模型预测控制(全面讲解)
离散时间状态空间模型模型预测控制

离散时间状态空间模型模型预测控制【实用版】目录1.离散时间状态空间模型2.模型预测控制3.模型预测控制在离散时间状态空间模型中的应用正文一、离散时间状态空间模型离散时间状态空间模型(Discrete-time State-space Model,简称DTSSM)是一种数学模型,用于描述具有离散时间状态的动态系统的行为。
这种模型通常由状态空间方程和观测方程组成,可以描述系统的状态演变和观测值。
状态空间方程描述了系统状态的演变过程,其形式为:x(t+1) = Ax(t) + Bu(t)其中,x(t) 表示系统的状态,u(t) 表示输入信号,A 和 B 分别是系统矩阵和控制矩阵。
观测方程描述了系统状态的观测值,其形式为:y(t) = Cx(t) + Du(t)其中,y(t) 表示系统的观测值,C 和 D 分别是观测矩阵和控制矩阵。
二、模型预测控制模型预测控制(Model Predictive Control,简称 MPC)是一种基于数学模型的控制策略,通过预测未来一段时间内系统的状态和观测值,来设计控制输入,使系统达到预期的控制性能。
MPC 的主要步骤包括:1.建立系统的数学模型2.预测未来一段时间内系统的状态和观测值3.制定控制策略,使系统达到预期的控制性能4.在线更新控制策略三、模型预测控制在离散时间状态空间模型中的应用在离散时间状态空间模型中,模型预测控制可以有效地应用于各种控制系统,例如线性时变系统、非线性系统、时变系统等。
通过使用 MPC 策略,可以提高系统的控制性能,例如减小系统的超调量、消除系统的静差等。
在实际应用中,MPC 策略需要根据系统的具体特点进行设计和调整,以满足不同的控制需求。
同时,MPC 策略还需要考虑在线更新的问题,以适应系统的不确定性和时变特性。
现代控制理论中的模型预测控制和自适应控制

现代控制理论中的模型预测控制和自适应控制在现代控制理论中,模型预测控制和自适应控制是两种广泛应用的控制方法。
这两种控制方法各有优劣,适用于不同的控制场景。
本文将分别介绍模型预测控制和自适应控制的基本原理、应用范围和实现方法。
模型预测控制模型预测控制(MPC)是一种基于数学模型预测未来状态的控制方法。
MPC通过建立系统的数学模型,预测系统未来的状态,在控制循环中不断地更新模型和控制算法,实现对系统的精确控制。
MPC的核心思想是将控制问题转化为优化问题,通过最优化算法求解出最优的控制策略。
MPC的应用范围十分广泛,特别适用于需要对系统动态响应进行精确控制的场合,如过程控制、机械控制、化工控制等。
MPC 在控制精度、鲁棒性、适应性等方面都具有优异的表现,是目前工业控制和自动化领域的主流控制方法之一。
MPC的实现方法一般可分为两种,一种是基于离线计算的MPC,一种是基于在线计算的MPC。
离线计算的MPC是指在系统运行之前,先通过离线计算得到优化控制策略,然后将其存储到控制器中,控制器根据当前状态和存储的控制策略进行控制。
在线计算的MPC则是指在系统运行时,通过当前状态和模型预测计算器实时地优化控制策略,并将其传输到控制器中进行实时控制。
自适应控制自适应控制是指根据系统实时变化的动态特性,自动地调整控制算法和参数,以实现对系统的精确控制。
自适应控制可以适应系统动态响应的变化,提高控制精度和鲁棒性,是现代控制理论中的重要分支之一。
自适应控制的应用范围广泛,特别适用于对控制要求较高的复杂系统,如机械控制、电力控制、化工控制等。
自适应控制可以通过软件和硬件两种实现方式,软件实现是通过控制算法和参数的在线调整来实现,硬件实现则是通过控制器内部的调节器、传感器等硬件来实现。
自适应控制的实现方法一般可分为两种,一种是基于模型参考自适应控制(MRAC),一种是模型无关自适应控制(MIMO)。
MRAC是指通过建立系统的数学模型,基于参考模型的输出来进行控制的方法,适用于系统具有良好动态特性的场合;MIMO则是指在不需要建立系统数学模型的情况下,通过控制器内部的自适应算法来实现控制的方法,适用于系统非线性和时变性较强的场合。
模型预测控制技术在过程控制中的应用

模型预测控制技术在过程控制中的应用一、引言过程控制是指通过监测和调节一些过程变量来使一个系统达到一定的目标,可以应用于许多领域,例如化工、制造、环保、食品工业等。
而模型预测控制技术则是一种高级的控制方法,它基于动态系统的数学模型,运用优化算法,通过预测模型的输出进行控制。
本文将探讨模型预测控制技术在过程控制中的应用。
二、模型预测控制概述模型预测控制是一种基于模型的控制方法,它使用动态模型来预测系统的未来行为。
通常,模型预测控制可以分为两个阶段:模型预测和控制。
在模型预测阶段,系统未来的状态是根据过去的行为和当前的状态预测的。
在控制阶段,使用这些预测结果进行控制,以实现期望目标。
三、模型预测控制技术在过程控制中的应用模型预测控制技术可以应用于各种过程控制问题,包括控制高温反应、水质控制、发电厂机组控制等。
下面将探讨它在化工行业中的应用。
1. 反应控制反应控制是化工过程中的一个重要环节。
不同的反应过程需要的控制方法是不同的,有些反应是需要在有限时间内控制温度,使反应达到一定程度,而有些反应是需要在一定温度条件下,控制反应速度。
模型预测控制技术可以根据反应动态响应模型来预测其未来变化趋势,控制反应过程。
2. 浓度控制浓度控制是化工工艺中的另一个重要方面。
在浓度控制问题中,需要根据工艺的特点设计控制器,以便在变量过程中保持恒定的浓度。
模型预测控制技术可以较为准确地预测进程变量的发展趋势,使控制器更为优化,从而实现浓度控制。
3. 在线优化在线优化是一种高效、可预测的优化方法,其目标是在过程运行中,根据实时变化的输入变量进行优化,从而使得输出变量满足一定的条件。
模型预测控制技术可以较好地应用于在线优化,以便根据实时的反馈信息对控制器进行实时优化,使系统稳定且具有较高的性能。
四、总结在过程控制中,模型预测控制技术有着广泛的应用。
它可以有效地控制反应过程、浓度控制和在线优化等方面,从而使得化工生产更加高效和稳定。
模型预测控制

,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。
模型预测控制实例-概念解析以及定义

模型预测控制实例-概述说明以及解释1.引言1.1 概述概述:模型预测控制(MPC)是一种先进的控制方法,它利用系统动态模型进行预测,并根据预测结果来实现对系统的控制。
MPC在控制系统领域内具有广泛的应用,其能够应用于多种复杂的工业控制问题,并取得了显著的成果。
本文将对MPC的基本原理、工业应用以及其优势和局限性进行深入探讨,旨在为读者提供全面的理解和认识MPC的重要性。
概述部分的内容1.2 文章结构文章结构部分的内容可以按照如下方式编写:文章结构部分应该简要介绍整篇文章的结构和各个部分的内容安排,包括引言、正文和结论部分。
同时,可以说明每一部分内容的重要性,并为读者展示整篇文章的逻辑和连贯性。
此外,也可以简要说明每一部分内容的主题和目的,以便读者在阅读全文时能够有所预期。
在文章结构部分,可以提及每个部分的主要内容和目标,以及整篇文章的导向和主题。
这部分内容应该尽量简洁明了,避免过多的细节,但要呈现出整篇文章的框架和逻辑安排。
1.3 目的本文的主要目的是通过对模型预测控制的介绍和分析,让读者对这一控制方法有更深入的理解。
我们将对模型预测控制的原理、应用和优势进行详细阐述,帮助读者了解模型预测控制在工业生产中的重要性和实际应用情况。
同时,我们也将探讨模型预测控制的局限性和可能的改进方向,以期为相关领域的研究和应用提供一定的启发和参考。
通过本文的阅读,读者可以对模型预测控制有更全面的认识,并对其在工程实践中的应用具有更深刻的认识和理解。
2.正文2.1 模型预测控制简介模型预测控制(Model Predictive Control, MPC)是一种应用于动态系统的先进控制策略。
它通过建立系统的数学模型,预测未来一段时间内的系统行为,并根据这些预测结果来实施控制动作,以实现对系统的最优控制。
MPC将系统的动态模型与性能指标相结合,能够在有限的控制时域内计算出最优的控制策略,因此被广泛应用于工业控制领域。
MPC的核心思想是通过对系统的动态模型进行预测,计算未来一段时间内系统状态的变化情况,然后根据这些预测结果来制定出最优的控制策略。
基于模型预测控制的机械系统运动轨迹控制

基于模型预测控制的机械系统运动轨迹控制随着机械系统的发展,对于运动轨迹控制的需求也日益增加。
传统的控制方法往往无法满足高精度、高稳定性的要求,因此基于模型预测控制(MPC)的方法逐渐受到关注和应用。
一、模型预测控制概述模型预测控制是一种优化控制技术,通过对未来一段时间内系统的预测进行优化,得到最优的控制策略。
它有别于传统的比例积分微分(PID)控制方法,可以在系统具有非线性、时变性质的情况下仍能保持较好的性能。
二、模型预测控制的基本步骤1. 系统建模:首先需要对机械系统进行建模,将其转化为数学模型。
常用的建模方法有物理方程建模、系统辨识建模等。
通过建模得到系统的状态空间模型。
2. 预测优化:在模型预测控制中,需要对未来一段时间内系统的状态进行预测。
这可以通过使用系统的状态空间模型和当前系统状态,结合最优化算法(如线性二次规划)来实现。
3. 控制策略生成:根据预测优化的结果,生成最优的控制策略。
这里可以使用时变状态反馈、最优控制器等方法来生成控制策略。
4. 控制执行:将生成的控制策略应用到机械系统中,实时地进行控制。
这里常用的方法包括模型预测控制器、状态反馈控制器等。
三、模型预测控制的优点相比传统的控制方法,模型预测控制具有以下优点:1. 鲁棒性:模型预测控制能够有效处理系统的非线性、时变性质,能够在外部扰动和模型误差的情况下仍能保持较好的控制性能。
2. 约束处理:模型预测控制可以很好地处理系统约束条件,通过约束条件的限制,能够使得系统在控制过程中满足一定的限制要求。
3. 更好地性能:模型预测控制可以在多个性能指标之间进行权衡,得到更好的控制性能。
比如可以同时优化系统的稳定性、抗干扰能力和响应速度等。
4. 灵活性:由于模型预测控制具有较好的建模能力,因此可以很容易地适应不同的系统和控制需求。
四、应用案例模型预测控制在机械系统运动轨迹控制方面有着广泛的应用。
例如,对于机器人的路径规划和轨迹跟踪,可以使用模型预测控制来实现高精度的轨迹追踪和优化路径规划。
模型预测控制讲解

– 则保证了可用线性系统的迭加性等
2019/6/9
第五讲 模型预测控制
16
计算机控制系统理论与应用
5-2 DMC的预测模型(1)
----Coperight by SEC----
t/T 12
计算机控制系统理论与应用
5-1 反馈校正(1)
----Coperight by SEC----
? 每到一个新的采样时刻,都要通过实际 测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
----Coperight by SEC----
2019/6/9
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
模型预测控制的发展背景(1)
? 现代控制理论及应用的发展与特点
– 要求 ? 精确的模型 ? 最优的性能指标 ? 系统的设计方法
– 应用 ? 航天、航空 ? 军事等领域
4
计算机控制系统理论与应用
预测控制的特点(1)
----Coperight by SEC----
? 建模方便,不需要深入了解过程内部机理 ? 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 ? 滚动的优化策略,较好的动态控制效果 ? 不增加理论困难,可推广到有约束条件、
大纯滞后、非最小相位及非线性等过程 ? 是一种计算机优化控制算法
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)
模型预测控制全面讲解..pdf

hT={h1,h2,…,hN} 可完全描述系统的动态特性
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图第节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
β β1
β2 β P
T
T
yP (k 2) yP (k P)1P
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
预测控制并不是要求输出迅速跟踪设定值,而 是使输出按一定轨迹缓慢地跟踪设定值
过去 yd y(k) 未来
yr(k)
e
Ts T
T ——参考轨迹的时间常数 y(k)——当前时刻过程输出 yd ——设定值
预测控制有关公司及产品 SetPoint : IDCOM DMC : DMC AspenTech : SetPoint Inc : SMC- IDCOM DMC Corp : DMCplus Profimatics: PCT Honeywell : Profimatics : RMPCT Adersa(法) : HIECON Invensys : Predictive Control Ltd : Connoisseur DOT(英) : STAR
1
k
k+1
t/T
1─k 时刻的预测输出 2─k +1时刻实际输出
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
T
第三节 模型算法控制(MAC) 一. 预测模型
u (k ) u (k 1) u (k 2) ym (k 1) y (k 2) u (k 1) u (k ) u (k 1) m Ym (k ) ym (k M ) u (k M 1) u (k M 2) u (k M 3) ym (k M 1) u (k M 1) u (k M 1) u (k M 2) y (k P) u (k M 1) u (k M 1) u (k M 1) m
U1 (k ) u (k N 1) u (k N 2) u (k 1)1( N 1)
U 2 (k ) u(k ) u(k 1) u(k M 1)1M
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
3.8
4.6 6 5
y (4) h4u (0) h3u (1) y (5) h5u (0) h4u (1)
t/T
N
3
2.3 3 0 u 1 2 2.5 1.5
3
4
0.8 5 6
y (k ) hi u (k i )
i 1
2 1 u(0) u(1)
y (t ) g ( )u (t )d
预测模型形式
参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
第二节 预测控制的基本原理 一. 预测模型(内部模型)
基于模型的预测示意图
过去 未来 3 y 4 1 u k 时刻 2
1—控制策略Ⅰ 2—控制策略Ⅱ
3—对应于控制策略Ⅰ的输出 4—对应于控制策略Ⅱ的输出
第二节 预测控制的基本原理 二. 滚动优化(在线优化)
T
h1 hM 1 hM hP 1
T
0 hP M 2
hN 0 H1
hN 1 hN 0 hN
h1 h1 h2 P M 1 hi i 1 P M
d(k) r(k)
+ _
在线优化 控制器
u(k) 受控过程
y(k)
动态 预测模型
+ +
y(k+j| k)
_
y(k|k)
+
模型输出 反馈校正
三要素:预测模型
滚动优化
反馈校正
第二节 预测控制的基本原理 一. 预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) | j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p}
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
主要内容
预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
有限个采样周期后
lim h j 0
1 1 h2 h 0 hN
j
第一节 预测控制的发展
预测控制的特点
建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果
简单实用的反馈校正,有利于提高控制系统的 鲁棒性
不增加理论困难,可推广到有约束条件、大纯 滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制
系统的渐近稳定性
系统的线性
第三节 模型算法控制(MAC) 一. 预测模型
y 2.3 3 0 1 2 2.5 u
1.5 0.8
1
t/T
t/T
y
u
4.6
6
5 3 1.6
2
0
1
2
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y
7.6 8.5
6.5
y (1) h1u (0) y (2) h2u (0) h1u (1) y (3) h3u (0) h2u (1)
u (k N 1) h1 h u ( k N 2) 2 u (k N M ) u (k N M 1) u (k M 2) u (k M 3) u (k P N ) hN
第四章
模型预测控制
内容要点
1 预测控制的发展 2 预测控制的基本原理 3 模型算法控制(MAC) 4 动态矩阵控制(DMC) 5 状态反馈预测控制(SFPC)
6 多变量协调预测控制
第一节 预测控制的发展
现代控制理论的发展与特点
特点
状态空间分析法 最优性能指标设计
应用
航天、航空等军事领域
1
2
N
t/T
系统的离散脉冲响应示意图
第三节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
有限脉冲响应(Finite Impulse Response,FIR) hT={h1,h2,…,hN} 可完全描述系统的动态特性 N称为建模时域 保证了模型可用有限的脉冲响应描述 保证了可用线性系统的迭加性
最优控制
通过使某一性能指标最优化来确定其未来的控制作用的
局部优化
不是采用一个不变的全局最优目标,而是采用滚动式的 有限时域优化策略。在每一采样时刻,根据该时刻的优 化性能指标,求解该时刻起有限时段的最优控制率
在线滚动
计算得到的控制作用序列也只有当前值是实际执行的, 在下一个采样时刻又重新求取最优控制率
i i i j M 2
j M , M 1, , P
控制作用可分为两步
U1 (k ) u (k N 1) u (k N 2) u (k 1)1( N 1)
T
已知控制作用
U 2 (k ) u(k ) u(k 1) u(k M 1)1M 未知控制作用
第一节 预测控制的发展
1978年,Richalet 、Mehra提出了基于脉冲响应的模型预 测启发控制(Model Predictive Heuristic Control , MPHC),后转化为模型算法控制(Model Algorithmic Control,MAC)
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
第二节 预测控制的基本原理 三. 反馈校正(误差校正)
反馈校正示意图
2 3 y u 4
yP(k) u(t)
k
k+1
k+P
t/T
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
根据设定值和当前过程输出测量值确定参考轨迹 最广泛使用的参考轨迹为一阶指数变化形式
yr (k j ) j y (k ) (1 j ) yd
j 1, 2, , P
Ts ——采样周期
第三节 模型算法控制(MAC) 一. 预测模型
Ym (k ) H1U1 (k ) H 2U 2 (k )
h1 h 2 h2 h3 H2 hM h M 1 hP 1 P( N 1) hP
PID控制:根据过程当前的和过去的输出测量 值和给定值的偏差来确定当前的控制输入
预测控制:不仅利用当前的和过去的偏差值, 而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小