《实际问题与一元一次不等式》训练题

合集下载

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。

数学六年级下册第九章训练题-实际问题与一元一次不等式(2)

数学六年级下册第九章训练题-实际问题与一元一次不等式(2)

惠;
若一次购物超过500元,则其中500元按上述九折优惠,超过
500元的部分给予八折优惠.
某人两次去该商场购物,分别付款168元和423元.如果他合起
来一次去购买同样的商品,他可以节省多少钱?
数学
他可以节省30.6元.
七年级 下册
配RJ版
第九章
9.2
数学
七年级 下册
配RJ版
第九章
9.2
7.某型杂交水稻亩产量是普通水稻亩产量的2倍.现有两块试
数学
配RJ版
七年级 下册
数学
第九章
七年级 下册
配RJ版
不等式与不等式组
9.2 一元一次不等式
第3课时 实际问题与一元一次不等式(2)
第九章
9.2
数学
七年级 下册
配RJ版
第九章
9.2
1.某种商品的进价为400元,出售时标价为500元,商店准备打
折出售,但要保证利润率不低于10%,则至多可以打 ( C )
把多少亩B块试验田改种杂交水稻?
数学
七年级 下册
配RJ版
第九章
解:(1)设普通水稻的亩产量是x千克,则杂交水稻的亩产量
是2x千克,
依题意得



=4,


解得 x=600,
经检验,x=600是原方程的解,且符合题意,
则2x=2×600=1 200.
答:普通水稻的亩产量是600千克,杂交水稻的亩产量是1
数学
七年级 下册
配RJ版
第九章
解:(1)设每本手绘纪念册的价格为x元,每本图片纪念
册的价格为y元.
+ = ,
= ,

初中数学:9.1 不等式9.2 实际问题与一元一次不等式同步测试题B(人教版七年级下册)

初中数学:9.1 不等式9.2 实际问题与一元一次不等式同步测试题B(人教版七年级下册)

c ao b 数学:9.1 不等式--9.2 实际问题与一元一次不等式同步测试题B(人教新课标七年级下)一、选择题1,已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中,正确的是( )A .cb<abB .ac>abC .cb>abD .c+b>a+b2,若a<0,b>0且│a│<│b│,则a-b=( )A .│a│-│b│B .│b│-│a│C .-│a│-│b│D .│a│+│b│3,若0<a<1,则下列四个不等式中正确的是( ) A .a<1<1a B .a<1a <1 C .1a <a<1 D .1<1a<a 4,若关于x 的方程(x-2)+3k=3x k +的根是负数,则k 的取值范围是( ) A .k>34 B .k≥34 C .k<34 D .k≤34 5,在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x,y 满足x+y>0,则m 的取值范围在数轴上表示应是( )6,一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知: “父母买全票女儿按半价优惠”,乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的45收费”.若这两家旅行社每人的原票价相同,那么( )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与原票价相同二、填空题7,规定一种新的运算:a △b=a·b-a+b+1加3△4=3×4-3+4+1, 请比较(-3) △5______5△(-3)(填“<”“=”“>”).8,若│a-3│=3-a ,则a 的取值范围是_________.9,有理数a 、b 在数轴上的位置如图所示,用不等式表示:①a+b_____0 ②│a│____│b│ ③ab_____ ④a-b____0.10,已知3-a<3(1)2a -,那么不等式(3)3a x -<2a-x 的解集是_______. 11,有关学生体质健康评价指标规定:握力体重指数m=(握力÷体重)×100,初三男生的合格标准是m≥35.若初三男生小明的体重是50kg,那么小明的握力至少要达到_______kg 时才能合格.12,有人问一位老师,所教班级有多少学生,老师说:“一半学生在做数学,四分之一的学生在画画,七分之一的学生在读英语,还剩不足七位同学在操场上玩.”试问这班最多有学生______个.三、解答题30A 30C 30D 30B13,若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少? 试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解.14,已知2(1-x )<-3x ,化简│x+2│-│-4-2x│.15,已知关于x 的不等式2x-m>-3的解集如图所示求m16,(08嘉兴市)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计0元,按“技术员工个人奖金”A (元)和“辅助员工个人奖金”B (元)两种标准发放,其中800A B ≥≥,并且A B ,都是100的整数倍.注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.(1)求该农机服务队中技术员工和辅助员工的人数;(2)求本次奖金发放的具体方案.17,某电信局现有600部都已申请装机的固定电话尚待装机, 此外每天还有新申请装机的电话边也装机,设每天新申请装机的固定电话部数相同,若安排3 个装机小组,恰好60天可将待装固定电话装机完毕;若安排5个装机小组,恰好20天可将待装固定电话装机完毕(1)求每天新申请装机的固定电话数.(2)如果要在5天内将待装固定电话装机完毕, 那么电信局至少安排几个电话装机小组同时装机?答案一、1,C.解析:由数轴可知c<b<0<a ,当c<b 两边同乘以a,则由不等式基本性质2,ca<ab ;同理当c<a 两边都乘以b 则由不等式基本性质3,cb>ab 则已经c<a ,两边都加上1, 则由不等式基本性质1,c+b<a+b ,因此四个选项只有C 正确.2,C.解析:利用绝对值性质│a│=0000a a a a a >⎧⎪=⎨⎪-<⎩,从而将四个选项中代数式化简看哪一个结果为a-b.3,A .正确:因为0<a<1,设a=12,1a =2,所以a<1<1a,另外由0<a<1中a<1 利用不等式基本性质2,两边都除以a 得1<1a ,∴a<1<1a,故答案选A . 4,A.解析:先求出方程的根x=3-4k ,由已知根是负数,可列不等式3-4k<0,∴k>34. 5,B.6,B.点拨:设两旅行社的原票价均为每张x 元,则参加甲旅行社需付出2x+12x=52x ( 元);参加乙旅行社需付出3x·45=125x (元).由于125x<52x ,所以乙比甲优惠. 二、7,<.解析:依据新运算a △b=a·b-a+b+1计算-3△5,5△(-3)再比较结果大小. 8,a≤3.解析:根据│a│=-a 时a≤0,因此│a-3│=3-a ,则a-3≤0,a≤3.9,①<②<③>④> 解析:由数轴上的数可知:a<0,b<0且│b│>│a│,因此a+b<0,ab>0,a-b>0.10,x>93a a +.解析:先求解不等式①的解集a<-3,再化简后面不等式②为(a+3)x<9a , ∵a<-3,∴a+3<0,∴不等式两边同除以(a+3)时,利用不等式基本性质3, 不等号方向改变,解集为x>93a a +. 11,17.5. 12,56.解析:设这个班最多有x 个人,依题意列不等式x-(12x+14x+17x )≤6,解得x≤56,所以这个班最多有56位同学.三、13,解:把x=2代入方程(a+2)x=2得2(a+2)=2,a+2=1,a=-1,然后把a=-1代入不等式(a+4)x>-3得3x>-3,把x=-2代入左边3x=-6,右边=-3,-6<-3,∴x=-2不是3x>-3的解;同理把x=-1,x=0,x=1,x=2,x=3分别代入不等式,可知x=0,x=1,x=2,x=3这4个数为不等式的解.14,解:2(1-x )<-3x ,2-2x<-3x ,根据不等式基本性质1,两边都加上3x ,2+x<0,根据不等式基本性质1,两边都减去2,x<-2,∴x+2<0,-2x>4,∴-4-2x>0,∴│x+2│-│-4-2x│=-(x+2)-(-4-2x )=-x-2+4+2x=x+2.点拨:先利用不等式基本性质化简得x<-2,再根据代数式中要确定x+2,-4-2x 的正负性,从而将x<-2不等式利用不等式基本性质变形可得:x+2<0,-4-2x<0 最后化简得出结果.15,解:2x-m>-3,根据不等式基本性质1,两边都加上m ,2x>m-3,根据不等式基本性质2,两边都除以2,x>32m -,又∵x>-2,∴32m -=-2,∴m=-1.点拨:解不等式x>32m -,再根据解集得32m - =-2,本题将一元一次方程和一元一次不等式有机地结合起来,同时还利用了数形结合的方法,从数轴上观察一元一次不等式的解集x>-2.16,【解】(1)设该农机服务队有技术员工x 人、辅助员工y 人,则152x y x y +=⎧⎨=⎩,解得105x y =⎧⎨=⎩. ∴该农机服务队有技术员工10人、辅助员工5人.(2)由10520000A B +=,得24000A B +=.800A B ≥≥,1800133316003B A ∴≤≤≤≤, 并且A B ,都是100的整数倍, 1600800A B =⎧∴⎨=⎩,15001000A B =⎧⎨=⎩,14001200A B =⎧⎨=⎩. ∴本次奖金发放的具体方案有3种:方案一:技术员工每人1600元、辅助员工每人800元;方案二:技术员工每人1500元、辅助员工每人1000元;方案三:技术员工每人1400元、辅助员工每人1200元.17,解:(1)设每天新申请装机x 部固定电话,依题意可得:600660020360520x x ++=⨯⨯,解得x=20.(2)由(1)可知每个装机小组每天可装电话6002020520+⨯⨯=10(部),设至少安排a个装机小组同时装机,依题意可得10x×5≥600+20×5,解得x≥14.故最少安排14个装机小组同时装机.点拨:此题装机的固定电话数包括两部分,分别是已申请的600部,后面新申请的固定电话,再由题意中所包含的等量关系,每天每个小组装机数一定从而建立方程, 并且可以求算到每个小组每天装机的电话数.(2)因为要在5天内装完所以5天装机数应该大于等于5天里申请的固定电话数,从而建立不等式10x×5≥600+20×5, 解得x≥14,因此至少要安排14个装机小组装机.。

实际问题与一元一次不等式专题训练

实际问题与一元一次不等式专题训练

( )商 场第 二 次 以原 进 价 购 A, 2 B两 种 商 品 , 进 B种 商 品 的件 数 不 变 , 购 购 而 进 种 商 品 的件数 是第 一 次 的 2倍 ,
A种 商 品按 原 售价 出售 , B种 商 品 而
打折 销 售 ,若 两 种 商 品销 售 完毕 , 要
■■■■ ■■■■■■■■■●■■■ ■ ● ■■■■■■■■ _ ■■■● _ h自∞ ■ ■ _ ■

已知 2 一3 x=6 要 使 是 正数 , 求 的 , 试
取值 范围.
月租 费 1 2元 ,市 内通话 超过 3分 钟时 , 每 次话 费 O1 ,如果小 明家 的通话全 是市 . 8元 话 , 每次 通 话 时 间不 超 过 3分钟 , : 且 问 小
明家平均 每月通 话 至少多少 次?
维普资讯
1. 、 0 甲 乙两 家超 市 以相 同的价 格 出售 同样 的 商 品 , 了 吸引 顾 客 , 自提 出不 同 的优 为 各
惠方 案 :
使第 二 次经 营活 动获 利不 少 于 8 6 0 10
元, B种商 品最低 售价 为 每件多 少元 ?
位 数字之 和为 1 . 求每人 所得 的苹果 数. 1试
三 、 下列 应用题 解 6 刘 强在第 一 次数学 测 验时 得 了 7 分 , . 2 在第
二 次测验 时 得 了 8 6分 , 第 j次测 验 时至 在
。一 … — —
天 下绝 无 不 热 烈 勇 敢 地追 求 成 功 , 能 取 得 成功 的 人 . — 拿 破仑 一 世 而 —
明你 的理 由.
()中方买 I )所优 费 分出笔(用I (买惠购的 ’ 元 两支支 关 别 种数) I 与性 法间 写 之

人教版七年级数学第九章实际问题与一元一次不等式试题及答案

人教版七年级数学第九章实际问题与一元一次不等式试题及答案

人教版七年级数学第九章实际问题与一元一次不等式姓名___________班级__________学号__________分数___________一、选择题1.(1703)已知α,β都是钝角,甲、乙、丙、丁四位同学在计算16(α+β)时的结果一次为50°,26°,72°,90°其中,计算可能正确的是( )A .甲;B .乙;C .丙;D .丁;2.(1810)已知三角形的两边长分别是3、5,则第三边a 的取值范围是( )A .82<<aB .2≤ a ≤ 8C .2>aD .8<a3.(1754)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆;B .5辆;C .6辆;D .7辆 ;4.(3134)学校总务处与教务处各领了同样数量的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用3 张信笺.结果总务处用掉了所有的信封,但余下50 张信笺,而教务处用掉了所有的信笺,但余下50 个信封.则两处所领的信笺张数、信封个数分别为( )A .150、100B . 125、75C .120、70D .100、1505.(2327)小芳和爸爸、妈妈三人玩跷跷板,三人的体重一共为150千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端,这时,爸爸的那一端仍然着地.请你猜一猜小芳的体重应小于( )A .49千克B .50千克C .24千克D .25千克6.(3036)三个连续自然数的和小于15,这样的自然数组共有( )A .6组B .5组C .4组D .3组二、填空题7.(3562-08宁夏)学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下:已知该校七年级学生有800名,那么中号校服应订制 套.8.(1776)已知三角形的两边为3和4,则第三边a 的取值范围是________.9.(1794)阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为_____________________.10.(3081)某公司去年的总收入比总支出多50 万元,今年比去年的总收人增加10% ,总支出节约20 % .如果今年的总收人比总支出多100 万元,那么去年的总收入是_______万元,总支出是_______万元.11.(3140)王大伯承包了25 亩王地,今年春季改种茄子和西红柿两种大棚蔬莱,共用去了 44 000 元,其中种茄子每亩用了 1700 元,获纯利 2400 元;种西红柿每亩用了 1800 元,获纯利 2600 元,则王大伯共获纯利______元.12.(3165)有大、小两种货车,2 辆大车与3 辆小车一次可运货15.5吨;5 辆大车与6 辆小车一次可运货35 吨,则3 辆大车与5 辆小车一次可运货____吨.13.(4414-点津)小明用100元钱购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多买______支钢笔.14.(4417-点津)某商品的金价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.15.(7399)以三条线段3、4、x-5为这组成三角形,则x的取值为____________.三、解答题16.(3206)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000 元,经粗加工后销售,每吨利润可达4500 元;经精加工后销售,每吨利润涨至7500 元,当地一家农工商公司收获这种蔬菜140 t,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16 t;如果进行精加工,每天可加工6 t,但两种加工方式不能同时进行,受季节条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15 天完成.你认为哪种方案获利最多?17.(6993-08新疆)某社区计划购买甲、乙两种树苗共600棵,甲、乙两种树苗单价及成活率见下表:(1)若购买树苗资金不超过44000元,则最多可购买乙树苗多少棵?(2)若希望这批树苗成活率不低于90%,并使购买树苗的费用最低,应如何选购树苗?购买树苗的最低费用为多少?18.(7071-08鹤岗)某工厂计划为震区生产A、B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用。

专题15解一元一次不等式组及其解决实际问题(原卷版)(7大考点)

专题15解一元一次不等式组及其解决实际问题(原卷版)(7大考点)

专题15 解一元一次不等式组及其解决实际问题【考点导航】目录【典型例题】 (1)【考点一一元一次不等式组的定义】 (1)【考点二求一元一次不等式组的解集】 (2)【考点三求一元一次不等式组的整数解】 (3)【考点四由一元一次不等式组的解集求参数】 (3)【考点五不等式组和方程结合的问题】 (3)【考点六列一元一次不等式组】 (4)【考点七一元一次不等式组的应用】 (5)【过关检测】 (6)【典型例题】【考点一一元一次不等式组的定义】【变式训练】A .2个B .3个C .4个D .5个【考点二 求一元一次不等式组的解集】并写出不等式组的非负整数解.【变式训练】【考点三 求一元一次不等式组的整数解】【变式训练】【考点四 由一元一次不等式组的解集求参数】例题:(2023春·安徽安庆·七年级统考期中)关于x 的一元一次不等式组35128x x a -≥⎧⎨+<⎩有解,则a 的取值范围是( ) A .4a ≥B .4a >C .4a ≤D .4a <【变式训练】1.(2023·山东泰安·统考一模)不等式组3x mx <⎧⎨≥⎩有4个整数解,则m 的取值范围是( )A .67m ≤≤B .67m <<C .67≤<mD .67m <≤2.(2023·河南周口·统考一模)不等式组1x x n≤⎧⎨≥⎩无解,则n 的值可能是 _____.3.(2023春·安徽宿州·八年级统考期中)一元一次不等式组11x x m >⎧⎨>+⎩的解集是1x >,则m 的取值范围是______.【考点五 不等式组和方程结合的问题】例题:(2023春·安徽合肥·七年级合肥市庐阳中学校考期中)已知方程组324232x y kx y k +=-⎧⎨+=+⎩中的x ,y 满足0x y -≥, 则k 的取值范围是( )A .1k ≤-B .1k ≥-C .1k ≤D .1k ≥【变式训练】【考点六 列一元一次不等式组】例题:(2023秋·浙江杭州·八年级校联考期末)八年级某小组同学去植树,若每人平均植树7棵,则还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到2棵.设同学人数为x 人,植树的棵数为()79x +棵,下列能准确的求出同学人数与种植棵数的不等关系是( ) A .()79291x x +≤+- B .()7991x x +≥- C .()()792917991x x x x ⎧+<+-⎪⎨+>-⎪⎩D .()()792917991x x x x ⎧+<+-⎪⎨+≥-⎪⎩【变式训练】1.(2023春·山西晋中·八年级统考期中)某企业次定购买A ,B 两种型号的污水处理设备共8台,具体情况经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,所列不等式组正确的是()A.1210(8)89{200160(8)1380x xx x+-+-B.1210(8)89{200160(8)1380x xx x+=+-C.1210(8)89{200160(8)1380x xx x+-+-D.1210(8)89{200160(8)1380x xx x+-+-2.(2023春·全国·七年级专题练习)若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x间宿舍,则可列不等式组为____【考点七一元一次不等式组的应用】例题:(2023春·广东佛山·八年级期中)为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A、B两种型号的垃圾箱,通过对市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元.(1)求每个A型垃圾箱和每个B型垃圾箱分别多少元?(2)该小区计划用不多于1500元的资金购买A、B两种型号的垃圾箱共20个,且A型号垃圾箱个数不多于B型垃圾箱个数的3倍,则该小区购买A、B两种型号垃圾箱的方案有哪些?该小区最少需花费多少钱?【变式训练】1.(2023春·安徽安庆·七年级统考期中)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备,已知2台A型设备和3台B型设备日处理能力一共为72吨;3台A型设备和1台B型设备日处理能力一共为52吨.(1)求1台A型设备、1台B型设备日处理能力各为多少吨?(2)根据实际情况,需购买A、B两种型号的垃圾处理设备共10台.要求B型设备不多于A型设备的3倍,且购回的设备日处理能力不低于144吨.请你利用不等式的知识为该景区设计购买A、B设备的方案.2.(2023春·安徽合肥·七年级合肥38中校考期中)“新冠疫情”对全球经济造成了严重冲击,英雄的武汉人民为抗击“疫情”付出了巨大的努力并取得了伟大的胜利.为了加快复工复产,武汉市某企业需要运输一批生产物资.根据调查得知,2辆大货车与3辆小货车一次可以运输600箱生产物资;5辆大货车与6辆小货车一次可以运输1350箱生产物资.(1)求1辆大货车和1辆小货车一次分别可以运输多少箱生产物资?(2)现计划用这样的两种货车共12辆运输这批生产物资,已知每辆大货车一次需要运输费用5000元,每辆小货车一次需要运输费用3000元.若运输物资不少于1500箱,并且运输总费用小于54000元,请你列出所有运输方案,并指出哪种运输方案所需费用最少,最少费用是多少元?【过关检测】x⊗>30⎧2⎩。

实际问题与一元一次不等式

实际问题与一元一次不等式(1)1.若m >n ,下列各式中错误的是( )A 、m-3>n-3B 、5m >5nC 、n m 33--D 、n m 2121--2.不等式2 x 的解集是( )A 、x >2B 、2 xC 、22- x x 或D 、22- x x 或3.不等式x <-x 的解集是( )A 、x <0;B 、x >0;C 、 x=0;D 、x 为任何有理数4.下列说法错误的是( )A 、2x <-8的解集是x <-4;B 、-40是2x <-4的解;C 、x <2的正整数解有无数多个;D 、x <2的正整数解只有有限个解。

5.不等式932≤+x 的非负整数解的个数是( )A 、1个B 、2个C 、3个D 、4个6.某商品进价为800元,出售时价格为1200元,后来由于该商品积压,准备打折出售,但要保证利润不低于5%,你认为该商品至多可以打 折.7.解下列不等式,并把它们的解集表示在数轴上:(1)21+-x <0; (2)2(1-3x )>3x+20(3)212-x <2x ; (4);634321x x -≥-(5)3(2x+5)<2(4x+ 3);(6)10-4(x-3)≤2(x-1);8. 将一筐橘子分给若干个小孩,如果每人分4个橘子。

则剩下9个橘子,若每人分6个橘子,则最后一个小孩分得的橘子数小于3个,问共有几个小孩,有多少个橘子?9、某校准备选择一公司做毕业班纪念册。

甲公司每册收费5元,另收1500元设计费;乙公司每册收费8元,不另收设计费。

如果请你负责选择哪家公司省钱。

10.某人计划在15天里加工408个零件,前3天每天加工24个,问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?参考答案1.D 2. C 3. A 4. C 5. D6. (1) x <400 (2)x >-1 (3)x <3 (4)x <-2(5)1 x (6)47≥x (7)29 x (8)x≥4 7.(1)x+1<0 (2)02≥x (3)5a-3≥108.提示:22225≥+--x x ;解得2-≤x 9.提示:设小孩x 个,列不等式3)1(6940 --+x x 解得6<x <7.5,x 取整数7,即小孩7个,橘子4x+9=37个。

实际问题与一元一次不等式专题训练



1. 4 某车 间有 2 0名工人 ,每人 每天 可加 工 甲
种零 件 5件或 乙种 零件 4件 . 工一 个 甲 加 种零 件可 获利 1 6元 .加 工一 个 乙种 零件
可获 利 2 4元 . 使 车 间每 天 获 利不 低 于 要
10 8 0元 , 如何 分配这 2 应 0名 工人 ?
树 没人 植 ; 每 人 植 树 8棵 , 有 一 人 比 若 则 其 他人 植 的少 ( 有 树 植 ) 问 : 树 小组 但 . 植
有 多少人 ?植多少 棵树 ?
花 导火线 至少要 多长才 能保证 人 的安全 ?
( 案在第 n r a e : o emo t s u o k o ela t oa c r ei c e s d t s s s mewh n w t s. g s i h a h e





P a t a s o i o l ela n di es h o f x e i n e r c i l d m n yt b r e nt c o l p re c . c wi s o e h oe
实 用 的 知 识 只有 通 过 亲 身 体 验 才能 学 到 。—— 塞缪 尔 ・ 迈 尔斯 斯
骄 傲 随 无 知 而增 长 ; 是 知 识 浅 薄 的人 , 是 目空 一 切 。— — 约 翰 ・ 依 越 越 盖
1 . 宵 节燃 放 某 种 礼花 时 , 3元 为确 保 安 全 , 人 在 点燃 导 火 线 后 要 退 到 l 0米 以 外 的 安
全 区域 . 已知 导 火 线 的燃 烧 速 度 为 OO . 2 米/ . 离 开 的速度 为 4米/ . 秒 人 秒 试求 礼

人教版七年级数学下册实际问题与一元一次不等式(提高)典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实际问题与一元一次不等式(提高)知识讲解责编:杜少波【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

人教版七年级下册9.2一元一次不等式实际问题(利润、和差倍分)练习

9.2 一元一次不等式实际问题(利润、和差倍分)班级:__________ 姓名:__________ 分数:__________一、选择题1. 某种商品的进价为元,标价为元,后由于该商品积压,商店准备打折销售,要保证利润率不低于,该种商品最多可打( )A.九折B.八折C.七折D.六折2. 某种商品的进价为元,出售时标价为元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最低可打()A.折B.折C.折D.折3. 某品牌电脑的成本为元,售价为元,该商店准备举行打折促销活动,要求利润率不低于,如果将这种品牌的电脑打折销售,则下列不等式中能正确表示该商店的促销方式的是()A. B.C. D.4. 某商店将定价为元的商品,按下列方式优惠销售:若购买不超过件,按原价付款;若一次性购买件以上,超过部分打八折.小聪有元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品件,则根据题意,可列不等式为A. B.C. D.5. 的倍与的差不大于,用不等式表示为()A. B.C. D.6. 关于下列问题的解答,错误的是()A.的倍不小于的,可表示为B.的与的和是非负数,可表示为C.是非负数,可表示为D.是负数,可表示为7. 若的倍与的和比的倍小,则下列式子中表达正确的是()A. B.C. D.8. 若式子的值大于式子的值,则的值()A.大于B.小于C.等于D.无法确定9. “的倍与的和不大于与的差”用不等式表示为________.10. 用不等式表示,比的倍大的数不小于的与的差________.二、填空题11. 的倍与的差不小于,用不等式表示为________.12. 商家以元每千克的价格购进千克苹果,销售中有的苹果正常损耗,为不亏本商家售价为元每千克,可列不等式________.13. 若一件商品的进价为元,标价为元,商店要求以利润率不低于的售价打折出售,设打折,那么列出的不等式为________.三、解答题14. 用适当的不等式表示下列数量关系:(1)减去大于;(2)的倍与的差是负数;(3)的倍与的和是非负数;(4)的倍与的差不大于.15. 一种电子琴每台进价为元,如果商店按标价的八折销售,所得利润仍不低于实际售价的,那么每台电子琴的标价不得低于多少元?16. 某服装店准备购进甲乙两种服装,甲种每件进价元,售价元;乙种每件进价元,售价元,计划购进两种服装共件,其中甲种服装不少于件.若购进这件服装的费用不得超过元,则甲种服装最多购进多少件?在的条件下,该服装店在国庆节当天对甲种服装以每件优惠元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?17. 某商场经营某种新型电子产品,购进时的价格为元/件,根据市场预测,在一段时间内,销售价格为元/件时,销售量为件,销售单价每降低元,就可多售出件.写出销售量(件)与销售单价(元/件)之间的函数关系式;写出销售该产品所获利润(元)与销售单价(元/件)之间的函数关系式,并求出商场获得的最大利润;若商场想获得不低于元的利润,同时要完成不少于件的该产品销售任务,该商场应该如何确定销售单价?参考答案9.2 一元一次不等式实际问题(利润、和差倍分)一、选择题1.【答案】A2.【答案】C3.【答案】D4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B二、填空题9.【答案】10.【答案】11.【答案】12.【答案】13.【答案】三、解答题(本题共计 4 小题,每题 10 分,共计40分)14.【答案】解:(1)由题意可得:;(2)由题意可得:;(3)由题意可得:;(4)由题意可得:.15.【答案】解:设电子琴每台标价为元,那么售出一台电子琴所得的利润不低于元,根据题意,得,解这个不等式,得.经检验,不等式的解符合题意,所以,每台电子琴的标价不低于元.16.【答案】解:设购进甲种服装件,由题意可知:解得:,又∵甲种服装不少于件,即,∴,答:甲种服装最多购进件.设总利润为元,∵甲种服装不少于件,∴,,方案:当时,,随的增大而增大,所以当时,有最大值,则购进甲种服装件,乙种服装件;方案:当时,所有方案获利相同,所以按哪种方案进货都可以;方案时,,随的增大而减小,所以当时,有最大值,则购进甲种服装件,乙种服装件.17.【答案】解:由题意得:故销售量(件)与销售单价(元)之间的函数关系式为;,因为,所以当时,.故商场获得的最大利润为元当时,解得由二次函数的性质可知,当时,商场销售利润不低于元,又同时要完成不少于件的产品销售任务,则,解得,.答:销售价格应该在到元之间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.2 实际问题与一元一次不等式1
1.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次
..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的
2倍,且所需费用不多于
...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
2.一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.
设小明同学在这次竞赛中答对x道题.
(1)
(2)
3. 福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作
衬衫3件或裤子5条.已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则最多需要安排多少名工人制作裤子?
4.某城市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理,已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.
(1)甲、乙两厂同时处理该城市的垃圾,每天需要几小时完成?
(2)如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少
需要多少小时?
5.我市某商场A型冰箱的售价是2190元,每日耗电量为1千瓦·时,最近商场又进回一批B型冰箱,其售价比A型冰箱高出10%,但每日耗电量却为0.55千瓦·时,为了减少库存,商场决定对A型冰箱降价销售,请解答下列问题:
(1)已知A型冰箱的进价为1700元,为保证商场利润率不低于3%,试确定A型冰箱的
降价范围.
(2)如果只考虑价格与电量,那么商场将A型冰箱的售价至少打几折时,消费者购买A
型冰箱才合算(两种冰箱的使用期均为10年,每年365天,每千瓦·时电费0.4元计算).
6.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站到A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.
(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式
表示)?
(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所
花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其它因素).
7.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.
(1)符合公司要求的购买方案有几种?请说明理由;
(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这
10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?
9.2 实际问题与一元一次不等式2
1. 某商店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠.
一名同学为班级买奖品,准备买6本影集和若干枝铅笔,已知影集每本15元,钢笔每枝8元,问他至少买多少枝钢笔才能打折?
2. 宏志高中高一年级近几年招生人数逐年增加,去年达到550人,其中面向全省招收的有
“宏志班”学生,也有一般普通班学生. 由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可以多招20%,“宏志班”学生可以多招10%,问今年最少可招收“宏志班”学生多少名?
3.(2011广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.
(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?
(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?
4.某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg以上(含3000kg)的顾客采用两种销售方案:
甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回。

已知该公司租车从基地到公司的运输费用为5000元.
问:当购买量在哪一范围时,选择哪种购买方案付款较少?并说明理由.
5.(2011浙江温州)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.
(1)求这份快餐中所含脂肪质量;
(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;
(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于
....
...85%,求其中所含碳水化合物.质量的最大值.
6. 为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、
B
A型B型
价格(万元∕台) a b
处理污水量(吨∕月)240 200
3台B型设备少6万元.
(1)求a、b的值.
(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.
(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
9.2 实际问题与一元一次不等式3
1. 某市自来水公司按如下标准收取水费,若每户每月用水不超过5cm3,则每立方米收费
1.5元;若每户每月用水超过5cm3,则超出部分每立方米收费2元。

小童家某月的水费
不少于10元,那么她家这个月的用水量至少是多少?
2.有人问一位老师他所教的班上有多少学生,老师说:“一半的学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,不足六位同学在操场上踢足球。

”试问这个班共有多少名学生?
3.某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?
4. 某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x≥3)个乒乓球,已
,两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20知A B
元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
x 时,请设计最省钱的购买方案.
(2)当12
5.在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:
那么,)
6
(1)若小车在高速路上行驶的平均速度为90千米/小时,在108国道上行驶的速度为50
千米/小时,则小车走高速路比走108国道节省多少时间?
(2)若小车每千米的油耗为x升,汽油价格为7.00元/升,问x为何值时,走那条线路总
费用较少?(总费用=过路费+油耗费)
(3)公路管理部门在高速路口对从西昌市到攀枝花市五类不同油耗的小车进行统计,得到
平均每小时通过的车辆数的频数分布图如图所示,请估算10侠士内这五类小车走高速公路比走108国道节省了多少升汽油?(以上结果军保留两位有效数字)
7.某高速公路收费站,有m(m>0)辆汽车排队等候收费通过。

假设通过收费站的车流量(每分钟通过的汽车数量)保持不变,每个收费窗口的收费检票的速度也是不变的。

若开放一个收费窗口,则需20分钟才可能将原来排队等候的汽车以及后来接上来的汽车全部收费通过;若同时开放两个收费窗口,则只需8分钟也可将原来排队等候的汽车以及后来接上来的汽车全部收费通过。

若要求在3分钟内将排队等候收费的汽车全部通过,并使后来到站的汽车也随到随时收费通过,请问至少要同时开放几个收费窗口?。

相关文档
最新文档