正态分布的数学期望与方差

合集下载

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。

在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。

下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

高二 正态分布期望方差讲义

高二 正态分布期望方差讲义

期望、方差、正态分布 期望、方差知识回顾:1.数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 特别提醒:1. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平2. 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值 2.期望的一个性质: ()E a b ξ+=aE b ξ+ 3.若ξ~B (p n ,),则ξE =np4.方差:ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+….5.标准差: ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ.6.方差的性质: ξξD a b a D 2)(=+; 若ξ~B (p n ,),则=ξD )1(p np - 特别提醒:1. 随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;2. 随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;3. 标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 正态分布知识回顾:1.若总体密度曲线就是或近似地是函数R ,21)(222)(∈=--x ex f x σμσπ的图象,则其分布叫正态分布,常记作),(2σμN .)(x f 的图象称为正态曲线.三条正态曲线:①5.0,1==σμ;②1,0==σμ;③2,1==σμ,其图象如下图所示:观察以上三条正态曲线,得以下性质: ①曲线在x 轴的上方,与x 轴不相交.②曲线关于直线μ=x 对称,且在μ=x 时位于最高点.③当μ<x 时,曲线上升;当μ>x 时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近.④当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.注意: 当1,0==σμ时,正态总体称为标准正态总体,相应的函数表示式是R ,21)(22∈=-x e x f x π.相应的曲线称为标准正态曲线.2. 正态总体的概率密度函数:,,21)(222)(R x ex f x ∈=--σμσπ式中σμ,是参数,分别表示总体的平均数(期望值)与标准差; 当0μ=时得到标准正态分布密度函数:()()22,,26xf x e x π-=∈-∞+∞.3.正态曲线的性质:① 曲线位于x 轴上方,与x 轴不相交; ② 曲线是单峰的,关于直线x =μ 对称; ③ 曲线在x =μ处达到峰值πσ21;④ 曲线与x 轴之间的面积为1;4. σμ,是参数σμ,是参数的意义:① 当σ一定时,曲线随μ质的变化沿x 轴平移;② 当μ一定时,曲线形状由σ确定:σ越大,曲线越“矮胖”,表示总体分布越集中; σ越小,曲线越“高瘦”,表示总体分布越分散。

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差


12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0

x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2

标准正态分布的方差

标准正态分布的方差

标准正态分布的方差标准正态分布是统计学中非常重要的一种概率分布,它具有许多重要的性质和特点。

在实际应用中,我们经常需要对标准正态分布的方差进行分析和计算。

本文将对标准正态分布的方差进行深入的探讨,希望能够为读者提供一些帮助。

首先,我们来回顾一下标准正态分布的定义。

标准正态分布又称为Z分布,它的概率密度函数是一个关于均值为0,标准差为1的正态分布。

其概率密度函数的表达式为:f(x) = (1/√(2π)) e^(-x^2/2)。

其中,e是自然对数的底,π是圆周率。

标准正态分布的概率密度函数是一个关于x的偶函数,其图像关于y轴对称。

标准正态分布的均值为0,标准差为1,其分布曲线呈钟型,且在均值处达到最大值。

接下来,我们来探讨标准正态分布的方差。

方差是衡量随机变量离散程度的一个重要指标,它描述了随机变量与其均值之间的离散程度。

对于标准正态分布来说,其方差为1。

这意味着标准正态分布的数据点相对于其均值的离散程度是已知的,这为我们在实际应用中的数据分析提供了便利。

在实际应用中,我们经常需要计算标准正态分布的方差。

为了计算标准正态分布的方差,我们可以利用方差的定义公式:Var(X) = E((X-μ)^2)。

其中,Var(X)表示随机变量X的方差,E表示数学期望,μ表示随机变量X的均值。

对于标准正态分布来说,其均值为0,因此方差的计算可以简化为:Var(X) = E(X^2)。

接下来,我们来计算标准正态分布的方差。

由于标准正态分布的概率密度函数是一个偶函数,因此其在整个实数轴上的积分值是1。

我们可以利用这一性质来计算标准正态分布的方差。

利用方差的定义公式,我们可以得到:Var(X) = ∫(x^2 f(x))dx。

其中,f(x)是标准正态分布的概率密度函数。

将标准正态分布的概率密度函数代入上式,进行积分计算,即可得到标准正态分布的方差。

通过计算,我们可以得到标准正态分布的方差为1。

这一结果与我们之前的预期是一致的。

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧

高中数学中的概率统计应用概率分布计算期望与方差的技巧概率统计是高中数学的重要内容之一,其应用广泛且重要。

在概率统计中,我们经常遇到需要计算随机变量的期望和方差的问题。

概率分布是解决这些问题的关键工具之一。

在本文中,我们将介绍一些高中数学中常见的概率分布,以及计算期望和方差的技巧。

1. 离散概率分布离散概率分布指的是随机变量只能取有限个或可列个值的概率分布。

其中,最常见的离散概率分布有二项分布、泊松分布和几何分布。

1.1 二项分布二项分布在实际问题中经常出现,特别是在重复试验的情况下。

假设有n个独立的重复试验,每次试验有成功和失败两种可能结果。

如果成功的概率为p,失败的概率为q=1-p,则随机变量X表示n次试验中成功的次数。

二项分布的概率密度函数为:P(X=k) = C(n,k) * p^k * q^(n-k)其中,C(n,k)表示组合数。

二项分布的期望和方差的计算公式如下:E(X) = npVar(X) = npq1.2 泊松分布泊松分布适用于描述单位时间或空间内随机事件发生的次数。

例如,某地区每小时的交通事故数、每天接到的电话数等。

泊松分布的概率密度函数为:P(X=k) = (λ^k * e^(-λ)) / k!其中,λ代表单位时间或单位空间内平均发生的次数。

泊松分布的期望和方差的计算公式如下:E(X) = Var(X) = λ1.3 几何分布几何分布用于描述一系列独立重复试验中,首次成功所需的试验次数。

例如,投掷一枚硬币直到首次出现正面的次数等。

几何分布的概率密度函数为:P(X=k) = q^(k-1) * p其中,p表示成功的概率,q=1-p表示失败的概率。

几何分布的期望和方差的计算公式如下:E(X) = 1/pVar(X) = q/(p^2)2. 连续概率分布连续概率分布指的是随机变量可以取某个区间内的任意值的概率分布。

最常见的连续概率分布有均匀分布、正态分布和指数分布。

2.1 均匀分布在均匀分布中,随机变量在某一区间内的取值是等可能的。

正态分布的方差公式推导

正态分布的方差公式推导

正态分布的方差公式推导正态分布的方差公式推导过程如下:1、设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2。

2、于是:∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域。

3、(1)求均值对(*)式两边对u求导:∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是∫x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u。

4、(2)方差过程和求均值是差不多的,我就稍微略写一点了。

5、对(*)式两边对t求导:∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是∫(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证。

6、扩展资料:若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。

7、其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

8、当μ = 0,σ = 1时的正态分布是标准正态分布。

9、在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。

10、为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。

11、由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。

常见分布的期望与方差的计算

常见分布的期望与方差的计算

σ2
+ ∫ e− x θ d x
0
+∞ 2
+∞

D( X ) = E ( X ) − [ E ( X )] = ∫0
= 2θ 2 − θ 2
1 −x θ x ⋅ e d x − θ2 θ
= θ2
6. 正态分布
设 X ~ N ( μ, σ 2 ), 其概率密度为
1 f ( x) = e 2 πσ
( x − μ )2 − 2σ 2
i =1
n
(法二) X 的分布律为 ⎛ n⎞ k P { X = k } = ⎜ ⎟ p (1 − p )n− k , ( k = 0,1,2,", n), ⎝k⎠ n n ⎛ n⎞ k 则有 E ( X ) = ∑ k ⋅ P{ X = k } = ∑ k ⎜ ⎟ p (1 − p )n− k k =0 ⎝ k ⎠ k =0

a < x < b,
其他 .
b
1 1 E ( X ) = xf ( x ) d x = x d x 则有 = (a + b). ∫−∞ ∫a b − a 2 D( X ) = E ( X 2 ) − [ E ( X )]2 1 ⎛ a + b ⎞ (b − a ) 2 =∫ x dx−⎜ ⎟ = a b−a ⎝ 2 ⎠ 12
+∞ 2
( x − μ )2 − 2σ 2


参数
0< p<1 n ≥ 1, 0< p<1 λ>0
a<b
数学期望
p np
方差
p(1 − p )
np(1 − p )
两点分布 二项分布 泊松分布 均匀分布 指数分布 正态分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正态分布的数学期望与方差
正态分布:
密度函数为:分布函数为
的分布称为正态分布,记为N(a, σ2).
密度函数为:
或者
称为n元正态分布。

其中B是n阶正定对称矩阵,a是任意实值行向量。

称N(0,1)的正态分布为标准正态分布。

(1)验证是概率函数(正值且积分为1)
(2)基本性质:
(3)二元正态分布:
其中,
二元正态分布的边际分布仍是正态分布:
二元正态分布的条件分布仍是正态分布:
即(其均值是x的线性函数)
其中r可证明是二元正态分布的相关系数。

(4)矩,对标准正态随机变量,有
(5)正态分布的特征函数
多元正态分布
(1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换)
(2)n元正态分布结论
a) 其特征函数为:
b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。

表明:多元正态分布的边际分布还是正态分布
c) a,B分别是随机向量的数学期望及协方差矩阵,即
表明:n元正态分布由它的前面二阶矩完全确定
d) 相互独立的充要条件是它们两两不相关
e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。

则相互独立的充要条件为=0
f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服
从一元正态分布
表明:可以通过一元分布来研究多元正态分布
g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布
表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性
推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。

条件分布
若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望:
(称为关于的回归)
其条件方差为:
(与无关)。

相关文档
最新文档