构成了三层前馈网了的数学模型。
智能控制习题

智能控制习题⼀、填空题(每空1分,共20分)1.控制论的三要素是:信息、反馈和控制。
2.传统控制是经典控制和现代控制理论的统称。
3.智能控制系统的核⼼是去控制复杂性和不确定性。
4.神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成。
5.按⽹络结构分,⼈⼯神经元细胞可分为层状结构和⽹状结构按照学习⽅式分可分为:有教师学习和⽆教师学习。
6.前馈型⽹络可分为可见层和隐含层,节点有输⼊节点、输出节点、计算单元。
7.神经⽹络⼯作过程主要由⼯作期和学习期两个阶段组成。
⼆、判断题:(每题1分,共10分)1.对反馈⽹络⽽⾔,稳定点越多,⽹络的联想与识别能⼒越强,因此,稳定点的数据⽬越多联想功能越好。
(错)2.简单感知器仅能解决⼀阶谓词逻辑和线性分类问题,不能解决⾼阶谓词和⾮线分类问题。
(对)3. BP算法是在⽆导师作⽤下,适⽤于多层神经元的⼀种学习,它是建⽴在相关规则的基础上的。
(错)4.在误差反传训练算法中,周期性函数已被证明收敛速度⽐S型函数慢。
(错)5.基于BP算法的⽹络的误差曲⾯有且仅有⼀个全局最优解。
(错) 6.对于前馈⽹络⽽⾔,⼀旦⽹络的⽤途确定了,那么隐含层的数⽬也就确定了。
(错)7.对离散型HOPFIELD⽹络⽽⾔,如权矩阵为对称阵,⽽且对⾓线元素⾮负,那么⽹络在异步⽅式下必收敛于下⼀个稳定状态。
(对)8.对连续HOPFIELD⽹络⽽⾔,⽆论⽹络结构是否对称,都能保证⽹络稳定。
(错)9.竞争学习的实质是⼀种规律性检测器,即是基于刺激集合和哪个特征是重要的先验概念所构造的装置,发现有⽤的部特征。
(对)10.⼈⼯神经元⽹络和模糊系统的共同之处在于,都需建⽴对象的精确的数学模型,根据输⼊采样数据去估计其要求的决策,这是⼀种有模型的估计。
(错)三、简答题(每题5分,共30分)1.智能控制系统有哪些类型?答:1)多级递阶智能控制 2)基于知识的专家控制3)基于模糊逻辑的智能控制——模糊控制4)基于神经⽹络的智能控制——神经控制5)基于规则的仿⼈智能控制6)基于模式识别的智能控制7)多模变结构智能控制8)学习控制和⾃学习控制9)基于可拓逻辑的智能控制——可拓控制10)基于混沌理论的智能控制——混沌控制2.⽐较智能控制与传统控制的特点?1)传统控制⽅法在处理复杂性、不确定性⽅⾯能⼒低⽽且有时丧失了这种能⼒智能控制在处理复杂性、不确定性⽅⾯能⼒⾼2)传统控制是基于被控对象精确模型的控制⽅式,可谓“模型论”智能控制是智能决策论,相对于“模型论”可称为“控制论”3)传统的控制为了控制必须建模,⽽利⽤不精确的模型⼜采⽤摸个固定控制算法,使整个的控制系统置于模型框架下,缺乏灵活性,缺乏应变性,因此很难胜任对复杂系统的控制。
网络教育考试智能控制基础

一、判断题(判断下列所述是否正确,正确填入“√”:错误则填“x”。
每题2分,共20分)1.反馈型神经网络中,每个神经元都能接收所有神经元输出的反馈信息。
(x )2.一般情况下,神经网络系统模型的并联结构可以保证系统辨识收敛。
( x ) 4.在遗传算法中,初始种群的生成不能用随机的方法产生。
( x )5.语气算子有集中化算千、散漫化算子和模糊化算子三种。
( x )6.从模糊控制查询表中得到控制量的相应元素后,乘以量化因子即为控制量的变化值。
( √ )8.神经网络用于系统正模型辨识的结构只有串联结构一种。
(x )9.知识库和数据库是专家系统的核心部分。
( x )10.直接式专家控制系统可以采用单片机来实现。
( x )1.分层递阶智能控制结构中,执行级的任务是对数值的操作运算,它具有较高的控制精度。
( √ )3.模糊控制只是在一止程度上模仿人的模糊决策和推理,用它解决较复杂问题叫,还需要建立数学模型。
( x)4.在模糊集合的向量表示法中,隶属度为0的项必须用0代替而不能舍弃。
( √ )5.与传统控制相比,智能模糊控制所建立的数学模型因具有灵活性和应变性,因而能胜任处理复杂任务及不确定性问题的要求。
( x )6.智能控制的不确定性的模型包括两类,一类是模型未知或知之甚少:另一类是模型的结构和参数可能在很大范围内变化。
( √ )8.可以充分逼近任意复杂的非线性函数关系是神经网络的特点之一。
( √ )10.直接式专家控制系统可以采用单片机来实现。
( x )1.从模糊控制查询表中得到控制量的相应元素后,乘以量化因子即为控制量的变化值。
( x ) 2.模糊控制在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,不需要建立数学模型。
( √)3.智能模糊控制系统的数学模型虽然不够精确,但具有更高的灵活性和应变性,能够胜任对复杂系统的控制。
(√ )4.模糊控制规则是将人工经验或操作策略总结而成的一组模糊条件语句。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能控制作业
学生姓名: 学 号: 专业班级:
7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象
2)
1(1)1(9.0)1()(-+-⨯--=k y k y k u k y ,分别进行matlab 仿真。
(一)采用BP 网络仿真
网络结构为2-6-1。
采样时间1ms ,输入信号)6sin(5.0)(t k u ⨯=π,权值21,W W 的初值随机取值,05.0,05.0==αη。
仿真m 文件程序为:
%BP simulation
clear all;
clear all;
xite=0.5;
alfa=0.5;
w1=rands(1996,6); % value of w1,initially by random w1_1=w1;w1_2=w1;
w2=rands(6,1996); % value of w2,initially by random w2_1=w2;w2_2=w2_1;
dw1=0*w1;
I=[0,0,0,0,0,0]'; % input of yinhanceng cell
Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell
FI=[0,0,0,0,0,0]';
OUT=2;
K=0;
E=1.0;
NS=3;
While E>=le-020
k=k+1;
times(k)=k;
for s=1:1;NS
x=xs(s,:);
for j=1:1:6
I(j)=x*w1(:,j);
Iout(j)=1/(1+exp(-I(j)));
end
y1=w2’*Iout;
y1=y1’;
e1=0;
y=ys(s,:);
for l=1:1:OUT
e1=e1+0.5*(y(1)-y1(1))^2;
end
es(s)=el;
E=0;
If s==NS
For s=1:1:NS
E=E+es(s);
end
end
ey=y-y1;
w2=w2_1+xite*Iout*ey+alfa*(w2_1-w2_2);
for j=1:1:6
S=1/(1+exp(-I(j)));
FI(j)=S*(1-S);
end
for i=1:1;1996
forj=1:1:6
dw1(i,j)=xite*FI(j)*x(i)*(ey(1)*w2(j,1)+ey(2)*w2(j,2));
end
end
w1=w1_1+dw1+alfa*(w1_1-w1_2);
w1_2=w1_1;w1_1=w1;
w2_2=w2_1;w2_1=w2;
end
Ek(k)=E;
End
Figure(1);
plot(times,EK,’r ’);
xlabel('k');ylabel('E');
save wfile w1 w2;
(二)DRNN 网路仿真
采样时间1ms ,输入信号)4sin(5.0)(t k u ⨯=π,权值I O D W W W ,,的初值随机取值,取35.0,35.0,35.0===I D O ηηη。
仿真m 文件程序为:
%DRNN simulation
clear all;
clear all;
wd=rands(7,1);
wo=rands(7,1);
wi=rands(3,7);
xj=zeros(7,1);
xj_1=xj;
u_1=0;y_1=0;
xitei=0.35;
xited=0.35;
xiteo=0.35;
ts=0.001;
for k=1:1:1000
time(k)=k*ts;
u(k)=0.5*sin(4*pi*k*ts);
y(k)=(u_1-0.9*y_1)/(1+y_1^2);
Ini=[u_1,y_1,1]';
for j=1:1:7
sj(j)=Ini'*wi(:,j)+wd(j)*xj(j);
end
for j=1:1:7
xj(j)=(1-exp(-sj(j)))/(1+exp(-sj(j)));
end
Pj=0*xj;
for j=1:1:7
Pj=wo(j)*(1+xj(j))*(1-xj(j))*xj_1(j);
end
Qij=0*wi;
for j=1:1:7
for i=1:1:3
Qij(i,j)=wo(j)*(1+xj(j))*(1-xj(j))*Ini(i); end
end
ymk=0;
for j=1:1:7
ymk=ymk+xj(j)*wo(j);
end
ym(k)=ymk;
e(k)=y(k)-ym(k);
wo=wo+xiteo*e(k)*xj;
wd=wd+xited*e(k)*Pj;
wi=wi+xitei*e(k)*Qij;
xj_1=xj;
u_1=u(k);
y_1=y(k);
end
figure(1);
plot(time,y,'r',time,ym,'b');
xlabel('time/s');ylabel('y and ym'); figure(2);
plot(time,y-ym,'r');
xlabel('time/s');ylabel('error');
仿真结果为:。