第9章 大气边界层概述
台风形成的大气边界层过程

台风形成的大气边界层过程引言台风是一种强烈的热带气旋,对于许多沿海地区来说都是一种常见的自然灾害。
了解台风形成的过程对于预测和防范台风具有重要意义。
台风形成的过程包括大气边界层的一系列复杂变化。
本文将探讨台风形成过程中大气边界层的关键环节。
大气边界层的概述大气边界层是指地球表面与自由大气之间的区域,它对于气候模式和天气系统的形成至关重要。
大气边界层的特征包括温度、湿度、气压和风速的变化。
在台风形成过程中,大气边界层的变化起着重要作用。
大气边界层的结构大气边界层通常可以分为三个层次:地面层、混合层和准静止层。
1.地面层:指离地表约1.5公里以下的区域,受到地表影响最为显著。
地面层的温度和湿度变化较大。
2.混合层:位于地面层之上,高度约为1.5公里至4公里。
混合层内的气体混合程度较高,温度和湿度的变化相对较小。
3.准静止层:位于混合层之上,高度约为4公里至15公里。
准静止层内的气体流动较为缓慢,温度和湿度的变化相对较小。
台风形成的过程台风形成的过程需要满足一系列气象条件和动力过程。
1. 气象条件台风形成的气象条件包括足够高的海水温度、弱的垂直风切变和足够的湿度。
这些条件有助于产生热带扰动,为台风的形成提供了基础。
2. 热带扰动热带扰动是台风形成的前兆。
当气象条件合适时,海洋表面上的热量会导致空气的上升,形成一个低压区域。
这个低压区域会吸引周围空气进一步上升,并逐渐形成一个热带扰动。
3. 热带扰动的增强热带扰动在与海洋表面的相互作用中逐渐增强。
海水蒸发导致热量释放到大气中,进一步加强了热带扰动。
此时,热带扰动会逐渐形成一个闭合的环流,也称为热带低压。
4. 台风的形成当热带低压进一步发展并且达到一定标准时,它会被升级为台风。
台风的形成与大气边界层的变化密切相关。
大气边界层的水汽能量提供了台风形成所需的燃料。
4.1 气流的对称性台风形成过程中,大气边界层内的气流逐渐变得对称。
气流的旋转围绕着台风的中心,并且逐渐向上升高。
大气边界层

大气边界层气流过地面时,地面上各种粗糙元,如草、沙粒、庄稼、树木、房屋等会使大气流动受阻,这种摩擦阻力由于大气中的湍流而向上传递,并随高度的增加而逐渐减弱,达到某一高度后便可忽略。
此高度称为大气边界层厚度,它随气象条件、地形、地面粗糙度而变化,大致为300~1000米。
直接受到地表作用力影响的大气对流层,有时也称为行星边界层。
这些作用力包括摩擦,加热,蒸发,蒸散和地形影响等。
大气边界层的厚度随时间空间变化而有明显差异,可由数百公尺至一,二公里。
大气边界层之上成为自由大气。
白天地表受到太阳照射加热,温度升高;晚上则因为地表长波辐射冷却作用而降温,使得接近地表的气温呈现日变化,这种日变化是陆地上大气边界层的主要特征。
由于海水的比热大,以及海洋上层海水强烈的混合作用,使得海水表面温度日变化不明显,所以海上大气边界层的日变化也不明显。
气温日变化的振幅大小随着高度的增加而很快减小,自由大气的日变化则很小。
乱流旺盛也是大气边界层的重要特性。
无论在陆上或海上,在高压区域因为气流沉降,边界层厚度通常比在低压区小。
在陆上高压区域,大气边界层的日夜演化,结构常比较清晰,主要包括混合层,剩余层和稳定边界层。
日出后地表受热,热空气上升,冷空气下降,对流逐渐加强,各种性质近乎均匀的混合,古称之为混合层,也称为对流边界层。
在混合层内为不稳定的大气,其乱流主要有对流作用主导。
日出后混合层很快发展,到了下午一,二点左右,混合层高度达到最高。
日落后,地表受热停止,使得混合层内的乱流强度减弱,原来为不稳定的大气,逐渐转为中性的大气;此为白天混合层的残余,故称之为剩余层。
日落后,地表以长波辐射冷却,逐渐降温,在地表形成逆温,发展成为夜间地面逆温层,这一层大气非常稳定,故称之为稳定边界层,层内的乱流强度很微弱。
在稳定边界层之上即为剩余层。
夜间地面的风通常是微风或静风,但在稳定边界层顶常会出现很强的风速,这种现象称为夜间低层喷流。
无论在混合层或稳定边界层,从地表到约十分之一边界层厚度附近的热通量,水气通量和应力随高度的变化不大,这一层被称为地面层,或等通量层。
大气边界层

湍流的产生
机械湍流( mechanical Turbulence) 热力湍流( thermal Turbulence )或对流湍 流(convective turbulence) 惯性湍流(inertial Turbulence)
机械湍流( mechanical Turbulence)
由风切变产生 风切变产生的原因:地面摩擦力,地形建筑 等障碍物的阻挡等。
9.4.4 The Marine Boundary Layer
9.4.4 The Marine Boundary Layer
9.4.4 The Marine Boundary Layer
9.4.5 Stormy Weather
9.4.5 Stormy Weather
9.4.5 Stormy Weather
惯性湍流(inertial Turbulence)
由大湍涡产生,湍流串级(turbulent cascade) Small eddies can also be generated along the edges of larger eddies, a process called the turbulent cascade, where some of the inertial energy of the larger eddies is lost to the smaller eddies
湿度通量
Байду номын сангаас
9.2.4 The Global Surface Energy Balance
9.2.4 The Global Surface Energy Balance
9.3 Vertical Structure 垂直结构
9.3.1 Temperature
第9章 大气边界层

高度(m)
2000 1000
0
云层
混合层(ML)
表面层(SL)
夹卷层
自由大气(FA)
盖顶逆温
剩余层(RL)
夹 卷 层混合层
稳定(夜间)边界层
(ML)
表面层(SL) 表面层(SL)
中午noon
日落sunset
午夜midnight 日出sunrise 中午noon
陆上高压区大气边界层由三部分组成:大涡对流混合层;含有原 先混合层空气的残余层;具有间隙性湍流的夜间稳定边界层。
• 对流层大气其余部分统称为 自由大气。
1 边界层定义
对流层是从地面往上直达11 千米平均高度,但通常只有 最低2000米才直接被下垫面 改变; 定义:大气边界层指的是地 面往上到1000-2000米高度的 这一大气层。
边界层定义
由于它与地球表面直接接触,所以地球表 面的强迫力如摩擦力、蒸发和蒸腾、热传 递、污染物排放以及地形引起的流的变化 等可以对它产生直接的影响,其响应时间 尺度为1小时或者更小。
2 风和气流
• 气流或者风可以分为三大类:平均风、湍流、波。
u u u u • 各种物理量如水汽、热量、动量和污染物等输送
在水平方向上主要靠风来实现;而垂直方向上主 要靠湍流;
平均风 波 湍流
风和气流
平均风:可以产生很快的水平输送或平流;摩擦 力使平均风在近地面处达到最小值;量级:水平风 为2到10米(m)每秒垂直风为几毫米(mm)到几厘 米(cm)(小) 波:一般在夜间边界层观测到波;波对动量和能 量输运起重要作用;来源于平均风剪切(切边)、 平均风经过障碍物时产生等等
)
kg污 m2s
或
kg污 m2s重新定义成运动学形式,
边界层的概念和特点

边界层的概念和特点边界层是指在地球物理学中,大气界面和地面之间的一层气体。
在气象学上,边界层是指从地面到一定高度范围内,风速、温度、湿度等各种大气参数发生显著变化的区域。
边界层的高度通常为未来数小时预报所需要的范围内。
1. 逐渐递减的风速:在边界层内,风速逐渐递减。
开始时,风速最大并且逐渐降低。
具体的风速变化取决于地面和大气层的性质和情况。
2. 温度和湿度梯度:边界层内的温度和湿度呈现出明显的梯度变化。
一般来说,地面处温度最高,高层温度逐渐降低。
除此之外,空气湿度在边界层内也会发生变化。
具体变化也是因地而异的。
3. 乱流增大:边界层内的乱流比较显著。
在这里空气流动不是平稳的,而是发生着强烈的乱流。
气体不能在水平方向上自由扩散,而是在各种水平方向逐渐混合。
4. 光学特性不同:由于边界层内存在着大量悬浮的尘埃和气体,它具有不同于上层大气的光学特性。
这使得大气边界层对光的透过率发生了变化。
边界层在气象、环境科学、气候变化等领域具有重要意义。
较为典型的是它与交通工具有关的影响。
由于边界层内的风速变化大,乱流强,而车辆在受到这种影响的同时会发生摩擦热,从而可以推测车辆的燃油效率、稳定性和舒适性。
在电力行业,边界层的变化也会影响线路的温度和表面附着物的变化,从而影响电力传输的效率和稳定性。
同样,边界层的湿度和风速也会对农业和林业造成影响。
总之,边界层是一个非常重要和复杂的概念。
对于气象学家、大气化学家、环境工程师、天气预报员、交通工程专家等专业人士来说,了解边界层的基本原理、特点和影响就显得尤为重要。
第9章 大气边界层

?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(1)混合层(ML)
• 混合层主要生成机制是对流,所以在晴天,ML的 发展依 赖于地面的太阳加热。(?) • 混合层顶部的稳定层作用?---顶盖,限制对流---卷挟带 • 整个混合层的风都是次地转风,风速分布?(风速向下递 减,在近地面处趋近于零) • 水汽混合比随高度增加而减小,为什么? • 大部分污染物是靠近地球表面
风
垂直输运 厚度
表面层中近似为对数风速廓线,通常 为次地转的,并与等压线相交
湍流占优势 变化于100米到3公里之间,陆上有日 变化
几乎是地转的
平均风和积云尺度占优势 变化小,在8-18公里之间, 时间变化慢
进一步体会边界层重要性:
每天预报实际上是边界层预报; 污染物积聚在边界层中; 雾发生在边界层中; 气团实际上是地球不同部分大气边界层;
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域
大气边界层概述

夜间边界层温度垂直分布的演变
2001年1月27日-28日逆温生消的演变过程
300
250
高 200 度 150
1999/10/5 08:00,北京 露点和大气温度垂直分布
不稳定
稳定(逆温)
不稳定边界层风、温廓线
稳定边界层风、温廓线
夜间稳定边界层比起白天的对流边界层来有显著的不 同,特别是,夜间经常在很低的高度上出现较强的逆温, 严重阻碍了物质和能量的扩散。因此研究夜间逆温层的演 变规律,尤其是确定逆温层顶的高度如何随时间演变,是
生态边界层示意图
一个关键的问题是如何定义边界层的上界,这也是一 个很困难的问题。有时,上界很明显,例如逆温盖,在盖 子以下大气受下垫面影响很大,而在盖子以上则未受影响。 但在通常情况下这种明显的界限是不存在的,下垫面的作 用随高度的增加只是缓缓减弱。一般地,类似于流体动力 学中边界层厚度的定义,定义大气边界层的上界为在这个 界面上 ,由地面作用导致的湍流动量通量以及热通量均减 小到地面值的很小一部分,例如1%。但有时 也以逆温层顶 作为大气边界层上界。
大气边界层概述
王成刚 大气物理系
与流体力学中称固壁附近的边界层为“平板边界层”、 “机翼绕流边界层”等类似,大气边界层也常常被称为“行 星边界层”,因为它是处于旋转的地球上的。当大气在地表 上流动时,各种流动属性都要受到下垫面的强烈影响,由此 产生的相应属性梯度将这种影响向上传递到一定的高度,不 过这一高度一般只有几百米到一二公里,比大气运动的水平 尺度小得多。在此厚度范围内流体的运动具有边界层特征。 在大气边界层中的每一点,垂直运动速度都比平行于地面的 水平运动速度小得多,而垂直方向上的速度梯度则比水平方 向上的大得多。此外,由于地球自转的影响,水平风速的大 小在随高度变化的同时,风向也随之变化。
大气边界层概述

各种条件下的大气边界层专项观测实验
青藏高原
南沙
北极
淮河
内蒙
高精度梯度测量系统
近地面综合梯度观测
观测非均匀边界层
• 超声阵列测量( HATS计划)
• 观测飞机 • 带平衡陀螺仪的汽艇 • 闪烁仪等
• 遥感观测
热量通量观测
辐射观测
青藏高原:在珠峰进行边界层气象和化学物质测量
北极:斯瓦尔巴德地区开展边界层观测试验
测量平均时间 2~60min
遥感仪器及技术指标
无线电声雷达 (RASS)
意大利Irone公司
最高探测高度 1000m
最低探测高度 100m
垂直空间分辨率 10m
测量范围
-30~40℃
精度
0.1℃
测量平均时间 3~30min
法国 REMTECH 公司最先进的低 层大气风速、温 度廓线测量仪
国际上最先进的边界层雷达(LAP5000)
大气边界层概述
王成刚 大气物理系
与流体力学中称固壁附近的边界层为“平板边界层”、 “机翼绕流边界层”等类似,大气边界层也常常被称为“行 星边界层”,因为它是处于旋转的地球上的。当大气在地表 上流动时,各种流动属性都要受到下垫面的强烈影响,由此 产生的相应属性梯度将这种影响向上传递到一定的高度,不 过这一高度一般只有几百米到一二公里,比大气运动的水平 尺度小得多。在此厚度范围内流体的运动具有边界层特征。 在大气边界层中的每一点,垂直运动速度都比平行于地面的 水平运动速度小得多,而垂直方向上的速度梯度则比水平方 向上的大得多。此外,由于地球自转的影响,水平风速的大 小在随高度变化的同时,风向也随之变化。
大气边界层内运动的主要特点就是其湍流性,大气 边界层的Reynolds数是相当大的,流体几乎总是处于湍 流状态,而且湍流度很大,可达20%左右。水平均匀地 面上的大气边界层结构可以简单地区分为上下两层,其 中近地面50~100m范围内的一层称为“近地层”或“常 通量层”(该层底部实质上也含有一个厚度非常小的粘性 次层,但通常不予考虑),其中湍流动量通量可以认为是 常值,平均水平风速服从对数律,这一特性是风洞中用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
这些通量可以通过除以湿空气密度而重新定义成运动学形式,
运动学通量 符号 ~ M M 单位
质量 热量 湿度 动量 污染物
a ~ QH QH a C pa
R ~ R
F
a ~ F
~ a
a
m s m K s kg w m kg a s m m s s kg 污 m kg a s
(2)剩余层
(3)稳定边界层
4 边界层厚度与结构
• 1 在海洋上方,边界层厚度的时空变化相对陆地要慢。这是由于海洋 上部很强的混合,海面温度日变化极小。因此一个缓慢变化的海面温 度意味着一个缓慢变化的强迫力对边界层底的作用;
• 2 海洋上面的边界层厚度大多数变化是由海面的天气尺度和中尺度过 程的垂直运动以及不同气团的平流造成的。 • 3 无论在陆地还是海洋上,边界层的共同特征是高压区比低压区薄 (P171)。(?)
1
边界层定义
对流层是从地面往上直达11 千米平均高度,但通常只有
最低2000米才直接被下垫面
改变; 定义:大气边界层指的是地
面往上到1000-2000米高度的
这一大气层。
边界层定义
由于它与地球表面直接接触,所以地球表 面的强迫力如摩擦力、蒸发和蒸腾、热传 递、污染物排放以及地形引起的流的变化 等可以对它产生直接的影响,其响应时间 尺度为1小时或者更小。 边界层虽然很薄,但是人类和其它生物活 动主要区域,所以一直是大气科学研究重 点课题。 下图给出对流层下部温度变化一个例子。 近地面气温日变化比较明显,而自由大气 则没有什么日变化。
3
湍流输送
定义: • 湍流是叠加在平均风速上的阵性流现象,远可以认为是由作不规则旋 转运动的涡旋所组成。 • 通常情况,湍流由许多大小不同的涡相互叠加而成。 • 这些不同尺度涡旋的相对强度就是湍流谱。
① 边界层湍流由来自地面的强迫力产生。例如:晴天时,地面受太阳 辐射加热,使得温暖的热泡上升,这些热泡即大涡旋; ② 边界层(ABL)的厚度相当于最大涡旋的尺度,即直径100-3000米; 最小的涡旋量级只有几毫米(mm),考虑分子粘性的耗散效应,所 以很弱。 ③ 边界层通过湍流作用来响应地面强迫力的变化;
• (1) 运动学通量和湍流通量
– 定义:通量是指单位时间内通过单位面积所传输的量。质量、热 量、动量和污染物的通量
通量 符号 单位
质量 热量 湿度 动量 污染物
~ M
~ QH
~ R
~ F
~
kg a m2 s J 2 m s kg w m2 s kg a (ms 1 ) 2 ms kg污 或 kg污 m m2 s s m2 s
风速表示质量和动量通量;温度和风速表示表示热量; 比湿(q)和风速表示水汽通量。
~ Q W m 2,求热量运动学通量QH • 设热量通量 H 365 ~ • 解: QH QH C P
365 1.21 1005 0.30K m / s
4 边界层厚度与结构
(1)混合层
第九章 大气边界层
本章主要内容
01 边界层定义 02 风和气流
03 湍流输送
04 边界层厚度与结构
05 微气象学
06 边界层意义
07边界条件和表面强迫力
08 海陆风环流
大气边界层Leabharlann • 地球表面是大气圈一个边界。
在这个边界上输运过程改变 着100米到3000米厚的最低层 大气,形成所谓边界层。 • 对流层大气其余部分统称为 自由大气。
2000 云层 夹卷层 自由大气(FA) 盖顶逆温
(m) 高度
1000 混合层(ML)
剩余层(RL)
夹 卷 层混合层
0
表面层(SL)
(ML) 稳定(夜间)边界层 表面层(SL) 表面层(SL)
米(cm)(小)
波:一般在夜间边界层观测到波;波对动量和能 量输运起重要作用;来源于平均风剪切(切边)、
平均风经过障碍物时产生等等
湍流:湍流是边界层区别于大气其余部分的特征 之一。在近地面湍流发生的频率相当高;对流云中 有湍流;在急流附近强风剪切造成晴空湍流。大气 湍流和波动叠加在平均场上,表现为风的起伏和扰 动。
边界层定义
• 地面因辐射而增温和冷却,从而通过传输强迫边界层发生变化。湍流是其中 重要运输过程,有时候也用湍流来定义边界层。
• 相应时间尺度约为1小时或者更小。这并不意味着这段时间内边界层达到平衡,
只是表示至少已经开始。 • 边界层中研究中包括晴天积云和层积云2种。晴天积云与边界层中热泡关系密 切;层积云在边界层上部,温度较低使水汽凝结。 • 雷暴能够将边界层空气抽吸入云层或铺设冷的下层空气罩而使边界层在几分
钟内发生变化。
2
•
风和气流
气流或者风可以分为三大类:平均风、湍流、 波。
u u u u
平均风 波 湍流
• 各种物理量如水汽、热量、动量和污染物等输送
在水平方向上主要靠风来实现;而垂直方向上 主要靠湍流;
风和气流
平均风:可以产生很快的水平输送或平流;摩擦
力使平均风在近地面处达到最小值;量级:水平风 为2到10米(m)每秒垂直风为几毫米(mm)到几厘
边界层厚度与结构
Subsidence(下沉) updrafts Divergence(辐散) 高压(H) (上升)
Convergence(辐合) 低压(L)
低压区边界层 高度如何确定?
边界层厚度与结构
• • • • • • • • • BL(Boundary Layer)边界层 CL(Cloud Layer)云层 FA(Free Atmosphere)自由大气 IBL(Internal Boundary Layer)内边界层 ML(Mixed Layer)混合层 RL(Residual Layer)剩余层 SBL(Stable Boundary Layer)稳定边界层 SCL(Subcloud Layer)云下层 SL(Surface Layer)表面层:占边界层10%的底部区域