现代控制理论习题
现代控制理论课后习题答案

现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。
1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。
(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。
解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。
现代控制理论习题及答案

现代控制理论习题及答案现代控制理论习题及答案现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。
在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。
本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。
1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。
解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。
代入G(s) 的表达式,得到 T(s) = 10/(s+15)。
稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。
由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。
2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。
解答:系统的传递函数表达式可以通过状态空间表达式进行求解。
首先,计算系统的特征值,即矩阵 A 的特征值。
通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。
然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。
接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。
代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。
因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =(s+1)^(-1) + 2(s+3)^(-1)。
《现代控制理论》第三版_.习题答案

1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1
《现代控制理论》刘豹著(第3版)课后习题答案(最完整版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
现代控制理论习题附答案

现代控制理论习题附答案现代控制理论习题附答案现代控制理论是控制工程领域中的重要分支,它研究如何利用数学模型来描述和分析控制系统的行为,并设计出相应的控制算法。
掌握现代控制理论对于提高控制系统的性能和稳定性至关重要。
在这篇文章中,我们将介绍一些现代控制理论的习题,并附上相应的答案,希望能够帮助读者更好地理解和应用这一理论。
1. 问题:给定一个连续时间域的线性时不变系统,其传递函数为G(s) = (s + 1)/(s^2 + 3s + 2),试求该系统的单位阶跃响应。
答案:单位阶跃响应是指当输入信号为单位阶跃函数时,系统的输出响应。
对于连续时间域的系统,单位阶跃函数可以表示为u(t) = 1,其中t >= 0。
根据系统的传递函数,我们可以使用拉普拉斯变换来求解单位阶跃响应。
首先,将传递函数G(s)进行部分分式分解,得到G(s) = 1/(s + 1) - 1/(s + 2)。
然后,对每一项进行拉普拉斯反变换,得到g(t) = e^(-t) - e^(-2t)。
因此,该系统的单位阶跃响应为g(t) = e^(-t) - e^(-2t)。
2. 问题:给定一个离散时间域的线性时不变系统,其传递函数为G(z) = (0.5z + 0.3)/(z^2 - 0.7z + 0.1),试求该系统的单位脉冲响应。
答案:单位脉冲响应是指当输入信号为单位脉冲函数时,系统的输出响应。
对于离散时间域的系统,单位脉冲函数可以表示为δ(n),其中n为整数。
根据系统的传递函数,我们可以使用z变换来求解单位脉冲响应。
首先,将传递函数G(z)进行部分分式分解,得到G(z) = 0.3/(z - 0.5) + 0.2/(z - 0.1)。
然后,对每一项进行z反变换,得到g(n) = 0.5^n - 0.1^n。
因此,该系统的单位脉冲响应为g(n) = 0.5^n - 0.1^n。
3. 问题:给定一个连续时间域的线性时不变系统,其状态空间表示为dx/dt =Ax + Bu,y = Cx + Du,其中A = [[-1, -2], [3, -4]],B = [[1], [0]],C = [[1, 0], [0, 1]],D = [[0], [0]],试求该系统的零输入响应。
(完整word版)《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论试题与答案
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观 7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定 (1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。
现代控制理论试题与答案
现代控制理论试题与答案《现代控制理论参考答案》第一章答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下:系统的状态方程如下:令,则所以,系统的状态空间表达式及输出方程表达式为1-2有电路如图1-28所示。
以电压为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。
解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式‘画出其模拟结构图求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A 的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4 用三种方法计算以下矩阵指数函数。
现代控制理论试卷及答案
现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。
(2)用独立变量描述的系统状态向量的维数不是唯一的。
(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。
(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。
(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。
(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。
(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。
(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。
(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。
对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。
二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。
(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。
试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。
(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。
(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。
现代控制理论章节习题含答案(大学期末复习资料)
《现代控制理论》第一章习题解答1.1线性定常系统和线性时变系统的区别何在?答:线性系统的状态空间模型为:x = AxBu+y CxDu= +线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A,B,C和中的各分量均为常数,而对线性时变系统,其系数矩阵D A,B,C和D中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别?答: 传递函数模型与状态空间模型的主要区别如下:1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于n 阶传递函数G s( )= b s n−s1nn+−1a s+n−b s1n−n2−1n+−2 + +as a+1 bs b+1 +0 0+d ,分别有⎧⎡0 1 0 0 ⎤⎡⎤0⎪⎢0 0 1 0 ⎥⎥⎢⎥⎢⎥0⎪⎢⎪⎪x =⎢ ⎥x+⎢⎥ u ⑴能控标准型:⎨⎢0 0 0 1 ⎥⎥⎢⎥⎢⎥0⎪⎢⎪⎣⎢−a0 −a1 −a2 −a n−1⎥⎦⎢⎥⎣⎦1⎪⎪⎩y=[b0 b1 b n−2 b n−1]x du+⎧⎡0 0 0 −a0 ⎤⎡b0 ⎤⎪⎪⎢⎢1 0 0 −a1 ⎥⎥⎢⎢b1 ⎥⎥⎪⎪x =⎢0 1 0 −a2 ⎥⎥x+⎢⎢ ⎥⎥u⑵能观标准型:⎨⎢b n−2⎥⎪⎢ ⎥⎢⎪⎣⎢0 0 1 −a n−1⎦⎥⎢⎣b n−1⎥⎦⎪⎪⎩y=[0 0 0 1]x du+⎧⎡p1⎪⎢0⎪x =⎢⎢ 0 p20 0 ⎤⎡1⎤0 ⎥⎢1⎥⎥x+⎢⎥u ⎥⎢ ⎥⎪⑶对角线标准型:⎨⎪⎢⎣0⎪p n⎥⎦⎢⎣1⎥⎦⎪⎩y=[c1 c2 c x du n] + 式中的pp1, 2,, p n和c c1, 2,, c n可由下式给出,G s( )= b s n−s1nn−1a s+n−b s1n−n2−1n+−2 + +as a+1 bs b+1 +0 0 + =d s p−c1 1 + s p−c2 2 + + s p−c n n +d+能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1 外,其余全为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 线性系统的运动分析对系统进行分析的目的,是要揭示系统状态的运动规律和基本特性。
通过定量分析,对系统的运动规律进行精确的研究,即定量的确定系统由外部激励作用所引起的响应。
通过定性分析,则着重对系统行为和综合系统结构的关键性质:能控性、能观性、稳定性等进行研究。
§2.1 基本概念 一、基本概念1、运动分析的实质xAx Bu =+ ,000(),[,]x t x t t t α=∈ 从数学上看,运动分析的实质是:相对于给定的初始状态0x 和外部输入作用u ,求解状态方程的解()x t 。
2、解的存在唯一性定理:对于线性时变系统,“如果系统矩阵()A t 和()B t 的所有元在时间定义区间0[,]t t α上均为t 的实值连续函数,而输入()u t 的元在时间定义区间0[,]t t α上是连续实值函数,则状态方程的解()x t 存在且唯一”。
定理:对于线性时变系统,状态方程的解()x t 存在且唯一的条件是:1)()A t 的各元()ij a t 在0[,]t t α上绝对可积:()t ij t a t dt α<∞⎰2)()B t 的的各元()ik b t 在0[,]t t α上绝对可积:02[()]t ik t b t dt α<∞⎰3)()u t 的各元()k u t 在0[,]t t α上绝对可积:02[()]t k t u t dt α<∞⎰说明:2)、3)可表示为:01()()pt ik k t k b t u t dt α=<∞∑⎰。
即()()B t u t 在0[,]t t α上绝对可积。
二、系统的响应线性定常系统的运动分析说明:1)对于非零初始时刻0t ,则系统响应为:()()0000(;;;)(),tA t t A t t t t x u e x e Bu d t t τφττ--=+≥⎰三、矩阵指数函数1、性质:1)()A s tAt st ee e +=2)0A eI =3)1()At At e e --=4)(),A B tAt Bt e e e AB BA +≠≠5)AtAtAt d e Aee A dt==2、矩阵指数函数的计算: 1)定义计算;22331112!3!!Atn n eI At A t A t A t n =++++++ 2)对角计算:单根:已知 1T AT -=Λ,1Att eTe T Λ-= 重根:已知 1T AT J -=,1AtJt e Te T -=3)多项计算: 4)预解计算:11[()]AteL sI A --=-四、状态转移矩阵系统的运动均可理解为一种状态的转移:利用这个概念容易建立起运动规律的统一表达形式。
1、状态转移矩阵对于xAx Bu =+ ,000(),x t x t t =≥,称满足如下矩阵方程: 000()(),(0),t t A t t I t t Φ-=Φ-Φ=≥的n n ⨯解阵0()t t Φ-为系统的状态转移矩阵。
2、性质:1)不变性:()(0)t t I Φ-=Φ=2)传递性:211020()()()t t t t t t Φ-Φ-=Φ- 3)可逆性:1()()t t -Φ=Φ-100()()t t t t -Φ-=Φ- 4)分解性:121221()()()()()t t t t t t Φ+=ΦΦ=ΦΦ 5)倍时性:()()k t kt Φ=Φ6)微分性:()()()t A t t A Φ=Φ=Φ 2、基本解阵定义:任意选取x Ax = 的n个线性无关的解,并以它们为列构成的n n ⨯矩阵函数()t ψ,则称()t ψ为系统xAx = 的基本解阵。
§2.2基本要求1.了解线性系统的自由运及状态转移矩阵。
2.掌握线性时不变状态转移矩阵的基本性质及常用计算方法。
§2.3典型例题分析一、矩阵指数函数的计算【例题2.1.1】试用矩阵指数函数的级数展开法和拉氏变换法求下列矩阵的矩阵指数函数Ate:1)0100A ⎡⎤=⎢⎥⎣⎦, 2)0110A ⎡⎤=⎢⎥-⎣⎦解:1)级数展开法:2233223322331112!3!!01010110000002!01000110000002!000Atn n eI At A t A t A t n I t t t I t t t t =++++++⎡⎤⎡⎤⎡⎤=++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤=++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦拉氏变换法:1111112112011[()][()]()00011111()()01010Ats eL sI A L sI L s s t s s L L s s s ---------⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦2)级数展开法:22332233442344241112!3!!01010101111101010102!3!4!01100110111100110012!3!4!1111...2!4!3!Atn n eI At A t A t A t n I t t t t I t t t t t t t t =++++++⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎡⎤=+++++⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦-++-= 3324...cos sin 111sin cos ....1...3!2!4!t t t t t t t t ⎡⎤+⎢⎥⎡⎤=⎢⎥⎢⎥-⎣⎦⎢⎥-++-++⎢⎥⎣⎦拉氏变换法:1111112211222011[()][()]()10111cos sin 111()()11sin cos 111Ats eL sI A L sI L s s s t t s s L L s s t t s s s ---------⎡⎤⎡⎤=-=-=⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤⎡⎤++===⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎢⎥-⎢⎥++⎣⎦【例题2.1.2】试用对角线化或约当化法计算下列矩阵的矩阵指数函数Ate:1)110110001A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 2)221030013A --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦ 解:1)矩阵A 的特征方程为:32110110|110|110001001(1)(1)(2)(1)0I A I λλλλλλλλλλ--⎡⎤⎢⎥-=--=-⎢⎥⎢⎥-⎣⎦=---=--=解之得,1230,1,2λλλ=== 对于1()0A I x λ-=,得 答案:2222(1)/2(1)/20(1)/2(1)/2000t t At t tt e e e e e e ⎡⎤+-+⎢⎥=-+⎢⎥⎢⎥⎣⎦,223333333333200tt t tt t Att tt tt t e e e te e te e e te te te e te ------------⎡⎤+++⎢⎥=--⎢⎥⎢⎥+⎣⎦【例题2.1.3】试用凯莱定理计算下列矩阵的指数函数Ate:1)010001010A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 2)100010012A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦答案:1()/2()/210()/2()/20()/2()/2t t t t At t tt t t t t t e e e e e e e e e e e e e ------⎡⎤-+-⎢⎥=+-⎢⎥⎢⎥-+⎣⎦,2200010tAtt t tt e e e e e e -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦【例题2.1.4】试用共轭模态形计算下列矩阵的指数函数Ate:1)21174A -⎡⎤=⎢⎥--⎣⎦, 2)010001573A ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦答案:333333cos 41/4sin 41/4sin 4sin 4cos 41/4sin 4t t t Att t te t e t e t ee t e t e t ------⎡⎤+=⎢⎥-⎣⎦【例题2.1.5】计算下列矩阵的指数函数Ate0123A ⎡⎤=⎢⎥--⎣⎦。
解:1)按定义进行计算:223322221112!3!!0123123672!3122313Atn n eI At A t A t A t n I t t t t t t t t =++++++--⎡⎤⎡⎤=+++⎢⎥⎢⎥--⎣⎦⎣⎦⎡⎤-+-+⎢⎥=⎢⎥-++-+⎣⎦2)按预解矩阵进行计算:1111221221[()]()2331(1)(2)(1)(2)2()2222(1)(2)(1)(2)Att t t tt tt t s eL sI A L s s s s s s e e e eL s e e e e s s s s --------------⎡⎤=-=⎢⎥+⎣⎦+⎡⎤⎢⎥++++⎡⎤--⎢⎥==⎢⎥-⎢⎥-+-+⎣⎦⎢⎥++++⎣⎦【例题2.1.6】已知:010001230A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,使用约当标准形计算Ate 。
解:1)矩阵A 的特征方程为:2232(1)(2)0I A λλλλλ-=-+=+-=解之得,1232,1,λλλ===-11111211210,2529411633T T -⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦21222222221110012112100252941100633(86)2(23)(13)2(26)4(53)2(23)4(46)8(83)4tAt Jt t t tt t t t t tt t t t t t t t t t ee Te T e te e e t e e t e e t e e t e e t e e t e e t e e t e ------------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦+++-+-+=-++-+-++-++-+2(53)t t e t e -⎡⎤⎢⎥⎢⎥⎢⎥+-⎣⎦2)对于12λ=,1201121()()()tt t t eλααλαλ++=对于21λ=-,2201222()()()tt t t eλααλαλ++=对于31λ=-,2122()2()t t t te λααλ+=求解012(),(),()t t t ααα,2201121222222()1()1()02t t t t e t e t te αλλαλλαλλ--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦1122220112212222222()1124861()11112239()020123t t t t t t t t t t t t t t t t e e e e te t e e e e te t te te e e te αλλαλλαλλ------------⎡⎤⎡⎤⎡⎤⎡⎤++⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==-=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2222222012222(86)2(23)(13)()()()2(26)4(53)2(23)4(46)8(83)4(53)t tt t t t At t tt t t t t t t tt t e t e e t e e t e e t I t A t A e t e e t e e t e e t e e t e e t e ααα---------⎡⎤+++-+-+⎢⎥=++==-++-+-+⎢⎥⎢⎥+-++-++-⎣⎦二、系统状态转移矩阵计算 三、系统的状态响应计算【例题 2.1.2】已知线性系统状态空间表达式为:[]600()070,101005x t x y x -⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦,当系统的初始状态为:[](0)111T x =,求系统的状态响应和输出响应。