统计学PPT
贾俊平统计学ppt正式完整版

假设检验
假设检验的基本思想
单样本t检验
阐述假设检验的原理、步骤和类型,包括原 假设和备择假设的设立、检验统计量的选择 等。
介绍单样本t检验的原理、方法和应用场景, 包括检验步骤、p值的计算和解释等。
双样本t检验
方差分析
阐述双样本t检验的原理、方法和应用场景, 包括独立双样本t检验和配对双样本t检验的 区别和联系。
要点三
其他综合评价方法的 比较
除了上述方法外,还有如层次分析法、 模糊综合评价法等多种综合评价方法。 这些方法在原理、适用范围和优缺点等 方面各有不同,需要根据具体问题和需 求进行选择和使用。
THANKS
感谢观看
数据分析流程
明确分析目的、收集数据、 数据预处理、数据分析、 结果呈现。
统计软件简介
常用统计软件
01
SPSS、SAS、Stata、Excel等。
软件选择原则
02
根据分析目的、数据类型和统计分析方法选择合适的统计软件。
软件使用技巧
03
熟练掌握软件的基本操作,了解常用命令和函数,注意数据的
导入和导出格式。
08
统计指数与综合评价
Chapter
统计指数的编制原理与方法
统计指数的概念
统计指数是用于反映复杂现象总 体数量上的变动,分析现象总体 变动中受各个因素变动影响的程 度。
统计指数的编制原理
统计指数编制的基本原理是综合 比较法和平均法。通过选定同度 量因素,对不能直接相加的现象 进行过渡性综合,以得到总量指 标,再通过对比分析揭示现象之 间的数量差异和程度。
几种常见的综合评价方法比较
要点一
主成分分析法与因子 分析法的比较
主成分分析法通过降维技术将多个指标 转化为少数几个综合指标,而因子分析 法则是通过寻找公共因子来解释原始变 量之间的相关关系。两种方法在原理和 目的上有所不同,但都可以用于综合评 价。
统计学完整全套PPT课件

模型的参数估计
阐述非线性回归模型的参数估计方 法,如最小二乘法、极大似然法等 ,并探讨其计算过程和注意事项。
模型的检验与诊断
介绍非线性回归模型的检验方法, 如拟合优度检验、参数的显著性检 验等,以及模型的诊断方法,如残 差分析、异常值识别等。
方差
各数据与平均数之差的平方的 平均数
03
标准差
方差的平方根04四源自位数间距上四分位数与下四分位数之差
偏态与峰态分析
01
02
03
偏态系数
描述数据分布偏斜程度的 统计量
峰态系数
描述数据分布尖峭或扁平 程度的统计量
正态性检验
如Jarque-Bera检验等, 用于判断数据是否服从正 态分布
03
推论性统计方法
模型评估与优化
预测结果展示与应用
通过比较模型的预测结果与实际股票价格 的差异,评估模型的预测性能,并进行优 化和改进。
将模型的预测结果进行可视化展示,为投资 者提供决策参考。
THANKS
感谢观看
统计学完整全套PPT课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数统计方法 • 回归分析及其应用 • 时间序列分析与预测
01
统计学基本概念与原理
Chapter
统计学的定义及作用
统计学定义
统计学是一门研究如何收集、整理、分析和解释数 据的科学,它使用数学方法对数据进行建模和预测 ,以揭示数据背后的规律和趋势。
游程检验
游程检验的基本原理
以上内容仅供参考,具体细节和扩展内 容需要根据实际需求和背景知识进行补 充和完善。
统计培训ppt课件

随着数据处理速度的提升,统 计学将更加注重实时数据分析 ,以满足快速变化的数据需求
。
提高统计素养的意义与途径
2. 实践应用
1. 教育培养
加强统计学教育,提高大众对统 计学的认知和理解。
通过实际项目和案例,培养统计 思维和技能,提高解决实际问题 的能力。
3. 持续学习
关注统计学的新发展、新方法和 新技术,不断更新知识体系。
时间序列分析
总结词
研究时间序列数据的内在规律和特点。
详细描述
通过分析时间序列数据的趋势、季节性、周期性和随机性等特点,揭示数据的变 化规律和预测未来的发展趋势。
聚类分析
总结词
将相似的对象归为同一类,不同类的对象尽量保持差异。
详细描述
通过计算对象之间的相似性或距离,将相似的对象归为同一 类,不同类的对象尽量保持差异,从而将数据划分为若干个 有意义的群组。
描述性统计
数据收集与整理
描述性统计是通过对数据进行整理、分类和总结,以描述 数据的基本特征和分布情况。
均值、中位数和众数
均值是所有数据之和除以数据量的结果,中位数是将数据 按大小排序后位于中间位置的数值,众数则是出现次数最 多的数值。
方差、标准差和变异系数
方差是描述数据离散程度的指标,标准差是方差的平方根 ,变异系数则是标准差与均值的比值。
03
统计分析方法
方差分析
总结词
用于比较不同组数据的均值是否 存在显著差异。
详细描述
通过比较不同组的变异来源,确 定组间差异和组内差异对总变异 的贡献,从而判断各组的均值是 否存在显著差异。
相关与回归分析
总结词
研究两个或多个变量之间的相关关系。
详细描述
《统计学原理》》课件

方差分析要求数据满足立性、正态性和方差齐性等假设 。
单因素方差分析
单因素方差分析是方差分析的一种,用于比较一个分类变量对数值型数据 的影响。
分析步骤包括建立假设、计算检验统计量、确定显著性水平、做出决策。
02
描述性统计
数据收集与整理
数据来源
介绍数据的不同来源,如调查、观察 、实验等。
数据筛选与处理
说明如何对数据进行筛选、缺失值处 理和异常值处理。
数据的图表展示
柱状图
用于比较不同类别的数据。
饼图
用于表示各部分在整体中所占的比例。
折线图
用于展示数据随时间的变化趋势。
散点图
用于展示两个变量之间的关系。
《统计学原理》ppt课件
目 录
• 统计学导论 • 描述性统计 • 概率论基础 • 参数估计与假设检验 • 回归分析 • 方差分析与实验设计
01
统计学导论
统计学的定义与性质
总结词
统计学是一门研究数据收集、整理、分析和推断的科学,其目的是从数据中获 取有用的信息和知识。
详细描述
统计学是数学的一个分支,它利用数学方法对数据进行处理和分析,以揭示数 据背后的规律和趋势。它涉及到如何收集、整理、描述和分析数据,以及如何 从数据中得出结论和预测未来。
一元线性回归分析通常使用最小 二乘法来拟合数据,建立如 (y = ax + b) 的线性方程。其中, (y) 是因变量,(x) 是自变量, (a) 是斜率,(b) 是截距。
参数估计
通过最小二乘法,我们可以估计 出斜率 (a) 和截距 (b),从而得到 回归方程。
统计学ppt课件

包括Wilcoxon符号秩次检验、McNemar检验等,用于比较同一组 样本在两个不同条件下的差异。
多元线性回归模型构建
1 2
多元线性回归模型基本概念 介绍自变量、因变量、误差项等概念,以及模型 的数学表达式。
多元线性回归模型的参数估计 通过最小二乘法等方法估计模型参数,得到回归 方程。
概率可以通过古典概型、几何概型、频率等方法进行计算。古典概型适用于等可能 事件,几何概型适用于连续型随机变量,而频率则是在大量重复试验中出现的相对 频率。
02 描述性统计方法
数值型数据描述
集中趋势度量
01
平均数、中位数、众数
离散程度度量
02
极差、四分位差、方差、标准差
偏态与峰态度量
03
偏度系数、峰度系数
统计学ppt课件
目录
• 统计学基本概念与原理 • 描述性统计方法 • 推论性统计方法 • 非参数检验与多元统计分析 • 实验设计与抽样技术 • 数据可视化与报告撰写技巧
01 统计学基本概念 与原理
统计学定义及作用
统计学的定义
统计学是一门研究如何收集、整理、 分析、解释和呈现数据的科学。
统计学的作用
数据分布形态判断
正态性检验
直方图、QQ图、P-P图、Shapiro-Wilk检验等方 法
对称性检验
通过观察频数分布表或图形判断
峰度与偏度检验
通过计算峰度系数和偏度系数判断
03 推论性统计方法
参数估计原理及应用
点估计与区间估计
利用样本数据对总体参数进行估计,包括点估计和区间估计两种方 法。
估计量的评价标准
3
多元线性回归模型的假设检验 对模型参数进行显著性检验,判断自变量对因变 量的影响是否显著。
统计学完整ppt课件完整版

假设检验中的两类错误:第一类错误 、第二类错误
假设检验的步骤:建立假设、选择检 验统计量、确定拒绝域、计算p值、 作出决策
假设检验的实例分析:单样本t检验 、双样本t检验等
方差分析(ANOVA)方法介绍
方差分析的基本原理:F分布与 方差分析的关系
多因素方差分析的实现方法: 析因设计、随机区组设计等
通过观察数据的峰度,判 断是否存在尖峰或平峰分 布
03
推论性统计方法
参数估计原理及应用
01
参数估计的基本概念: 点估计、区间估计
02
估计量的评价标准:无 偏性、有效性、一致性
03
参数估计的方法:矩估 计法、最大似然估计法
04
参数估计的应用:总体 均值的区间估计、总体 比例的区间估计等
假设检验流程与实例分析
ABCD
数据筛选与排序
介绍如何使用Excel进行数据筛选和排序,以便 更好地查看和分析数据。
函数与公式应用
分享一些常用的Excel函数和公式,以便更高效 地处理和分析数据。
案例分享:使用统计软件解决实际问题
案例一
使用SPSS进行市场调研数据分析,包 括描述性统计、交叉表分析、回归分析
等。
案例三
使用Python进行电商数据分析,包 括用户行为分析、销售预测、推荐系
据的科学。
统计学的作用
描述数据特征
推断总体参数 预测未来趋势
评估决策效果
数据类型与来源
数据类型 定量数据(连续型与离散型)
定性数据(分类数据与顺序数据)
数据类型与来源
01
数据来源
02
03
04
观察数据(实验数据与观测数 据)
统计知识讲座PPT课件
图表设计原则与规范
01
02
03
04
简洁明了
图表设计应简洁明了,避免过 多的装饰和复杂的背景,突出
数据本身的特点。
一致性
在同一份报告中,应保持图表 风格、字体、颜色等要素的一
致性,提高整体美观度。
数据准确性
图表中的数据应准确无误,来 源可靠,避免误导读者。
注解清晰
对于图表中的重要信息,应提 供清晰的注解和说明,帮助读
标准差
方差的算术平方根,反映 数据波动程度,标准差越 小,数据越稳定。
数据分布形态的描述
偏态分布
正态分布
数据分布不对称,偏向某一方向,可 分为左偏和右偏。
一种对称分布,其形态由均值和标准 差决定,具有广泛的应用。
峰态分布
数据分布的尖峭或扁平程度,峰度越 高,数据分布越尖峭;峰度越低,数 据分布越扁平。
假设检验与显著性水平
假设检验
先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。假设 检验包括原假设和备择假设的设立、检验统计量的选择、显著性水平的确一类错误的概率。通常取0.05或0.01等小概率值作为显 著性水平,表示在原假设为真时,拒绝原假设的最大允许概率。
对收集到的数据进行预处理,包括数据筛 选、缺失值处理、异常值处理等。
数据分析
结果呈现
运用统计学方法对数据进行描述性分析和 推断性分析,如均值、方差、假设检验等 。
将分析结果以图表、报告等形式呈现,为 市场决策提供支持。
案例二:医学实验数据处理
实验设计
根据研究目的和实验条件,设计合理的实验 方案和数据收集计划。
数据可视化
Python的matplotlib、seaborn等库 提供丰富的数据可视化功能,可绘制 各种静态、动态、交互式的图表。
2024版统计学完整(贾俊平)人大课件ppt课件
统计学完整(贾俊平)人大课件ppt课件•引言•数据收集与整理•描述性统计分析目录•概率论基础•推断性统计分析•方差分析与回归分析•时间序列分析与预测•统计决策与风险管理目录•总结与展望01引言统计学是一门研究如何收集、整理、分析和解释数据的科学。
统计学的定义统计学的历史统计学的分支统计学的发展经历了古典统计学、近代统计学和现代统计学三个阶段。
统计学可以分为描述统计学和推断统计学两大分支。
030201统计学概述社会科学医学与健康工程与技术商业与经济统计学应用领域01020304在社会科学领域,统计学被广泛应用于调查研究、民意测验、市场分析等方面。
在医学和健康领域,统计学被用于临床试验、流行病学研究、健康风险评估等方面。
在工程和技术领域,统计学被用于质量控制、可靠性分析、信号处理等方面。
在商业和经济领域,统计学被用于市场分析、财务分析、经济预测等方面。
通过学习,学生应掌握统计学的基本概念和方法,包括数据收集、整理、描述和分析等方面的内容。
掌握统计学基本概念和方法具备数据处理和分析能力了解统计学的应用领域培养批判性思维学生应具备独立处理和分析数据的能力,能够运用适当的统计方法进行数据分析和解释。
学生应了解统计学的应用领域,能够运用所学知识解决实际问题。
学生应培养批判性思维,能够对统计结果进行合理的解释和评估。
学习目标与要求02数据收集与整理数据来源及类型数据来源包括原始数据和二手数据,原始数据是通过直接调查、实验或观察获得的数据;二手数据则是已经经过他人收集、整理和处理过的数据。
数据类型包括定性数据和定量数据,定性数据是描述性的、非数值的,如文字、图像等;定量数据则是可以用数值表示的,如年龄、收入等。
此外,还可以根据数据的测量尺度将其分为名义型数据、顺序型数据、间隔型数据和比率型数据。
调查法实验法观察法大数据收集数据收集方法通过问卷、访谈、电话调查等方式收集数据,可以获取大量的、详细的信息。
直接观察研究对象的行为、状态等,记录相关数据,适用于无法控制或干预的情况。
统计学ppt(全)
概率沦研究起源于17世纪中叶意大利文艺复兴时代,代表人物主要有法国的拉普拉斯和比利时的凯特勒 古典统计时期的概率论基本上是独立发展的,最开始的概率论是从对赌博的研究开始。它与统计学(主要是指政治算术)没有太多的联系 从19世纪中叶到20世纪中叶,概率论的进一步发展为数理统计学的形成和发展奠定了基础。主流从描述性统计学向推断统计学发展 本世纪50年代以后,统计理论、方法和应用进入了一个全面发展的阶段
统计指标体系
由若干个相互联系相互制约的统计指标组成的一个统计指标系统 基本统计指标体系 专题统计指标体系
几种常用的统计软件 (Software)
典型的统计软件 SAS SPSS MINITAB STATISTICA Excel
第一章 绪论
第一节 统计与统计学 第二节 统计学的产生与发展 第三节 统计学的研究对象与方法 第四节 统计学的要素和指标
学习目标
1. 理解统计与统计学的含义 2. 理解统计学的对象和方法 了解统计学的产生与发展过程
第一节 统计与统计学
一. 统计与统计学的含义 二. 统计学的性质和作用
统计数据的内在规律 (一些例子)
正常条件下新生婴儿的性别比为107:100 投掷一枚均匀的硬币,出现正面和反面的频率各为1/2;投掷一枚骰子出现1~6点的频率各为1/6 农作物的产量与施肥量之间存在相关关系
统计学的应用领域
统计学
经济学
管理学
医学
工程学
社会学
…
应用统计的领域
actuarial work (精算) agriculture (农业) animal science (动物学) anthropology (人类学) archaeology (考古学) auditing (审计学) crystallography (晶体学) demography (人口统计学) dentistry (牙医学) ecology (生态学) econometrics (经济计量学) education (教育学) election forecasting and projection (选举预测和策划) engineering (工程) epidemiology (流行病学) finance (金融) fisheries research (水产渔业研究) gambling (赌博) genetics (遗传学) geography (地理学) geology (地质学) historical research (历史研究) human genetics (人类遗传学)
统计学ppt课件贾俊平完整版
时间序列预测的评价指标
平均误差、均方误差、均方根误差和平均绝 对误差等。
08
统计计算与软件应用
统计计算基础
描述性统计
计算数据的中心趋势( 均值、中位数、众数) 和离散程度(方差、标 准差、四分位距)。
概率论基础
理解概率、期望、方差 等基本概念,掌握常见 概率分布(如正态分布 、t分布、F分布等)。
数据分布的图形表示
介绍直方图、箱线图等图形表示方法 ,用于直观展示数据的分布形态。
03
概率论基础
随机事件与概率
随机事件
在一定条件下,并不 总是发生,也不总是 不发生的事件。
概率
描述随机事件发生的 可能性大小的数值。
பைடு நூலகம்
概率的性质
非负性、规范性、可 加性。
条件概率
在给定另一事件发生 的条件下,某一事件 发生的概率。
专注于数据管理和统计分析,提供丰富的计量经济学方法,适 合经济学和金融学等领域。
开源且易学的编程语言,拥有强大的数据处理和可视化库(如 pandas、matplotlib等),适合数据科学和机器学习领域。
R语言在统计学中的应用实例
数据清洗和整理
使用R中的dplyr等包进行数据清洗、 筛选和变换。
02
统计学的研究方法
描述统计方法
描述统计方法是统计学中最基础 的方法,它通过对数据进行整理 、概括和可视化,帮助我们了解
数据的基本情况和分布特征。
推断统计方法
推断统计方法是统计学中更高级 的方法,它基于概率论和数理统 计的理论,通过对样本数据的分 析来推断总体数据的特征和规律
。
实验设计方法
实验设计方法是统计学中用于研 究因果关系的方法,它通过设计 和实施实验来控制和观察各种因 素的变化,从而揭示出因素之间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(因素分析,分析每个因素对总变动的影响。)
①相对数分解
p1q1 p 0 q0
p0 q1 p0 q0
p1q1 p0 q1
②绝对数分解:分子减去分母 Σp1q1 -Σp0q0 =( Σ p0q1 -Σ p0q0) +(Σ p1q1 –Σp0q1 )
18
第六章
统计指数
6、平均指标指数体系
3、综合指数
(拉氏指数、派氏指数的观点;综合指数计算)
Kq
pq pq
0 0
1 0
Kp
pq pq
0
1 1 1
16
第六章
统计指数
4、平均数指数(计算、指数体系)
k p q K pq
q 0 q 0 0
0
Kp
pq
1
1
p1 q1 kp
17
第六章
统计指数
5、指数体系
5、统计表
(内容上:主词和宾词;
形式上:总标题、横行标题、纵栏标题、指标数值)
6、统计表的种类
(简单表、简单分组表、复合分组表)
6
第四章
综合指标
1、总量指标的概念(理解)
2、总量指标的种类
总体单位总量、总体标志总量;
时期指标与时点指标的不同特点、区分
3、相对指标的种类和计算方法
定义;关键;分组标志(数量标志和品质标 志);简单分组和复合分组(重叠)、平行分组 体系
2、分配数列的概念和种类
分配数列的定义和构成要素;分配数列的种类
5
第三章
统计整理
3、组距数列的编制
组距;组数;组限(特别连续变量); 组中值(闭口组、开口组)
4、累计(次数或比重):向上累计、向下累计、洛伦茨 曲线(累计频率)
简单随机抽样、类型抽样、等距抽样、整群抽样 涵义及抽样估计
10、假设检验
假设检验的涵义 假设检验的步骤 检验统计量 接受域和拒绝域 两类错误
23
第七章
抽样推断
本章计算题类型:
(1)对总体进行区间估计(均值、成数); (2)样本容量n的确定 (3)假设检验(均值、成数) 。
14
第五章
时间数列
本章计算题类型:
(1)序时平均数的计算
(2)时间数列水平、速度分析指标的综 合关系考查。 (3)利用资料拟合直线模型、预测
(4)季节变动、预测
15
第六章
统计指数
1、指数的概念
(狭义的概念,广义的概念)
2、指数的种类
(个体指数、总指数;数量指标指数、质量指标指数;
同度量因素)
5、标志变异指标
理解标志变异指标:全距、平均差、标准差、标准差系数;标 准差、标准差系数的计算;利用标准差系数比较平均数的代表性 大小)
8
第四章
综合指标
本章计算题类型:
(1)平均数的计算(算术平均数、调和平均数、几何平均数) 算术平均数公式如下:
xf x f
xx
f
9
f
第四章
综合指标
4、平均发展水平(序时平均数)
11
时期数列
绝对数时间数列
a a
n
时点数列
相对数时间数列 平均数时间数列
a c b
时点数列计算序时平均数
连续变动
连续时点数列 非连续变动 间隔相等 加权算术平均法 首尾折半法※ 折半加权平均法
简单算术平均法
间断时点数列
间隔不相等
第五章
时间数列
5、增长量、平均增长量 (关系、计算、逐期增长量与累计增长量之间的关系,平均增长量 与逐期增长量、累计增长量之间的关系)
x p
t t
x
p
• 6、抽样估计的理论基础、优良性准则、点估计和区间估计 • 7、置信区间、置信度(理解概念,理解估计区间与可信程度的关系)
x x X x x
p p P p p
21
第七章
抽样推断
8、必要抽样单位数的确定(计算、影响因素)
重复:
统计学总复习
1
相关说明
一、考试内容:教材第1—9章
二、考试时间:2小时 三、考试题型
1、填空题(每空1分,共10分)
2 、单选题(每小题1分,共15分) 3、判断题(每小题1分,共15分)
4、计算题(6小题共60分)
四、考试时请携带计算器
2
第一章
绪论
1、统计的涵义 (统计工作、统计资料、统计学) 2、统计工作过程 (统计调查、统计整理、统计分析) 3、总体与总体单位 (定义、关系) 4、标志与指标 标志的定义和分类(数量标志、品质标志);二者的关系 5、变量 分类:离散型和连续型 6、统计指标(涵义、分类):数量指标和质量指标 7、统计发展史(数理统计学派、政治算术学派的代表人物)
24
第八章
相关分析
1、相关关系的概念 (函数关系;相关关系) 2、相关关系的种类 单相关和复相关;正相关和负相关;线性相关和非线性相关;完全相 关、不相关和不完全相关 3、相关系数 (概念;密切程度;取值范围) 4、一元线性回归方程
回归系数、判定系数、估计标准误
(SST=SSE+SSR)
6、发展速度、增长速度、增长1%的绝对值
(关系、计算、定基增长速度与环比增长速度之间的关系)
7、平均发展速度、平均增长速度 (关系、计算)
8、时间数列的分解:T、S、C、I 乘法模型Y=T.S.C.I
9、长期趋势的测定(最小平方法:原理) 季节变动:按月(季)平均法、趋势剔除法、根据季节比率预测
(计划完成相对数:定义、简单计算; 结构、比例、比较相对数:理解定义; 强度相对指标:理解定义、正逆指标)
7
第四章
综合指标
4、平均指标 理解平均指标的概念; 算术平均数的计算; 调和平均数的计算:倒数平均数,作为算术平均的变形; 几何平均数:简单几何平均数公式,会用计算器开多次方; 位置平均数(众数、中位数,单项数列会计算) 算术平均数、众数、中位数的关系 分布(三者的关系)
3
第二章
统计调查
1、统计调查的种类
全面调查和非全面调查;专门调查和统计报表制度;
经常性调查和一次性调查
2、统计调查方案设计
(步骤;调查对象、调查单位、填报单位;调查时间、 调查期限)
3、统计调查的组织形式
(普查、重点调查、典型调查与抽样调查的适用范 围、区别)
4
第三章 统计整理
1、统计分组
19
第七章
抽样推断
1、抽样调查的概念 2、抽样调查的特点 3、抽样误差(不可避免、可计算、可控、影响因素) 4、抽样平均误差(定义、计算)
n x 1
2
p
n N P 1 P n 1 n N
20
第七章
抽样推断
5、抽样极限误差 (定义的计算;利用标准 差系数比较平均数的代表性大小。公式如下:
x x f
2
f
V
x
标准差系数越小,平均数的代表性越高。
是非标志的平均数P、标准差、方差P(1-P)
10
第五章
时间数列
1、时间数列的概念、构成要素、分类 2、时间数列的编制原则:可比性 3、发展水平: 报告期水平、基期水平 最初水平、中间水平、最末水平
计算:相关系数、判定系数
一元线性回归方程(a,b,估计标准误,点估计)
25
第九章
统计综合评价
1、统计综合评价的特点
2、总分评定法 3、功效系数法
26
Pass!
27
t n 2 x
2
2
t p 1 p n 2 p
2
2
不重复:
Nt p 1 p Nt n n 2 2 2 2 2 N p t p 1 p N x t
2 2
22
以上公式不用硬背,能利用平均误差、极限误差之间的 关系来推导即可。
9、抽样组织形式
x f / f x f / f
1 1 0 0
1 0
x f / f x f / f x f / f x f / f
0 1 0 1 1 1 0 0 0 1
1 1
可变构成指数=结构影响指数*固定构成指数
本章计算题类型:
(1)计算指数(综合指数与平均数指数、平均指标指数) (2)进行因素分解:绝对数、相对数的关系。