电子负载装置简单设计

合集下载

自己动手做个恒流电子负载机

自己动手做个恒流电子负载机

自己动手做个恒流电子负载机电子负载机是很多从事电子设计尤其是电源设计与制作的朋友们必备的工具,在设计中有时需要给电池等器件放电,如果用个水泥电阻进行电流调节,不但不能恒流还不够方便,而买一台市场上的成品电子负载机,最便宜的也要近1000 元。

笔者自己动手做了一台电子负载机,该负载机的制作元件易找,制作后不用调试就能使用,还具有恒流及各项保护功能。

经过试用效果十分理想,不但可以用来对电池恒流放电,还可以用在工厂对生产的电源产品做老化实验用等。

在此将制作方法同大家分享。

电路原理电路如图 1 所示。

VT4 提供整个电路的 2 .5V 基准电压。

IC 1A 、R9 、VT1 、VT2 等组成开关式恒流电路。

例如当Load 端接入电池,并且刚开始电流在R9 上产生的压降(C 点) 没有 B 点的电压高,此时 D 点输出为高电位,VT1 、VT2 持续导通,于是R9 上的压降(C 点) 将持续增加直到超过 B 点电压,此时 D 点输出为低电位,VT1 、VT2 关断。

这个过程一直重复下去,所以恒流电流={[2 .5 ÷ (R7+R8)] × R8} ÷ R9 。

以图中为例,流过Load 端的电流为{[2 .5 ÷ (100k+10k)] × 10} ÷0 .1 ≈ 2 .3A 。

IC1B 起低压保护作用。

平时G 点电位高于H 点,所以F 点为高电位,VT3 不动作,VT1 、VT2 正常工作。

当Load 端的电压低于设定值时 F 输出为L ,VT3 动作,将VT1 、VT2(E 点) 的驱动电压拉低,VT1 、VT2 将不导通,无负载电流流过Load 端口,起到了低压保护作用。

例如在对一块铅酸电池放电时,将12V 的电池放到电压只有3V 时,该电路就会发挥低压保护作用,终止放电电流。

希望终止的放电电压可通过[U ÷ (R13+R10)] × R10=2 .5V 来计算,其中的U 就是希望终止的放电电压。

简易直流电子负载设计

简易直流电子负载设计

简易直流电子负载设计报告摘要:本文论述了简易直流电子负载的设计思路和过程。

直流电子负载采用MSP430G2553单片机作为系统的控制芯片,可实现以下功能:在恒流(CC)模式下,不管电子负载两端电压是否变化,流过电子负载的电流为一个设定的恒定值。

AD模块接收电路电压和电流模拟信号,转化为数字信号,经液晶模块12864同步显示电压和电流。

系统包括控制电路(MCU)、驱动隔离电路(PWM波)、主电路、采样电路、显示电路、基准电路等;具有过压保护功能;能够检测被测电源的电流值、电压值;具有直流稳压电源负载调整率自动测量功能;各个参数都能直观的在液晶模块上显示。

关键词:电子负载;单片机(MCU);模数(A/D).PWM波.一、引言电子负载用于测试直流稳压电源的调整率,电池放电特性等场合,是利用电子元件吸收电能并将其消耗的一种负载。

电子元件一般为功率场效应管(Power MOS)、绝缘栅双极型晶体管(IGBT)等功率半导体器件。

由于采用了功率半导体器件替代电阻等作为电能消耗的载体,使得负载的调节和控制易于实现,能达到很高的调节精度和稳定性。

同时通过灵活多样的调节和控制方法,不仅可以模拟实际的负载情况,还可以模拟一些特殊的负载波形曲线,测试电源设备的动态和瞬态特性。

二,总体方案论证与设计设计和制作一台电子负载,在恒流(CC)模式下,不管电子负载两端电压是否变化,流过电子负载的电流为一个设定的恒定值。

要求:(1)负载工作模式:恒流(CC)模式;(2)电压设置范围:0~10V;(3)电流设置范围:100mA~1000mA,设置分辨率为10mA,设置精度为±1%;(4)直流稳压电源负载调整率:测量范围为0.1%~19.9%,测量精度为±1%。

(5)显示分辨能力及误差:至少具有3位数,相对误差小于5%。

恒流模块和恒压模块共用一个基准电压12v,并且通过开关实现两种模式的转换,用A/D转换器把电路中的电压电流的模拟信号转换为数字信号,然后通过单片机来程控从而重置电压电流,用数码管液晶显示同时呈现即时电压电流。

简易直流电子负载的设计

简易直流电子负载的设计

简易直流电子负载的设计直流电子负载是用来模拟电子设备在不同负载下的工作状态,进行性能评估、设计验证和电源测试等应用。

本篇文章将介绍如何设计一款简易直流电子负载。

1. 功能需求根据负载的应用场景和测试要求,确定需要支持哪些电压和电流范围,以及是否需要具备恒压模式或恒流模式切换等功能。

2. 电路部分直流电子负载的核心电路包括电源电路和负载电路。

电源电路提供给负载电路所需的电压和电流,负载电路则通过调整电阻来模拟负载。

(1) 电源电路电源电路应有较好的稳压和保护功能,以提供可靠的工作环境。

在设计时可以考虑采用集成电路LM317的恒压电源,它拥有很好的输出稳定性,能够稳定地提供实验所需的直流电源。

具体参考图一图一 LM317电源电路(2) 负载电路负载电路是根据不同的测试要求设计的。

通常,它由电阻和开关组成。

通过控制开关状态,可以改变电流流过的电阻值,从而模拟不同的负载情况。

具体参考图二图二负载电路在此电路中,当开关S1和S2同时闭合,负载电路中的电阻为R1+R2,此时电流为I=V/R,R为R1+R2。

当仅闭合S2,电路中的电阻为R1,此时电流为I=V/R1。

3. 控制部分控制部分负责检测电路输入参数,控制负载电路中的开关状态,以实现恒压或恒流模式。

通过引脚连接信号发生器和AD转换器,可以实现对测试信号的自动控制和测量。

4. PCB设计根据电路设计要求,制作 PCB 设计图并下单生产。

需要注意的是,在 PCB的布局设计时,不同信号的逻辑分开布局,尽量避免出现复杂的交叉干扰。

5. 其他需要注意的是,电路部分虽然简单,但是在设计和实现的过程中,需要充分考虑设备的安全性和可靠性,尽量避免出现安全事故。

总之,设计简易直流电子负载需要考虑功能需求、电路部分、控制部分、PCB设计等各个环节。

只有当以上各个方面都考虑周全,才能制作出高质量的直流电子负载,以满足各种测试需求。

全面自己设计制作的DIY电子负载

全面自己设计制作的DIY电子负载

全面自己设计制作的DIY电子负载全面自己设计制作的DIY电子负载做出来了,还加上了个PWM风扇自动温控调整电路。

元件仿真的3D图布线图慢慢焊出来的控制板成品。

哈哈接上管子上电试一下,很好,很正常开始找其他器件配机器。

变压器。

风扇、可调电阻。

配上试试。

把散热片改一下,太高了。

改完了一看觉得有点像机器人啊。

?里面是四个MOS管,专业耗电发热。

打算做个木头盒子装它。

大致找几片废木板摆一下。

开干,跑去车库找出一条长木板划线开锯!锯出四片边板继续划好两头的板。

跑到车库用修边机修平。

修边机转速两万转。

太吵了,而且粉尘大,不敢放在家里用。

开始搭盒子。

支上试下合适不。

顺便开始调整风道,为强力散热做准备。

我打算做到200W到300W的,散热不好那几个MOS管很快会挂的。

开始正式安装盒子。

狂野的散热片啊。

没办法,上面的散热片虽然是热管的,但不够厚,热容量小,升温比下面的大,所以,改造咯。

种了几株散热树上去,哈哈。

装上看看,挺好的呢。

但看起来两边与上方的气流通道还要堵一堵,以减少散热效率低的气流通道。

底板上的脚支。

翻出四只LP高根鞋配的后根垫子粘上,很合适的样子。

开始加四边的底板固定安装柱。

然后。

很多然后。

最后终于初步成型了。

哈哈出风口这面。

暴力风扇,风量需求巨大的,所以进风口基本全敞式。

上电试机。

220W无压力,不过最后温度好像是到73度上下了。

然后。

然后又蛋疼地给盒子包上木纹纸,其实我原来是打算上漆的,也确实上了漆,结果发现自己刷油漆的手工技能太差了。

惨不忍睹,所以,改成贴木纹纸了。

这个容易多了,就是看起来好奇怪,很像老式式收音机的感觉。

是吧。

真的像老式收音机。

另一侧。

背面。

但没完。

试运行烤机一个晚上,觉得风扇太吵了。

再拆开。

打算加个自动按温度调整风扇转速的电路上去。

暴力风扇,本来四线的。

被我拆成两线在用。

要调整,得加回PWM调整信号接收线。

再D 个可以调节占空比的PWM生发电路去控制它。

看看接口的焊点,P脚是PWM调速信号的接收脚。

简易直流电子负载

简易直流电子负载

简易直流电子负载简介直流电子负载是一种可在实验室或工业环境中模拟负载条件以测试电源或电池性能的设备。

它通常用于测试电源效率、电池容量、保护功能等方面。

本文将介绍一款简易直流电子负载的设计和制作过程。

设计原理核心部件简易直流电子负载的核心部件是负载电阻和功率调节装置。

负载电阻通常由多个细丝电阻组成,通过调整细丝电阻的接入数量实现不同负载阻值的模拟。

功率调节装置则用于调节负载的电流和功率输出。

控制回路简易直流电子负载的控制回路由微控制器(MCU)和电流采样模块组成。

MCU 负责接收输入的控制信号,并通过与电流采样模块的交互来实现对负载电流的精确控制和测量。

显示与操作为了方便用户操作和监测电流输出,设计中还包括了显示屏和操作按钮。

通过显示屏可以实时显示负载电流、功率和设定参数等信息。

操作按钮则用于调整负载的工作模式和参数。

制作过程材料准备准备以下材料以制作简易直流电子负载:1.电阻:选用合适的多个细丝电阻,以满足不同的负载阻值需求;2.散热器:用于散热以保证负载的稳定工作;3.微控制器板:选用具备足够的IO口和ADC输入引脚的开发板;4.显示屏和操作按钮:选用合适的尺寸和接口的显示屏,以及用于操作调整参数的按钮。

电路连接按照设计电路图将电阻、散热器、微控制器板、显示屏和操作按钮等元件连接起来。

确保连接正确可靠,并注意保护电路免受短路和过流等问题。

程序开发根据控制要求,编写程序代码并烧录到微控制器板中。

程序应该实现以下功能:1.接收并解析用户的控制信号;2.根据控制信号调整负载电流和功率输出;3.实时采集并显示负载的电流、功率和设定参数。

散热设计在负载电阻和功率调节装置周围安装散热器,并确保散热器与电路紧密接触,以提高散热效果。

此外,还可以在散热器上添加风扇以增强散热效果。

完成调试完成以上步骤后,对整个系统进行调试和测试。

确保负载能够按照设定的电流和功率输出稳定工作,并能够准确采集和显示相关参数。

使用和注意事项使用简易直流电子负载时,应注意以下事项:1.确保输入电源符合设备要求,避免过压或过流对设备造成损坏;2.在使用高功率输出时,注意散热情况,避免设备过热;3.操作合理,并遵循设备的使用说明,以免发生意外和设备损坏。

简单的电子负载电路设计

简单的电子负载电路设计

直流电子负载设计基础电子负载基本工作原理:1.恒压模式2.恒流模式3.恒阻模式4.恒功率模式恒流图中R1为限流电阻,R1上的电压被限制约0.7V,所以改变R1的阻值就可以改变恒流值,在上图中我们知道,在串联电路中,各点电流相同,电路要恒流工作,只要在串联回路里控制流过一个元件的电流就可以达到我们所控制的恒流输出。

上图是一个简易的恒流电路,通常用在一些功率较小及要求不高的场合里应用,那么在一些应用中这种电路就无能为力了,如:在输入电压为1V输入电流为30A,那么对于这样的要求这样的电根本无法保证工作。

这样的电路调节输出电流也不是很方便。

这个图是一个最常用的恒流电路,这样的电路更容易获得稳定及精确的电流值,R3为取样电阻,VREF是给定信号,电路工作原理是:当给定一个信号时VREF,如果R3上的电压小于VREF,也就是OP07的-IN小于+IN,OP07加输出大,使MOS加大导通使R3的电流加大。

如果R3上的电压大于VREF时,-IN大于+IN,OP07减小输出,也就降了R3上的电流,这样电路最终维持在恒定的给值上,也就实现了恒流工作。

如给定VREF为10mV,R3为0.01欧时电路恒流为1A,改变VREF可改变恒流值,VREF可用电位器调节输入或用DAC 芯片由MCU控制输入,采用电位器可手动调节输出电流。

如采用DAC输入可实现数控恒流电子负载。

电路仿真验证在上图中我们给定了Vin为4V-12V变化的电压信号,VREF给定50mV的电压信号,在仿真结果中输入电流一真保持在5A,电路实现了恒流作用。

恒压电路一个简易的恒压电路,用一个稳压二极管就可以了。

这是一个很简易的图,输入电压被限制在10V,恒压电路在用于测试充电器时是很有用的,我们可以慢慢调节电压测试充电器的各种反应。

图是10V是不可调的,请看下图可调直流恒压电子负载电路:图中MOS管上的电压经R3与R2分压后送入运放IN+与给定值进行比较,如图所示,当电位器在10%时IN-为1V,那么MOS管上的电压应为2V。

简易直流电子负载的设计


1前 言
3硬件 电路设计
3 . 1单 片机控 制 电路 在 电路 中 , 负 载 是 用 来 消 耗 电源 输 出能 量 的 装 置 。 直 流 电 子负 载由于采用了功率半导体器件替代纯 阻元件作为 电能消耗的载体, 控 制 电路采 用C 8 0 5 1 F 3 5 0 高性 能单 片机芯片( 如 图2 ) , C8 0 5 1 可实 现负载 的智能调节与控 制 , 并能达到较高 的调节精度和稳定 F 3 5 0 是 一 款 集 成 了 单片 模 数 混合 信 号 的微 控 制 器 。 内部 有一 个 2 4 位 性, 直 流 电子 负 载 不 仅 可 以模 拟 实 际 的负 载情 况 , 还 可 以编 程 模 拟 8 通 道 AD C电路 及 8 位 双 通 道 DAC电路 , 可 用 于 模 拟 电压 的高 分 辨 些特殊的负载实现指定的波形曲线, 用以测试稳压 电源设备 的瞬 态特性 , 这是纯 电阻式负载所无法实现的 , 近年来 已广泛应用于 电 源类产 品和功率 电子元器件 的性 能测试、 老化等实验环节 。
设 计 开 发
简易直流电子负载的设计
汪 艳 叶 九 星 朱 彬 彬 楼 然 苗
( 浙 江海 洋 学 院 浙 江舟 山 3 1 6 0 2 2 )
摘要 : 直流电子 负载 是一种通过 电子 电路 实现 欧姆定律 的受控有 源电 阻电路 , 主要 用于直流稳压 源的智能化检 测。 直流 电子 负载通过控制 内 部 功 率器件 MO S F E T 或 晶体 管的导通 量, 使 功率 管消耗 功率, 可 以模 拟各 种不 同的 负载状 况, 一般 具有 定 电流 、 定 电压 、 定 电阻、 定功 率 、 短路 及动 态 负载 等 多种模 式。 简 易直流 电子 负载 系统设计  ̄C 8 0 5 1 F 3 5 0 单 片机 为控制核 心, 使 用芯 片内置的2 4 位A D转换 电路 实现模拟 电压和 电流信号 的数字化测量 、 控 制 与显 示, 外 围 电路 主要 包括恒 流 电路 、 电压 电流取 样 电路 、 L C D显 示 电路 等 。 主要 性 能有: 能设定 恒流 电流值, 显示被 测 电源的输 出电压值 、 电流 值 以及 电源的 负载调 整率等 。 其恒流 电子 负载的 电流设置 范围为1 0 0 m A~1 0 0 0 m A, 分辨率 为1 0 m A。 在 电子 负载 两端电压 变化 1 0 V时, 输 出恒 流变化的

直流电子电子负载设计

直流电子负载设计报告摘要本系统设计的直流电子负载以AT89S52单片机为主控芯片,以数模转化器DAC0832输出控制电压,经过运算放大器放大合适倍数以控制电流及电压参数,并使用模数转化器ADC0809测量电压电流参数,各个参数通过LCD12864液晶显示。

经检测,本系统电流能力达6A,稳压幅值为2V-17V,符合题目要求。

本系统同时还拓展了过压过流保护功能,设计方案具有实际应用价值。

关键词:直流电子负载AT89S52 DAC0832 ADC0809一、方案选择及论证:1、主控部分方案一:此方案采用PC机实现。

它具有在线编程、在线仿真的功能,这让调试变得方便,而且人机交互友好,但是PC机输出信号不能直接与A/D,D/A通信,需要电平转换兼容,硬件的合成需在线调试,所以较为繁琐,很不简便,而且在一些环境比较恶劣的场合,PC机的体积大,携带安装不方便,性能不稳定,给工程带来很多麻烦。

方案二:此方案采用AT89S52八位单片机实现。

单片机软件编程的自由度大,可通过变成实现各种各项的算数算法和逻辑控制,而且体积小,硬件实现简单,安装方便,既可以单独对A/D,D/A控制,还可以与PC机通信。

AT89S52将具有多种功能的8位CPU 与FPEROM结合在一个芯片上,为很多嵌入式控制应用提供了非常灵活而又价格适宜的方案,性价比高。

综上所述,在主控部分,我们选择方案二。

2、模拟负载模块方案一:双极型晶体管模拟负载晶体管是通过一定的工艺,将两个PN结结合在一起的器件。

通过基极电流可以控制集电极电流,从而可达到控制晶体管作为一个可变负载的目的。

文献17中利用大功率晶体管作为一个电子负载,晶体管作为负载连接电池和光电装置,Ushift是加载晶体管基极和集电极的电压,Upv是光电装置上的压降。

由于晶体管属于电流控制器件,在控制变化速度上较慢,因此适合模拟一些电流恒定或是变化缓慢的实际负载。

其次,晶体管还存在温度系数为负的问题,所以在使用过程中还需要考虑温度补偿的问题。

毕业设计(论文)-基于单片机的电子负载的设计

毕业设计(论文)-基于单片机的电子负载的设计基于单片机的电子负载的设计摘要:本设计以51系列单片机为控制单元~以模数转换器ADC0809测量电压电流参数~以数模转换器DAC0832输出控制电压~通过运算放大器对电流电压信号的比较放大~直接控制大功率场效管的通过电流值~吸收电源提供的大电流,从而模拟复杂的负载形式、测试电能输出装置或转换装置的输出性能。

该装置解决了传统测试中用电阻、电阻箱、滑线变阻器等模拟不了复杂负载的问题~能对测试电源进行恒电阻负载测试~恒电压负载测试和恒电流负载测试。

:80C51单片机,电子负载,数模,D/A,,模数,A/D, 关键词Design of Electronic Load Based on SCM: An equipment is introduceed in this design, which is controlledby51 Abstractseries singlechip.By this equipment, voltage value and currentvalue are measured using the chip of analog to digital convertor ADC0809. The controlled-voltage value is formed by using the chip of digital toanalog convertor DAC0832. This equipment is called e-load. By using this equipment, the output level of some power supply systems can be tested. The device solves the traditional test using resistors, resistance boxes, slide wire rheostat, etc. can not simulate complex loading problem. Theequipment can also test power supply in constant resistance of the load test andconstant voltage and constant current load test.Key Words: 80C51microcontroller; Electronicload; digital-to-analog; analog-to- digital引言在电子技术应用领域,经常要对开关电源、线性电源、UPS 电源、变压器、整流器、电池、充电器等电子设备进行测试,怎么对其输出特性进行可靠、全面且比较简单、快捷的测试,一直是仪表测试行业研究的问题。

设计和制作一台电子负载有恒流和和恒压两种模式可

设计和制作一台电子负载有恒流和和恒压两种模式可引言:电子负载是一种测试和模拟电源输出特性的设备,常用于电源和电池等电器产品的研发和测试中。

本文将设计和制作一台具有恒流和恒压两种模式的电子负载。

一、设计方案:1.功能需求:电子负载需要具有恒流和恒压两种模式。

在恒流模式下,能够设定电子负载所需的恒定电流;在恒压模式下,能够设定电子负载所需的恒定电压。

并且能够实时显示输出电流和电压。

2.参数需求:电子负载需要能够承受一定的电流和电压。

例如,电流范围为0-10A,电压范围为0-50V,功率范围为0-500W。

3.控制需求:电子负载需要使用简单的控制方式,可以通过旋钮或按钮来设定电流和电压。

二、电子负载设计与制作:1.电路设计:根据上述需求,可以设计以下电路:使用稳压器电路实现恒压模式,使用可调电阻电路实现恒流模式。

a.恒流模式:利用可调电阻电路,可以通过调整电阻使电流维持在设定值。

b.恒压模式:利用稳压器电路,可以通过调整输出电压维持在设定值。

2.元器件选择与组装:根据设计的电路,选择合适的元器件进行组装。

例如,稳压器选择常见的LM317芯片,可调电阻选择带旋钮的电位器。

其他元器件如稳定电阻、电容等根据实际需求进行选择。

3.输出与显示:为了实时显示输出电流和电压,可以设计一个小型的LCD显示屏来显示这两个数值。

通过连接显示屏和控制电路,可以实现电流、电压的实时显示。

4.电源与过载保护:为了提供电源给电子负载,可以使用交流变直流的方式,或者使用直流电源。

同时,在设计中加入过载保护电路,当电流或电压超出设定范围时,自动切断电源,保护负载电器。

5.外壳与散热设计:为了保护电路,可以设计一个外壳,将电子负载与外界隔离。

同时,考虑到电子负载的功率,需要合理设计散热结构,以确保负载长时间工作时不过热。

三、结论:通过以上的设计与制作,一台具有恒流和恒压两种模式的电子负载可以得到。

该负载可以满足一定的电流和电压范围,并通过显示屏实时显示输出电流和电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子负载装置简单设计
电子负载是用于模拟负载电流、电压和功率的一种设备。

它可以用于
测试电源、电池、电动车、太阳能电池板等电子设备的性能,以及模拟不
同的负载条件。

电子负载的基本原理是将电源的电能转化为热能,并通过风扇或者冷
却系统散热。

电子负载的主要特点是可以调节工作条件,包括调节负载电流、电压和功率等。

一般来说,电子负载可以分为恒压模式和恒流模式两种。

在设计电子负载装置时,首先需要确定设计目标和需求。

例如,需要
调节的最大电压、电流和功率是多少?电子负载应该具有的保护功能是什么?这些因素将影响到整体的设计方案。

随后,应该选择合适的元器件和电路方案。

对于常见的电子负载,其
主要组成部分包括负载电阻、电压采样电路、电流采样电路、控制电路和
保护电路等。

负载电阻用于实现电流和电压的调节,一般采用功率电阻或者功率管
等元器件。

电阻的选择应该考虑到其承载能力、稳定性和功率损耗等因素。

电压采样电路用于检测负载电压,一般采用分压电路或者隔离放大器
等元器件。

电流采样电路用于检测负载电流,一般采用电流传感器或者霍
尔传感器等元器件。

控制电路用于控制负载的工作状态,一般采用模拟控制电路或者数字
控制电路等元器件。

保护电路用于保护负载和电源,一般采用过压保护电路、过流保护电路等元器件。

在设计过程中,需要考虑到电子负载的精度、响应时间和稳定性等因素。

此外,还需要选择合适的散热装置,以保证负载在工作过程中的稳定性和可靠性。

最后,需要进行电路布局和绘制电路图。

应该注意保持信号的良好传输和电路的稳定性。

此外,还应该注意到电源和负载之间的连接方式和接口设计。

总结起来,电子负载装置的设计需要考虑到负载电流、电压和功率的调节范围,选择合适的元器件和电路方案,设计合理的散热装置,并进行电路布局和绘制电路图。

只有综合考虑这些因素,才能设计出满足需求的电子负载装置。

相关文档
最新文档