最基本的图形点和线

合集下载

4.4最基本的图形——点和线. 1.点和线

4.4最基本的图形——点和线. 1.点和线

5.下面两个图中有多少条线段? 把它们写出来。 . . . . 1) A C D B
2)
A
B
C
D
图片欣赏 构成这两幅美丽图案的是曲线吗?
4.5最基本的图形 —— 点和线
1.点和线
平面图形是由同一个平面内的点、 线构成的图形 线段、射线、直线 1.什么是线段?线段怎么画?怎么表示 线段? 2.射线呢? 3.直线呢?
1.点 点用一个大写字母表示 点只有位置没有大小 点在生活中的作用
2.线段的表示方法
A
a
B
(1).用表示它的两个端点的大写字 母表示,上图的线段可记做“线段 AB”或“线段BA” (2).用一个小写字母表示:记做“线 段a”;
直线的性质: 经过两点有且只有一 条直线。
点在生活中的作用
请你把左边对图形的描述和右边相 应的图形用线连接: 以A为端点,经 A a B 过点B的射线 · · 连结A,B两 A B 点的线段 经过A,B两 · 点的直线 A B 与同伴交流:生活中,有哪些物体可 以近似地看做线段,射线,直线? 线段在生活中的作用
4.直线:把线段向两方无限延伸所形 成的图形叫做直线 直线的表示方法
l B (1).用它上面任意两个点的大写字母 表示,上图的直线可记做“直线 AB”或“直线BA” (2).用一个小写字母表示:上图的线 段可记做“直线l”;
A
合作学习 画一画,并回答: (1)过一点A可以画几条直线? (2)过两点A,B可以画几条直线? (3)如果你想将一根细木条固定在 墙上,至少需要几个钉子?
如图:从A地到B地有四条道路,除它们外 能否再修一条从A地到B地的最短道路? 如果能,请你联系以前所学的知识,在图 上画出最短路线.
• A • B

几何图形初步知识点

几何图形初步知识点

几何图形初步知识点在数学学科中,几何图形是一个重要的概念。

它是描述空间形状和结构的工具,可以帮助我们理解和研究物体的特征和性质。

本文将介绍一些几何图形的初步知识点,帮助读者建立对几何图形的基本认识。

1. 点、线段和射线在几何学中,最基本的图形是点。

点是一个没有大小和形状的位置。

两个点之间可以用线段来连接,线段是由两个端点确定的有限直线段。

线段有长度,并且可以用定理来计算。

类似于线段,射线也有长度,但是只有一个端点,另一端延伸到无穷远。

2. 直线和平面直线是由无限多个点连成的路径,它没有宽度和厚度。

直线可以用两个点确定,并且可以延伸到无限远。

平面是由无限多条直线组成的,它是一个无边无际的表面。

平面可以由三个不共线的点确定。

3. 角角是由两条射线共享一个相同起点而形成的图形。

角可以分为锐角、直角、钝角和平角。

锐角小于90度,直角等于90度,钝角大于90度,平角等于180度。

4. 三角形三角形是由三条线段组成,形成一个封闭的图形。

三角形的特点是三边之和等于180度,而三个内角之和等于180度。

根据边长和角度的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。

5. 四边形四边形是由四条线段组成的封闭图形。

根据边的长度和角的大小,四边形可以分为正方形、矩形、菱形、平行四边形和梯形等。

6. 圆圆是一个封闭的曲线,由一条曲线围成的图形称为圆形。

圆具有许多特性,比如半径、直径和圆心等。

圆的内部的所有点到圆心的距离都相等。

7. 多边形多边形是由多个线段组成的封闭图形。

根据边的数量,多边形可以分为三角形、四边形、五边形等。

多边形的内角和外角之和有一定的关系。

8. 空间几何学除了平面几何学之外,还有空间几何学。

空间几何学研究的是在三维空间中的图形和结构。

例如,立方体、球体等都是三维空间中的几何图形。

以上是关于几何图形初步知识点的简要介绍。

几何图形在日常生活和数学学科中都有广泛的应用。

通过了解和掌握这些基本的知识点,我们可以更好地理解和解决与几何有关的问题。

新华师大版7年级上册数学课件 第3章 图形的初步认识 3.5最基本的图形——点和线 1. 点和线

新华师大版7年级上册数学课件 第3章 图形的初步认识 3.5最基本的图形——点和线 1. 点和线
表示为:射线BA (有序)
(注: 端点的字母必须写在前)
射线的概念及表示
直线的概念及表示
表示为:直线AB(或直线BA)
表示为:直线l
注意:①在表示线段、射线、直线时都要在前面表明“线段”“射线”“直线”;②表示线段、直线时两个字母可以交换位置.
如图,把线段向两方无限延伸所形成的图形是直线.
表示方法:(1)用直线上的两个点大写的字母来表示;(2)用一个小写字母表示.
随 堂 小 测
1.下列给线段取名正确的是( )A.线段M B.线段m C.线段Mn D.线段mn
B
B
3.关于线段,下列判断正确的是( )A.只有一个端点 B.有两个以上的端点C.有两个端点 D.没有端点

C
D
小 结
谢谢聆听!
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
教学的艺术不在于传授本领,而在于善于激励唤醒和鼓舞
在实际生活中,我们都希望走的路越短越好,当然选择笔直的路线.
这条路线就是线段AB.也就是我们平时所说的基本事实:
此时线段AB的长度,就是A、B两点间的距离.
两点之间线段最短.
如图,线段向一方无限延伸所形成的图形叫做射线.
表示方法:用两个大写字母表示(端点和射线上另一点).
表示为:射线AB (有序)
4.下列说法中,正确的个数有( )(1)射线AB与射线BA一定不是同一条射线;(2)直线AB与直线BA一定是同一条直线;(3)线段AB与线段BA一定是同一条线段.A.0个 B.1个 C.2个 D.3个
5.任意画3条直线,则交点的个数是( )A. 1个 B.1个或3个 C.1个或2个或3个 D.0个或1个或2个或3个
过一点O可以画几条直线?

平面几何的基本图形

平面几何的基本图形

平面几何的基本图形平面几何是几何学中的一个分支,研究平面上的点、线、面及其相互关系。

在平面几何中,有一些基本图形是我们常见且重要的,它们是点、线、线段、射线、角、多边形、圆和曲线。

本文将会逐一介绍这些基本图形及其特征。

一、点(Point)点是平面上最基本的图形,用一个大写字母表示,如A、B、C。

点没有长度、面积和方向,只有位置。

点只有一个,不同的点可以有不同的位置。

在平面几何中,点是构成其他几何图形的基础。

二、线(Line)线由无数个点组成,无限延伸,没有宽度。

线段是有限的线,有两个端点。

线用两个大写字母表示,如AB、CD。

在平面几何中,线是连接两个点的直线路径。

三、线段(Line Segment)线段是两个点之间的有限线,有固定的长度。

线段用两个大写字母表示,并在两个字母之间加一条横线,如AB。

与线相比,线段具有确定的长度。

四、射线(Ray)射线起始于一个点,无限延伸,只有一个端点。

射线用一个大写字母及一个端点所在的小写字母表示,如OA,其中O为起点。

五、角(Angle)角是由两条射线共同起点组成的图形。

角用三个字母表示,中间的字母代表角的顶点,两边的字母分别代表两条射线。

例如∠ABC表示以点B为顶点,射线BA和射线BC所夹的角。

角可以根据其大小分为锐角、直角、钝角和平角。

六、多边形(Polygon)多边形是由多条线段连接而成的封闭图形。

多边形由至少三条线段组成,每个线段称为边,相邻边之间的交点称为顶点。

根据边的数量,多边形可以分为三角形、四边形、五边形等。

最常见的多边形是三角形、四边形和五边形。

七、圆(Circle)圆是由一条曲线和平面上的一个点组成的图形,其中曲线称为圆周,点称为圆心。

圆周上的任意一点到圆心的距离都相等,这个距离称为半径。

用一个大写字母表示圆心,用圆心字母上方加一个小写字母表示圆周,如O、OA。

八、曲线(Curve)曲线在平面上呈现出曲折或弯曲的形状,没有直线的性质。

曲线可以是闭合的,也可以是不闭合的。

最基本的图形—点和线

最基本的图形—点和线

直线、线段、 直线、线段、射线
2、要掌握两点间的距离的定义,知道两点之间线段最短, 要掌握两点间的距离的定义,知道两点之间线段最短, 要掌握两点间的距离的定义 两点确定一条直线等。 两点确定一条直线等。
×
试一试
1、在哪你还看到过射线的形象?请举例。 、在哪你还看到过射线的形象?请举例。 答:电说出射线AB与射线 的端点,并画出这两条射 、说出射线 与射线 的端点, 与射线BA的端点 线。 答:射线AB的端点是A,射线BA的端点是B。 A B B A 3、依据“射线 与射线 是同一条射线”画图, 与射线AC是同一条射线 、依据“射线AB与射线 是同一条射线”画图, 正确的是( 正确的是(D.) C A B A B C A C A A C B D. A. B. C.
想一想: 要在墙上定牢一根木条,至少要钉几颗
钉子,为什么?
练习: 练习:1、判断
× ①射线有两个端点。( ) ②两点之间的所有连线中,线段最短。(√) √ ③两条直线相交,只有一个交点。( ) ④ 线段AB和线段BA是同一条线段。( ) √ × ⑤ 射线AB和射线BA是同一条射线。( ) ⑥ 延长直线AB到C(×) ⑦延长射线AB到C(×) √ ⑧反向延长射线AB到C( ) × ⑨线段AB就是A、B两点间的距离( ) × ⑩ 甲、乙两地间的路程就是甲、乙两地间的距离( ) 2、已知A、B、C三点,如图,按下列语句画图: ①画直线AB; ②画线段BC; ③画射线CA。 B
如上图,可以叫做: 除了用两个大写字母表示外, 线段AB,或者线段BA。 我们还可以用一个小写字母 表示线段。 a 比如左图,就可以叫做: 线段a
试一试 A
1、指出图中所有的线段。
B C D E 答:线段AB、线段AC、线 段AD、线段AE、线段BC、 线段BD、线段BE、线段 CD、线段CE、线段DE。 ① ②

最基本的图形-点和线PPT课件

最基本的图形-点和线PPT课件

11
22
33
44
CHENLI
55
66
77
88
16
数学理论
第二种方法是:叠合法先把两条线段的一端
重合,另一端落在同侧,根据另一端落下的
位置,来比较。
C
D
E
F
M
N
①A
B AB>CD
②A
B AB=EF
③A
CHENLI
B AB<MN
17
数学运用
观察下列三组图形,分别比较线段a、
b的长短 a b (1)
(3)
图①
例2、如图②,下列说法不能判断点C是线段AB
的中点的是( C )
( A)AC=CB
( B)AB=2AC
(C)AC+CB=AB
( D)2CB=AB
图② A
C
B
CHENLI
25
数学运用
例3、AB=6cm,点C是线段AB的中点,点D是线段 CB的中点,求线段AD的长。
A
C
D
B
解: AC=BC= 1 AB=3cm
结论: 两点间线段最短
生活中运用 “两点间线段
最短”的事例,你能列举吗?
CHENLI
8
数学理论
A

线段公理:两点之间,线段最短
连结两点所得线段的长度叫做这两点间的距离 。
CHENLI
9
问题情境、学生活动
画一画
1.过一点A画一条直线, 请问可以画几条?
2.过两点A、B可以画几条直线? 请动手试一试。
概念辨析:
“若AC=BC,则点C是线段AB的中点”这种 说
法对吗?
A
C
B

平面几何知识点总结大全

平面几何知识点总结大全

平面几何知识点总结大全一、基本图形。

1. 点。

- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。

它通常用一个大写字母表示,如点A。

2. 线。

- 直线。

- 直线没有端点,可以向两端无限延伸。

直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。

- 经过两点有且只有一条直线(两点确定一条直线)。

- 射线。

- 射线有一个端点,它可以向一端无限延伸。

射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。

- 线段。

- 线段有两个端点,有确定的长度。

线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。

- 两点之间,线段最短。

3. 角。

- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。

- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。

- 角的分类:- 锐角:大于0^∘而小于90^∘的角。

- 直角:等于90^∘的角。

- 钝角:大于90^∘而小于180^∘的角。

- 平角:等于180^∘的角。

- 周角:等于360^∘的角。

二、相交线与平行线。

1. 相交线。

- 对顶角。

- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。

对顶角相等。

- 邻补角。

- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角互补,即和为180^∘。

- 垂直。

- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

2024七年级数学上册第3章图形的初步认识3.5最基本的图形__点和线课件新版华东师大版

2024七年级数学上册第3章图形的初步认识3.5最基本的图形__点和线课件新版华东师大版
6-1.如图,已知线段AB=10 cm,点 N 在 AB上, NB=2 cm, M 是 AB的中点,则线段 MN 的长为 ( C)
感悟新知
知识点 3 线段的画法及长短比较
知3-讲
1. 线段的长短比较方法
(1) 度量法: 利用刻度尺分别测量出两条线段的长度,然
后根据测量结果进行比较 .
(2) 叠合法: 把两条线段中的一条线段移到另一条线段所
在直线上,使它们有一个端点重合,另一个端点在重合
端点同侧,然后根据另一个端点的位置进行比较 .
感悟新知
解题秘方:紧扣中点的意义及要求的线段与已知 线段之间的数量关系,求线段长 .
解:因为 AB=4, BC=2AB,所以 BC=8. 所以 AC=AB+BC=4+8=12.
知5-练
又因为 M 是线段 AC 的中点,所以 AM= 12AC=6. 所以 BM=AM-AB=6-4=2.
感悟新知
知5-练
于 180 m;
知2-练
若停靠点设在 B 住宅区,则他们步行的路程总和为
40+100=140(m);
若停靠点设在 B 住宅区与 C 住宅区之间(不包括 B、 C
住宅区),则他们的路程总和大于 140 m 且小于 240 m;
若停靠点设在 C 住宅区,则他们步行的路程总和为
40+100+100=240(m) .
知2-练
感悟新知
3-1.如 图,一 观 测 塔底座部分是长方体,现 从 下 底 面 A 点 处 修 建钢 结 构 扶 梯, 经 过 点M、 N 到 点 D ′,再 进入顶部的 观测室 . 已知AB=BC,试确定使扶梯的总 长度最小时点 M、N的位置 .
知2-练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创造出美丽的图案吗?
作业:练习册 p68
你要努力喔!!
A
第一种:线段 AB、线段 BC、
b
C a 图1
c B
线段 AC
第二种:线段 a、线段 b、线段 c
2.如图已知:A、B、C三点,过其中的任意两点 作直线,一共可以作几条直线并用字母表示。
· B
· A
直线AB
· C
直线ACΒιβλιοθήκη 直线BC练一练指出下图中线段、射线、直线分别 有多少条?
A B C
答: 有3条线段,是线段 AB、线段 AC、线段 BC 有6条射线 只有一条直线,是直线 AB
· B
(3)如果你想将一根细木条固定在墙上,至 少需要几个钉子?
试一试 如图,从A地到B地有三条路径,聪 明的你会选择哪一条?
在实际生活中,我们都希望走的路越短越好, 当然选择笔直的路线。这条路线就是线段AB。 也就是我们平时所说的:两点之间,线段最短
做一做
1. 图1中有几条线段,将它们分别用两种方式表示
§4.5 最基本的图形
—— 点和线
请你在中国地图上找出表示北京、上海、南 昌、成都所在位置的点。(课本112页图)
绷紧的琴弦、人行 横道都可以近似地 看做线段。
将线段向一个方向 无限延长就形成了 射线。
将线段向两个方向无限延长就形成了直线。
(1)点
A B
点通常表示一个物体的位置。一
个点一般用一个大写字母表示。
A 表示为:直线AB或直线BA a 也可以表示为:直线 a B
可用小写字母表示;也可用在直线上的两个点 来表示。
图 形 线段
有几个端点
向几个方向延伸
两个
不能延伸 一个 两个
射线
一个 直线 无
小组讨论:下列的图形中包含了哪 些线段?哪些射线?
M N
A
B
C
D
线段有:线段AB、线段AC、线段AD、线段BC、 线段BD、线段CD 射线有:射线AM、射线AN、射线BM、射线BN、 射线CM、射线CN、射线DM、射线DN
表示为:点A,点B
(2)线段
a
A
B
表示为:线段a
表示为:线段AB或线段BA ① 一条线段可用它的两个 端点的两个大写字母表示;
②一条线段可以用一个小写 字母表示。
(3)射线
A B 表示为:射线AB
用两个大写字母表示,一条射线可用它的 端点和射线上另一点来表示。注意:表示 端点的字母必须写在前面。
(4)直线
如图,有A、B、C,O四个点,分别画出以O点为端点,
经过A、B、C各点的射线,并分别用字母表示。
A O B C
分别是:射线OA、射线OB、射线OC。
经过平面上一点A,可以画多少条直线? (1)过一点A可以画几条直线? (2)过两点A、B可以画几条直线?
A
结论:经过一点可以画无数条 直线。
·A
经过两点有且只有一 条直线。
课堂小结:
◆ 点、线段、射线、直线的图形及对应的表示法; a A B A B 点A,点B 线段AB或线段a A B 射线AB ◆ ◆ 两点之间线段最短; 经过两点有一条直线,并且只有一条直线。 (简称:两点确定一条直线。) a A B 直线AB或直线a
请欣赏下列图案
挑战:你能用线段、射线或直线
相关文档
最新文档