2020年高中物理选修3-3知识点

合集下载

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结电场。

电场的概念,电荷周围的空间中存在电场,电场是一种物质的属性。

在电场中,电荷会受到电场力的作用。

电场强度,电场中单位正电荷所受到的电场力的大小称为电场强度,用E表示。

电场强度的方向与正电荷在电场中所受的力的方向一致。

电场强度的计算,电场强度E与电荷Q之间的关系可以用库仑定律来表示,即E= k|Q|/r^2,其中k为电场常数,r为电荷到观察点的距离。

电势能和电势差。

电势能,电荷在电场中由于位置的改变而具有的能量称为电势能,用U表示。

电势能与电荷的大小、电场强度以及位置有关。

电势差,单位正电荷在电场中由于位置的改变而具有的电势能的变化称为电势差,用ΔV表示。

电势差与电场强度之间存在着直接的关系,即ΔV=Ed。

电势差的计算,电场中某一点的电势差ΔV可以通过在该点放置单位正电荷所做的功来计算,即ΔV=W/q,其中W为单位正电荷所做的功,q为单位正电荷。

静电场中的电荷运动。

电荷在电场中受到电场力的作用,如果电荷能够自由移动,则会产生电流。

在静电场中,电荷的运动方式受到电场力的影响。

电场力对电荷做功,电场力对电荷做功,使电荷具有动能。

电场力对电荷做的功等于电荷在电场中由一个位置移动到另一个位置所具有的电势能的变化。

电荷在电场中的运动,电场力对电荷做功,使电荷具有动能,从而产生电流。

电荷在电场中运动时,电场力对电荷做的功等于电荷通过的电势差。

电容器。

电容器的概念,电容器是用来储存电荷和电能的装置,由两个导体之间的介质组成。

电容器的单位是法拉(F)。

电容器的电容,电容器的电容C是指在电容器两极间加上1V电压时所储存的电荷量与电压之比。

电容的计算公式为C=Q/V。

电容器的串联和并联,电容器的串联和并联是指将多个电容器连接在一起的方式。

串联时,总电容为各个电容器的倒数之和的倒数;并联时,总电容为各个电容器的和。

电容器的充放电,电容器充电时,电容器两极间的电压逐渐增大,电容器储存的电荷量也逐渐增大;电容器放电时,电容器两极间的电压逐渐减小,电容器储存的电荷量也逐渐减小。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结
物理选修3-3主要涵盖以下知识点:
1. 电路定律:
- 基尔霍夫第一定律:对于一闭合电路,电流的总和等于零。

- 基尔霍夫第二定律:电压的总和等于零。

2. 串联和并联电路:
- 串联电路:电流只有一个路径可以通过。

- 并联电路:电流可以选择多个路径通过。

3. 电阻与电阻率:
- 电阻是物质对电流流动的阻碍程度。

- 电阻率是物质本身对电流的阻碍程度,与物质的导电性质有关。

4. 欧姆定律:
- 欧姆定律表明电流与电压和电阻之间成正比关系,表达式为I=V/R,其中I为电流,V为电压,R为电阻。

5. 电功和功率:
- 电功表示电能转化为其他形式能量的过程中所做的功。

- 功率表示单位时间内做功的大小,等于电功除以时间。

6. 电容器:
- 电容器可以将电能以电场的形式储存。

- 电容器的电容量表示电容器对电流的阻碍程度,等于电容器
的电荷与电压之比。

7. RC 电路:
- RC 电路包括一个电阻和一个电容连接在一起。

- RC 电路具有延迟响应的特性,可以用来滤除高频信号。

8. LC 电路:
- LC 电路包括一个电感和一个电容连接在一起。

- LC 电路具有振荡的特性,可以用来产生无线电信号。

这些是物理选修3-3的主要知识点,通过学习和理解这些知识,可以加深对电路和电子设备运作的理解。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结物理选修3-3是高中物理的一门选修课程,本文将对该课程中的重要知识点进行全面总结。

这些知识点包括电磁感应、电磁波和粒子物理等内容。

一、电磁感应1. 法拉第电磁感应定律:当导体相对磁场运动或磁场变化时,导体中将产生感应电动势。

2. 感应电动势的大小与导体的速度、磁感应强度以及导体的长度有关,可以用法拉第电磁感应定律进行计算。

3. 感应电动势的方向遵循楞次定律,即感应电流的磁场方向与原磁场方向相反,以保持磁通量守恒。

4. 电磁感应的应用包括发电机、变压器和感应炉等。

二、电磁波1. 电磁波的特点:电磁波由电场和磁场交替变化而形成,能够在真空和介质中传播,具有相同的传播速度。

2. 电磁波的分类:根据波长不同,电磁波可分为无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。

3. 光的干涉和衍射:当光通过一些特定的物体时,会发生干涉和衍射现象,这些现象证明了光的波动性质。

4. 光的粒子性:根据光的光量子说,光可以看作粒子形式的能量传播。

三、粒子物理1. 基本粒子:粒子物理研究了构成宇宙的基本粒子,常见的基本粒子包括夸克、轻子、强子和介子等。

2. 模型:粒子物理的标准模型揭示了基本粒子的组成和相互作用方式,包括强力、弱力、电磁力和引力等。

3. 夸克色荷:夸克有三种“颜色”,即红色、蓝色和绿色。

夸克组合形成介子和强子。

四、其他1. 电磁场的相互作用:电磁场与电荷之间存在相互作用,电磁场的强度与电荷的数量和距离有关。

2. 恒星能源:恒星的能量来源于核聚变,核聚变反应产生的能量维持了恒星的持续亮度和运行。

3. 核能与核反应:核能是一种巨大的能量,核裂变和核聚变是核能释放的两种方式。

总结:物理选修3-3涵盖了电磁感应、电磁波和粒子物理等知识点。

电磁感应定律和法拉第电磁感应定律是电磁感应的基础,应用广泛。

电磁波具有特定的波长和频率,可通过干涉和衍射进行研究。

粒子物理关注基本粒子及其相互作用,标准模型是粒子物理研究的理论基础。

物理选修3-3知识点总结

物理选修3-3知识点总结

物理选修3-3知识点总结一、电磁场与电磁波的基础概念1. 电磁场的基本概念- 电荷与电场- 电流与磁场- 电磁场的相互作用2. 电磁波的产生- 电磁振荡- 电磁波的产生条件- 电磁波的传播特性3. 电磁波的性质- 电磁波的波长、频率和速度- 电磁波的能量- 电磁波的极化二、电磁感应与电磁波的应用1. 电磁感应现象- 法拉第电磁感应定律- 楞次定律- 感应电动势的计算2. 电磁波的应用- 无线电通信- 微波技术- 电磁波在医学领域的应用三、电磁波的传播与天线1. 电磁波的传播方式- 直线传播- 反射与折射- 衍射与干涉2. 天线的基本原理- 天线的种类与功能- 天线的辐射与接收- 天线的指向性与增益四、电磁兼容性与电磁污染1. 电磁兼容性- 电磁兼容性的定义- 电磁兼容性设计的原则- 电磁兼容性测试与评估2. 电磁污染- 电磁污染的来源- 电磁污染的影响- 电磁污染的防护措施五、电磁波的安全与健康1. 电磁波的生物效应- 电磁场对生物体的影响- 电磁波的热效应与非热效应 - 电磁波对人体健康的影响2. 电磁波的安全标准- 国际电磁波安全标准- 电磁波的安全防护措施- 电磁波的安全使用指南六、电磁波的测量与分析1. 电磁波的测量技术- 电磁场强度的测量- 电磁波功率的测量- 电磁波频率的测量2. 电磁波的分析方法- 时域分析与频域分析- 电磁波的谱分析- 电磁波的相位分析七、电磁波在现代科技中的应用1. 通信技术- 移动通信- 卫星通信- 光纤通信2. 遥感技术- 雷达遥感- 无线电遥感- 红外遥感3. 医疗技术- 磁共振成像(MRI)- 放射治疗- 无线医疗监测八、电磁波的未来发展趋势1. 电磁波技术的创新- 新型天线技术- 高频率电磁波的应用- 量子电磁学2. 电磁波与可持续发展- 电磁波在清洁能源中的应用- 电磁波在环境保护中的作用- 电磁波技术的绿色发展结语电磁波作为现代科技不可或缺的一部分,其理论和应用在不断发展和完善中。

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题一、电流和电阻1.电流的概念:电荷在单位时间内通过导体的量。

电流的单位是安培(A),1A等于1C/s。

2.电流的计算:I=Q/t,其中I为电流,Q为通过截面的电荷量,t为通过截面的时间。

3.电阻的概念:材料对电流的阻碍程度。

电阻的单位是欧姆(Ω),1Ω等于1V/A。

4.欧姆定律:U=IR,其中U为电压,I为电流,R为电阻。

5.导体和绝缘体:导体具有较低的电阻,能够很容易地传导电流;绝缘体具有很高的电阻,不容易传导电流。

二、电阻的影响因素1.长度:电阻与电阻长度成正比,R∝l。

2.截面积:电阻与截面积的倒数成正比,R∝1/A。

3.材料电阻率:电阻与材料电阻率成正比,R∝ρ。

4.电阻串联:串联电阻等效电阻等于各电阻的总和。

5.电阻并联:并联电阻等效电阻满足倒数之和的倒数。

三、电压、电流和功率1.电压的概念:电荷的电位差,也称为电势差。

电压的单位是伏特(V),1V等于1J/C。

2.电流和电压的关系:U=IR,其中U为电压,I为电流,R为电阻。

3.功率的概念:单位时间内做功的量。

功率的单位是瓦特(W),1W等于1J/s。

4.功率的计算:P=IV,其中P为功率,I为电流,V为电压。

5.电阻的功率计算:P=I^2R=V^2/R,其中P为功率,I为电流,R为电阻,V为电压。

四、电路中的能量变换1.电源的作用:提供电压差,驱动电荷在电路中流动。

2.电源的类型:干电池、蓄电池、发电机等。

3.电路的分类:串联电路、并联电路和混联电路。

4.串联电路中的电压:串联电路中各电器所接收的电压等于总电压。

5.并联电路中的电流:并联电路中各电器所接受的电流等于总电流。

综合练习题:1.一根电阻为10Ω的导线中通过电流2A,求导线两端的电压。

解:U=IR=10Ω×2A=20V2.一个电阻为5Ω的电灯接在12V的电压源上,求电灯的功率。

解:P=(12V)^2/5Ω=28.8W3.有一个串联电路,其中包括一个电阻为20Ω的灯泡和一个电阻为30Ω的电热器,接入220V的电压源,求电路总电阻和总电流。

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结

高中物理选修3-3知识点总结物理选修3-3知识点汇总一、宏观量与微观量及相互关系微观量包括分子体积V0、分子直径d和分子质量等,而宏观量则包括物体的体积V、摩尔体积Vm、物体的质量m、摩尔质量M和物体的密度ρ。

分子直径通常在10^-10m数量级,可以通过油膜法测量,公式为d=V/S。

此外,分子数N可以通过公式N=nNA/mA计算,其中NA为阿伏伽德罗常数。

分子质量和分子体积的估算方法分别为m=M/N和V=VmρN,其中ρ是液体或固体的密度。

分子直径的估算方法则是将固体和液体分子看成球形或立方体,公式为d=6V^(1/3)/π或d=V。

二、分子的热运动分子的热运动表现为无规则运动,包括扩散现象和布朗运动。

扩散现象是不同物质相互接触时彼此进入对方的现象,温度越高,扩散越快。

布朗运动则是悬浮在液体中的小颗粒所做的无规则运动,其特点为永不停息、无规则运动、颗粒越小运动越剧烈、温度越高运动越剧烈、运动轨迹不确定,但肉眼无法看到。

XXX运动的产生是由各个方向的液体分子对微粒碰撞的不平衡引起的。

需要注意的是,布朗运动只能发生在气体和液体中,而扩散现象则在气体、液体和固体之间均可发生。

能量不会被创造或消失,只能从一种形式转化为另一种形式2.热力学第一定律:能量守恒定律的应用,表明热量和功可以相互转化,但总能量不变3.热力学第二定律:不可能从单一热源中吸收热量,使之完全转化为功而不产生任何其他效应4.热力学第三定律:绝对零度是无法达到的,因为物质的内能不可能完全降至零能量既不能创造也不能消失,只能在不同形式和物体之间进行转化或转移。

在这个过程中,总能量量保持不变。

热力学第一定律表明,在物体与外界同时发生做功和热传递的情况下,外界对物体所做的功加上物体吸收的热量等于物体内能的增加。

符号法则非常重要:W>表示外界对系统做功,W<表示系统对外界做功;Q>表示系统吸热,Q<表示系统放热;ΔU>表示内能增加,ΔU<表示内能减少。

高中物理3-3热学知识点归纳(全面、很好)

选修3-3热学知识点归纳一、分子运动论1. 物质是由大量分子组成的(1)分子体积分子体积很小,它的直径数量级是(2)分子质量分子质量很小,一般分子质量的数量级是 (3)阿伏伽德罗常数(宏观世界与微观世界的桥梁)1摩尔的任何物质含有的微粒数相同,这个数的测量值:设微观量为:分子体积V 0、分子直径d 、分子质量m ;宏观量为:物质体积V 、摩尔体积V 1、物质质量M 、摩尔质量μ、物质密度ρ. 分子质量: 分子体积:(对气体,V 0应为气体分子平均占据的空间大小)分子直径: 球体模型: V d N =3A )2(34π 303A 6=6=ππV N V d (固体、液体一般用此模型) 立方体模型:30=V d (气体一般用此模型)(对气体,d 理解为相邻分子间的平均距离) 分子的数量.A 1A 1A A N V V N V M N V N Mn ====ρμρμ2. 分子永不停息地做无规则热运动(1)分子永不停息做无规则热运动的实验事实:扩散现象和布郎运动。

(2)布朗运动布朗运动是悬浮在液体(或气体)中的固体微粒的无规则运动。

布朗运动不是分子本身的 运动,但它间接地反映了液体(气体)分子的无规则运动。

(3)实验中画出的布朗运动路线的折线,不是微粒运动的真实轨迹。

因为图中的每一段折线,是每隔30s 时间观察到的微粒位置的连线,就是在这短短的30s 内,小颗粒的运动也是极不规则的。

(4)布朗运动产生的原因大量液体分子(或气体)永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。

简言之:液体(或气体)分子永不停息的无规则运动是产生布朗运动的原因。

(5)影响布朗运动激烈程度的因素固体微粒越小,温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不平衡性越强,布朗运动越激烈。

(6)能在液体(或气体)中做布朗运动的微粒都是很小的,一般数量级在,这种微粒肉眼是看不到的,必须借助于显微镜。

高三物理选修3-3知识点

高三物理选修3-3知识点一、引言高三物理选修3-3主要涉及以下知识点:电场与电势、电容与电容器、电流和电阻、电磁感应、电磁振荡和电磁波。

本文将逐一介绍这些知识点的概念、原理和应用。

二、电场与电势1. 电场的概念:电荷周围存在的一种物理量,具有方向和大小。

2. 电场强度:某一点的电场与单位正电荷之间的力的比值,用N/C表示。

3. 电势的概念:在电场中某一点电势能的大小,用V表示。

4. 电势差:两点之间电势的差别,用V表示。

5. 电荷在电场中的运动规律:带电粒子在电势能变化的方向做功。

三、电容与电容器1. 电容的概念:导体中贮存电荷的能力,用C表示。

2. 电容器的概念:用来储存电荷和电能的装置。

3. 电容的计算公式:C=Q/U,其中C为电容,Q为电荷,U为电压。

4. 并联电容器与串联电容器:计算电容时的不同组合方式。

四、电流与电阻1. 电流的概念:单位时间内通过导体横截面的电荷量。

2. 电流的计算公式:I=Q/t,其中I为电流,Q为电荷,t为时间。

3. 电阻的概念:导体抵抗电流的能力,用Ω表示。

4. 电阻的计算公式:R=U/I,其中R为电阻,U为电压,I为电流。

5. 欧姆定律:U=IR,描述电流通过导体的关系。

五、电磁感应1. 磁感线的性质:磁感线从磁南极指向磁北极,不相交且形成闭合曲线。

2. 磁场的概念:磁力作用于磁感线沿着磁场线方向。

3. 法拉第电磁感应定律:磁场中,导体中的电流的变化会引起感应电动势。

4. 感应电动势的计算公式:ε=-dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间。

六、电磁振荡和电磁波1. 电磁振荡的概念:电磁场能量在空间中传播并周期性变化的过程。

2. 电磁波的特性:既具有电场分量又具有磁场分量,并可以在真空中传播。

3. 光的电磁波:一种频率范围在可见光区域内的电磁波。

4. 光的折射和反射:光在介质边界上的传播方式。

七、总结高三物理选修3-3知识点涵盖了电场与电势、电容与电容器、电流和电阻、电磁感应、电磁振荡和电磁波等内容。

物理选修3-3-重要内容总结

物理选修3-3-重要内容总结物理选修3-3主要涵盖了以下重要内容:
1. 电磁感应和电磁波
- 法拉第电磁感应定律:当一个导体在磁场中运动,产生感应电动势,从而产生感应电流。

- 感应电动势的大小与导体的速度、磁场强度和导体长度的乘积有关。

- 麦克斯韦方程组描述了电磁波的传播规律。

- 电磁波的波长、频率和速度之间的关系由频率公式确定。

2. 光的物理性质
- 光的传播速度为光速,约为3×10^8m/s。

- 光的折射定律:光在介质中传播时,遇到界面会发生折射,折射角和入射角之间满足一个特定的关系。

- 光的反射:光在界面上发生反射,反射角等于入射角。

- 光的干涉现象:两束相干光叠加时会出现干涉现象,干涉分为相长干涉和相消干涉。

3. 分子动理论和热学
- 分子动理论解释了物质的微观结构和热学性质。

- 温度是物质微观粒子的平均动能大小。

- 理想气体状态方程:PV = nRT,描述了理想气体的状态。

- 热传导:热量会从高温物体传导到低温物体,遵循热传导定律。

以上是物理选修3-3的主要内容总结,希望对您有所帮助。

高中物理选修33知识点梳理及习题(2020年九月整理).doc

选修3-3知识点梳理及习题定义特点说明扩散现象不同物质彼此进入对方(分子热运动)温度越高,扩散越快分子不停息地做无规则运动分子间有间隙扩散现象是分子运动的直接证明布朗运动悬浮在液体中的固体微粒的无规则运动微粒越小,温度越高,布朗运动越明显不是固体微粒分子的无规则运动布朗运动不是液体分子的运动.布朗运动示意图路线不是固体微粒运动的轨迹布朗运动间接证明了液体分子的无规则运动,不是分子运动引力和斥力同时存在,都随r增加而减小,斥力变化更快,分子力本质为电磁力分子间距离f引与f斥对外表现分子力分子势能r=r0f引= f斥F=0 Ep最小r<r0 f引< f斥F为斥力Ep随减小而增大r>r0 f引> f斥F为引力Ep随增大而减小r>10 r0 f引f斥十分微弱F可以认为是零Ep可以认为是零项目定义决定微观量值分子的动能物体内分子永不停息地做无规则运动具有的动能与温度有关,温度是分子平均动能的标志分子永不停息地做无规则运动永远不等于零,无法测量分子的势能物体内分子存在相互作用力,由它们的相对位置所决定与物体体积有关分子间存在相互作用的引力与斥力可能等于零,无法测量内能物体内所有分子动能与势能之和与分子数,温度,体积有关分子永远运动和分子存在作用力永远不等于零, 无法测量机械能物体动能,重力势能和弹性势能之和跟物体运动状态,参考系和零势能点选择有关宏观物体的运动可以为零,可测量改变内能方法条件内能改变本质做功W 对外界做功,内能减少;外界对物体做功,内能增加其它形式的能与内能之间的转换热传递温度差对外界放热.内能减少;物体从外界吸热,内能增加热量从温度高的物体转移到温度低的物体3 热力学第一定律与能的转化及守恒定律内容物体内能的增加ΔU 等于外界对物体做的功W 和从外界吸收热量Q 之和ΔU =W+Q 公式中各量的物理意义 正 >0 负 <0 功 W 外界对物体做功物体对外界做功热量 Q 物体吸热 物体放热 内能ΔU内能增加内能减少能的转化和守恒定律能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变.(另一种表述:第一类永动机不可能制成.原因是第一类永动机违反能量守恒定律)(注: 1 不能说物体具有多少热量,只能说物体吸收或放出了多少热量,热量是过程量,不能说“物体温度越高,所含热量越多”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修3-3
[规律要点]
一、分子动理论
1.分子动理论的内容
(1)物体是由大量分子组成的。

(2)分子永不停息地做无规则运动。

(3)分子间存在相互作用力。

2.物体是由大量分子组成的
(1)分子很小
①直径数量级为10-10 m。

②质量数量级为10-27~10-26 kg。

③分子大小的实验测量:油膜法估测分子大小。

(2)阿伏加德罗常数N A=6.02×1023__mol-1。

(3)分子模型
①球体模型:d固、液体一般用此模型),如图1甲。

油膜法估测分子
大小时d=V
S,S为单分子油膜的面积,V为滴到水中的纯油酸的体积。

图1
②立方体模型:d
1乙。

对气体,d 应理解为相邻分子间的平均距离。

(4)微观量的估算
①分子的质量:m =M mol N A =ρV mol
N A 。

②分子的体积:V 0=V mol N A =M mol
ρN A。

对于气体,V 0表示分子占据的空间。

③物体所含的分子数:n =V V mol N A =M ρV mol N A 或n =M M mol N A =ρV
M mol N A 。

3.分子永不停息地做无规则热运动 (1)扩散现象:温度越高,扩散越快。

(2)布朗运动:发生原因是固体颗粒受到液体分子无规则撞击的不平衡性造成的。

间接说明了液体或气体分子在永不停息地无规则运动。

4.分子间存在着相互作用力
(1)分子间同时存在引力和斥力,实际表现的分子力是它们的合力。

引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,斥力比引力变化得更快。

(2)分子力和分子势能随分子间距变化的规律如下:
二、温度和内能
1.温度:宏观上温度是表示物体冷热程度的物理量,微观上温度是分子平均动能的标志。

2.分子平均动能:温度是分子平均动能大小的标志。

3.分子势能:分子具有由它们的相对位置决定的能,即分子势能。

决定因素⎩⎨⎧①微观上——决定于分子间距离和分子排列情况;
②宏观上——决定于体积和状态。

4.物体的内能
(1)决定因素⎩
⎨⎧①微观上:分子动能、分子势能、分子数;
②宏观上:温度、体积、物质的量(摩尔数)。

对于给定的物体,其内能大小由物体的温度和体积决定,与物体的位置高低、运动速度大小无关。

(2)两种改变物体内能的方式——做功和热传递 ①做功和热传递在内能改变上是等效的;
②两者的本质区别:做功改变内能是其他形式的能和内能的相互转化,热传递是内能的转移。

三、固体和液体 1.晶体与非晶体
2.液体
(1)液体的表面张力:液体的表面张力使液面具有收缩的趋势,方向跟液面相切,跟这部分液面的分界线垂直。

(2)液晶:既具有液体的流动性,又具有晶体的光学各向异性。

液晶在显示器方面具有广泛的应用。

3.饱和汽压:饱和汽所具有的压强。

液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

4.相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比。

用公式表示为:
相对湿度=
水蒸气的实际压强
同温度水的饱和汽压。

四、气体
1.气体分子运动的特点
(1)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布。

如图2所示。

图2
(2)温度一定时,某种气体分子的速率分布是确定的。

温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都
增大。

2.气体实验定律
3.理想气体状态方程
(1)理想气体
宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体。

实际气体在压强不太大、温度不太低的条件下,可视为理想气体;微观上讲,理想气体的
分子间除碰撞外无其他作用力,即分子间无分子势能。

(2)一定质量的理想气体状态方程:p1V1
T1=
p2V2
T2或
pV
T=C(常量)。

五、热力学第一定律
1.表达式为ΔU=Q+W。

2.对公式ΔU=Q+W符号的规定。

相关文档
最新文档