电力电子装置及系统

合集下载

独立电力系统及其电力电子装置的电磁兼容

独立电力系统及其电力电子装置的电磁兼容

独立电力系统及其电力电子装置的电磁兼容内容简介:本书总结了作者十多年来对独立电力系统电磁兼容的研究成果,并吸收了近年来国内外关于电磁兼容性研究的成果,针对从事该领域工作的实际需要,对电力电子装置及由其构成的独立电力系统电磁兼容性的各方面问题作了较全面、系统、深入的描述,重点阐述了传导EMI 的测量、电力电子设备和系统中的传导EMI分析与EMI抑制、系统级电磁兼容性分析与建模及系统级电磁兼容性故障诊断等。

本书通过大量实例来说明实际干扰的情况及消除办法,特别是系统级电磁兼容分析中关于干扰源的描述和干扰途径的确定等,是涉及独立电力系统及其电力电子装置中电磁兼容性各个方面的一部专著。

本书适用于高等院校和科研机构中从事电磁兼容和电力电子教学与研究工作的教师、研究生、本科生及相关领域的工程技术人员。

前言第1章概述1.1 电磁兼容的定义1.2 电磁兼容的标准化进程1.3 电磁兼容的研究领域1.4 电力电子系统中电磁兼容研究的发展1.5 本书的内容安排第2章电磁干扰描述2.1 常见的电磁干扰源及其特性2.1.1 自然干扰源2.1.2 人为干扰源2.2 电磁干扰的作用途径及分析方法2.2.1 传导干扰2.2.2 辐射干扰2.3 电磁干扰的分类2.3.1 按频率成分进行分类2.3.2 按干扰性质分类2.3.3 按传输方式分类第3章传导电磁干扰的测量3.1 信号的频域和时域特征3.2 EMC标准中常用的基本单位3.3 电磁兼容测试中常用的仪器3.3.1 EMI接收机3.3.2 频谱分析仪3.3.3 信号源和功率放大器3.3.4 测量附属设备3.4 干扰电压测量3.4.1 差模干扰电压测量3.4.2 共模干扰电压测量3.4.3 干扰电压测量时的一些问题3.5 干扰电流测量3.5.1 电流探头3.5.2 退耦电容3.5.3 功率吸收钳3.6 面电流测量方法3.6.1 感应线圈测量方法3.6.2 表面磁场测量方法3.7 脉冲类干扰的测量3.7.1 脉冲类干扰的参数3.7.2 瞬变脉冲强度的测量第4章常见电力电子设备的电磁干扰4.1 电力电子电路中的EMI4.1.1 电力半导体器件产生的EMI4.1.2 电力电子电路中的电磁干扰4.1.3 脉冲类信号的频谱估算4.2 整流电路产生的EMI预测4.2.1 可控整流电路产生的EMI计算4.2.2 高频整流电路产生的EMI4.3 斩波器产生的EMI4.3.1 斩波器电磁干扰模型4.3.2 IGBT开关暂态建模4.4 逆变器产生的EMI分析4.4.1 逆变器干扰源的开关函数描述4.4.2 PWM逆变器干扰计算方法第5章电力电子系统的传导干扰分析5.1 系统电磁干扰的分析方法5.2 多整流器系统中的传导干扰预测5.2.1 多个相控整流器系统的干扰预测5.2.2 多PWM高频整流器系统的干扰预测5.3 电力推进(整流-逆变-电动机)系统的电磁干扰分析5.3.1 系统结构5.3.2 逆变系统干扰源计算5.3.3 差模干扰等效电路5.3.4 共模干扰等效电路5.4 开关电源系统传导干扰分析5.4.1 干扰耦合通道辨识5.4.2 基本干扰耦合模型第6章抑制电磁干扰的措施6.1 对电磁干扰源采取的抑制措施6.1.1 继电器系统的噪声抑制6.1.2 电力半导体开关的噪声抑制6.1.3 变压器的屏蔽6.1.4 电容滤波6.1.5 其他减小干扰发射的办法6.2 滤波元件和滤波电路6.2.1 滤波元件的选择与设计6.2.2 滤波电路的选择与测量6.3 EMI滤波器的设计6.3.1 按插入损耗设计EMI滤波器6.3.2 最坏情况插入损耗的计算6.3.3 阻抗不匹配时的设计6.3.4 EMI滤波器元件高频特性的影响6.3.5 EMI滤波器的布置第7章电磁敏感度分析7.1 电磁干扰源的等效与EMS测试信号7.1.1 浪涌电压7.1.2 IEC规定的EMS测试信号7.1.3 GJB中规定的EMS测试信号7.2 系统内部的EMI耦合及其抑制技术7.2.1 公共阻抗耦合7.2.2 电磁场耦合7.2.3 电磁耦合抑制方法7.3 瞬变干扰能量计算7.3.1 拉普拉斯变换中根的计算方法7.3.2 脉冲类干扰的能量计算公式7.3.3 能量密度函数的绘制和应用第8章系统电磁兼容性分析与建模8.1 系统电磁兼容性分析概述8.1.1 电磁兼容分析方法8.1.2 电磁兼容模型描述8.2 系统电磁兼容性的仿真分析8.2.1 电磁兼容预测分析的步骤和作用8.2.2 系统电磁兼容性分析原理框图8.3 系统电磁兼容性分析中的建模技术8.3.1 EMI源的建模8.3.2 接地系统建模分析8.3.3 电磁耦合计算模型8.4 系统电磁兼容分析中的简化8.4.1 灵敏度应用于EMI研究8.4.2 干扰灵敏度的概念8.4.3 用灵敏度方法建立EMI模型第9章系统电磁兼容性故障诊断9.1 概述9.2 电磁兼容故障诊断方法9.3 电磁兼容故障诊断实例9.3.1 隐性故障诊断举例9.3.2 显性故障诊断举例参考文献附录附录一主要符号表附录二缩略术语表。

电力系统电力电子装置应用考核试卷

电力系统电力电子装置应用考核试卷
A.成本高
B.结构复杂
C.效率低
D.可靠性差
17.以下哪种电力电子器件的工作原理是基于热电子发射?()
A.二极管
B.晶体管
C.晶闸管
D.闸流管
18.在电力系统中,以下哪种现象可能导致电力电子装置损坏?()
A.过载
B.短路
C.过压
D.所有以上选项
19.以下哪种电力电子装置主要用于电力系统的暂态稳定性改善?()
A.电压调节
B.无功功率控制
C.系统稳定性提高
D.电力因数校正
14.以下哪些是电力电子装置在电力系统中可能出现的故障类型?()
A.硬件故障
B.软件故障
C.通信故障
D.电气故障
15.电力电子装置的效率受以下哪些因素的影响?()
A.器件本身的效率
B.控制策略
C.环境温度
D.负载条件
16.以下哪些是电力电子装置在设计和应用中需要考虑的电磁兼容问题?()
4.结合实际案例,阐述电力电子装置在电力系统中的应用对于提高系统暂态稳定性和电压稳定性的作用,并分析可能存在的问题和挑战。
标准答案
一、单项选择题
1. A
2. A
3. D
4. D
5. D
6. C
7. B
8. C
9. D
10. A
11. D
12. D
13. B
14. C
15. D
16. D
17. C
18. D
B.相位控制
C.直接控制
D.间接控制
11.电力电子装置在电力系统中的保护措施包括以下哪些?()
A.限流保护
B.过温保护
C.电压跳闸保护
D.欠压保护

青岛科技大学电气工程及其自动化专业人才培养方案

青岛科技大学电气工程及其自动化专业人才培养方案

2.50 48
电力电子技术应用创新实验课 11 B07042600 Power Electronics Application 2.00 32
电力系统仿真与智能电气设计
12 B07042200 Simulation of Power Systems and 1.50 32
Intelligent Electrical Design
B07030720
电磁场理论 B Theory of Electromagnetic Fields B
2.50 40
电气测量技术 03 B07041100 Electrical Measurement Technique 2.00 32
现代控制理论 04 B07010200 Modern Control Theory
模拟电子技术 A
Analog Electronic Technology A
4.00 64 3.00 48 4.00 80 4.00 80
学时分配
理 论
实验 或实



学践
48
32
48
64 24 24 64 64 32 32 32 32 80 96 32 48 16
48
48 48
24 24 54 10 42 6 56 24 56 24
1.00 32
09
B14010102
大学体育 2 College Physical Education 2
1.00 32
10
B14010103
大学体育 3 College Physical Education 3
1.00 32
11
B14010104
大学体育 4 College Physical Education 4

电力电子装置 2021复习要点

电力电子装置 2021复习要点

2021电力电子装置考试复习要点:1.电力电子装置与系统的基本组成及各部分功能要求能够画出系统图并说明各个部分功能。

☐(功率)输入输出☐信号变换/反馈回路☐控制系统☐驱动电路☐保护吸收电路☐主电路(含滤波电路)☐人机/通信(可选)2.各种开关器件的特性及适用范围;常用器件:SCR、GTO、GTR、MOSFET、IGBT频率、功率特性及其使用范围。

3.开关器件选型依据;器件: 电压、电流、频率、功率4.电力电子变换器几种基本拓扑原理及分析拓扑结构:AC/DC(SCR、IGBT/MOSFET整流)、DC/DC(基本斩波电路:BUCK、BOOST等)、DC/AC(有源逆变、无源逆变)、AC/AC(基于SCR)5.电力电子变换器串并联组合变换器的多重化:减小谐波、提高电压、电流、功率。

6.电力电子装置为什么要高频化?高频化:减小体积、重量。

高频损耗及软开关技术。

7.硬开关与软开关的区别,它们典型的开通/关断电压电流波形,开关损耗的产生机理,与哪些因素有关;如何减小开关损耗;硬开关与软开关:开关损耗由开关电压、电流重叠及导通压降引起。

开关损耗四种类型。

采用软开关。

8.软开关按电压电流的不同可分为哪几类?软开关类型:零电压开通/零电流关断(效果好)、零电压关断/零电流开通(效果差)并分别说明。

9.ZVS PWM与ZVT PWM的异同点?哪种更优?为什么?ZVS PWM:零开关PWM:电路中引入了辅助开关来控制谐振的开始时刻,使谐振仅发生于开关过程前后。

ZVT PWM:零转换PWM:电路中采用辅助开关控制谐振的开始时刻,所不同的是,谐振电路是与主开关并联的,因此输入电压和负载电流对电路的谐振过程的影响很小,电路在很宽的输入电压范围内和从零负载到满载都能工作在软开关状态,而且电路中无功功率的交换被削减到最小,这使得电路效率有了进一步提高。

10.使用隔离型变换器的原因,有哪些典型的隔离型变换器?它们分别由哪个非隔离型变换器推演的隔离型变换器:电位隔离、电压变换。

电力电子装置与控制在线考试复习题

电力电子装置与控制在线考试复习题

电力电子装置与控制在线考试复习题一单选题1. 单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是( )A. 0º-90°B. 0º-120°C. 0º-150°D. 0º-180°2. 按900接线的相间功率方向继电器,当线路发生正向故障时,若φk为300,为使继电器动作最灵敏,其内角α值应是()。

A. 300B. -300C. 700D. 6003. 在大接地电流系统中,线路发生接地故障时,保护安装处的零序电压()。

A. 距故障点越远就越高B. 距故障点越近就越高C. 与距离无关D. 距故障点越近就越低4. 在大接地电流系统中,线路始端发生两相金属性短路接地时,零序方向过流保护中的方向元件将()。

A. 因短路相电压为零而拒动B. 因感受零序电压最大而灵敏动作C. 因短路零序电压为零而拒动D. 因感受零序电压最大而拒动5. 发电厂接于110KV及以上双母线上有三台及以上变压器,则应()。

A. 有一台变压器中性点直接接地B. 每条母线上有一台变压器中性点直接接地C. 三台及以上变压器中性点均直接接地D. 三台及以上变压器中性点均不接地6. 三相半波可控整流电路的自然换相点是( )A. 交流相电压的过零点B. 本相相电压与相邻相电压正、负半周的交点处C. 比三相不控整流电路的自然换相点超前30°D. 比三相不控整流电路的自然换相点滞后60°7. 同步发电机灭磁时是指( )。

A. 把发电机转子绕组中的磁场储能迅速减弱到最小程度B. 把发电机定子绕组中的磁场储能迅速减弱到最小程度C. 把励磁机转子绕组中的磁场储能迅速减弱到最小程度D. 把励磁机定子绕组中的磁场储能迅速减弱到最小程度8. 双向晶闸管的额定电流值通常以()来定义A. 最大值B. 平均值C. 有效值D. 任意值9. 三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是()度。

电力电子装置的建模及控制

电力电子装置的建模及控制

在电路工作点处对方程进行线性化得:

Δx
F
(
x0
,
u0
,
D0
)
Δx
F
(
x0
,
u0
,
D0
)
Δu
F
(
x0
,
u0
,
D0
)
ΔD
x
u
D

x Ax Bu Cd
19
小信号模型
对降压斩波电路

0
x
1
C
1 L
1 RC
x
D L 0
u
在电路工作点处对方程进行线性化得:

0
x1
C
1 L
1 RC
第二章 电力电子装置的建模及控制技术
2.1 概述 2.2 电力电子主电路的建模 2.3 系统的传递函数 2.4 电压模式和电流模式控制 2.5 控制系统的校正方法
1
2.1概述
控制系统的基本要求 控制系统的稳态和动态指标 电力电子装置的特点
2
控制系统的基本要求
稳定性 稳态精度 动态品质
2. 调节器 常用的调节器结构:P、PI、PID等。
G(s) K p
G(s) K p ( s 1) s
G(s) K p (i s 1)( d s 1) i s
33
系统各环节的传递函数
❖ 比例调节器 G(s) K p
➢ 控制量与误差同时产生,速度快 ➢ 对不同频率放大倍数相同。容易产生高频
uoufsvrcs1usils?tous11tous1uis111?ski?ios电压环的动态结构框图及其简化电流环117?系统等效和小惯性的近似处理和电流环中一样把电压给定滤波和反馈滤波环节移到环内同时将给定信号改成us?再把时间常数为1ki和ton的两个小惯性环节合并起来近似成一个时间常数为的惯性环节其中oniu1tkt???118?电压环结构简化uovrcs1us?ils??t?us1ios图226b等效成单位负反馈系统和小惯性的近似处理119?电压调节器选择为了实现电压无静差在负载扰动作用点前面必须有一个积分环节它应该包含在电压调节器vr中现在在扰动作用点后面已经有了一个积分环节因此电压环开环传递函数应共有两个积分环节所以应该设计成典型型系统这样的系统同时也能满足动态抗扰性能好的要求

电力电子化电力系统暂态稳定性分析综述

电力电子化电力系统暂态稳定性分析综述

电力电子化电力系统暂态稳定性分析综述一、概述随着科技的快速发展和电力电子技术的广泛应用,电力电子化电力系统已成为现代电网的重要组成部分。

这也给电力系统的暂态稳定性带来了新的挑战。

暂态稳定性是指电力系统在受到大扰动后,能否保持同步运行并恢复到稳定状态的能力。

对电力电子化电力系统的暂态稳定性进行深入分析和研究,对于确保电力系统的安全稳定运行具有重要意义。

电力电子化电力系统暂态稳定性分析涉及多个领域的知识,包括电力电子技术、电力系统分析、稳定性理论等。

其分析方法主要有时域仿真法、基于机器学习的预测方法、基于大数据技术的分析方法等。

这些方法各有优缺点,需要根据具体的应用场景和需求进行选择和优化。

近年来,随着人工智能、大数据等技术的快速发展,电力电子化电力系统暂态稳定性分析也取得了一些新的进展。

例如,基于机器学习的预测方法可以通过对历史数据的训练,建立模型对未来的暂态稳定性进行预测,从而提高分析的准确性和效率。

同时,基于大数据技术的分析方法可以通过处理海量的电力系统状态数据,建立高维度的模型,以更全面地反映电力系统的动态特性。

电力电子化电力系统暂态稳定性分析仍面临一些挑战。

电力电子装置的非线性特性和快速动态响应给电力系统的稳定性分析带来了困难。

随着电网规模的扩大和互联程度的提高,电力系统的动态特性变得更加复杂多变,这也增加了暂态稳定性分析的难度。

现有的分析方法在准确性和实时性方面仍有待提高。

1. 电力电子化电力系统的定义与发展背景随着科技的不断进步,电力电子技术在电力系统中扮演着日益重要的角色。

电力电子化电力系统,简而言之,是指应用现代电力电子技术,如变流器、整流器、逆变器等设备,实现电能的高效转换、稳定控制和灵活调节的电力系统。

这一技术极大地提高了电力系统的运行效率和稳定性,推动了电力系统的现代化和智能化发展。

发展背景方面,随着工业化和城市化的进程,电力需求持续增长,传统的电力系统已难以满足日益增长的电力需求。

电力电子技术及自动控制系统实验指导书:晶闸管直流调速系统的调试

电力电子技术及自动控制系统实验指导书:晶闸管直流调速系统的调试

实验三 晶闸管直流调速系统的调试一、实验目的1.分析晶闸管半控桥式整流电路电机负载(反电动势负载)时的电压、电流波形。

2.熟悉典型小功率晶闸管直流调速系统的工作原理,掌握直流调速系统的整定与调试。

3.测定直流调速系统的机械特性。

二、实验设备高自EAD —I 型电力电子与自控系统实验装置 万用表 双踪示波器 滑动变阻器直流电机机组,带涡流制动和机械制动负载,并有光电数字测速计及转速反馈模拟量输出。

机组的直流电机为SZD01型稀土高性能永磁直流电动机,电机的额定值为P nom =100W ,U nom =90V ,I nom =1.5A ,n nom =1000,T nom =1Nm ,Ω=11a R 。

三、实验电路实验电路具体接线如图3-1所示 四、实验原理此调速系统是小容量晶闸管直流调速装置,适用于4kW 以下直流电动机无级调速。

装置的主回路采用单相半控桥式晶闸管可控整流电路,触发电路采用电压控制的单结晶体管移相触发电路。

具有电压负反馈和电流正反馈及电流截止负反馈环节,电路均为分离元件,用于要求不太高的小功率传动调速场合。

1.晶闸管直流调速系统的基本工作原理虽然采用转速负反馈可以有效地保持转速的近似恒定,但安装测速发电机比较麻烦,费用也多。

所以在要求不太高的场合,往往以电压负反馈加电流正反馈来代替转速负反馈。

这是由于当负载转矩变化(设转矩增加)而使转速降低时,电动机的电枢电流将增加,而电流的增加,整流装置的内阻和平波电抗器上的电压降落也成正比地增加,这样,电动机电枢两端的电压将减小,转速也因此要下降,因而可考虑引入电压负反馈,使电压保持不变。

另一方面,电枢电流(d I )的大小也间接地反映了负载转矩l T (扰动量)的大小(d T m l I K T T Φ=≈),因此可考虑采用扰动顺馈补偿,引入电流正反馈,以补偿因负载转矩l T (扰动)增加而形成的转速降。

电压负反馈不能弥补电枢压降所造成的转速降落,调速性能不太理想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子装置及系统概述
张密李静怡牟书丹李子君
0 引言
在电力系统中,许多功能的实现都需要靠电力电子装置来完成。

比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。

随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。

1 电力电子装置及系统的概念
电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。

电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。

它是通过弱电控制强电实现其功能的。

控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。

2 电力电子装置的主要类型
电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。

1.AC/DC变换器
AC/DC变换器又称整流器。

用于将交流电能变换为直流电能。

2.DC/DC变换器
DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。

采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。

3.DC/AC变换器
DC/AC变换器又称逆变器。

用于将直流电能变换为交流电能。

根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。

4.AC/AC变换器
AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。

输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。

5.静态开关
静态开关又称无触点开关,它是由电力电子器件组成的可控电力开关。

根据需要,以上各类变换可以组合应用。

此外,各类变换器正在向模块化发展,可方便地组成不同功率等级的变换器。

3 电力电子装置的应用概况
3.1发电阶段中的应用
(1)发电机组励磁。

大型发电机组应用静止励磁技术,与励磁机相比,具有调节速度快、控制简单的特点,显著提高了发电厂的运行性能和效率。

(2)风力发电。

变流器是风力发电中不可或缺的核心环节。

风电变流器通过整流器和逆变器将不稳定的风能变换为电压、频率和相位符合并网要求的电能。

(3)光伏电站。

大型光伏电站由光伏阵列组件、汇流器、逆变器组、滤波器和升压变压器构成,是大规模集中利用太阳能的有效方式。

3.2电能存储
(1)抽水储能装置
抽水储能通过实现电力功率方面的转换,来实现电力供能备用紧急能源、调峰填谷等不同的作用,电力功率实现转换的主要方法是利用抽水蓄能机组励磁电流幅值与频率的转换。

(2)电池储能装置
目前在电池储能装置方面,能够把利用任意发电装置生产出来的电力资源储存到电池中,转变为电池装置中的电能。

电力电子装置的有效利用,能够得到损耗最小化、储能最优化的储能系统。

(3)压缩空气储能装置
压缩空气储能装置是风力发电所用的电力电子装置。

在空气压缩过程中,通过采用变频驱动技术可以大幅度调整电网负荷并提高空气压缩效率;在发电过程中,通过采用控制发电机的励磁可以拓宽储气系统的发电运行范围和发电效率。

3.3输电阶段中的应用
在输电领域,电力系统如果想要低损耗、高容量、长距离地传输电力,必须要有电力电子装置的协助,利用变流器、换流器等降低电能损耗,才能实现高效的电力传输。

3.4有利于电能利用率的提高
(1)无功补偿。

采用动态无功补偿器对抑制系统功率振荡、保持母线电压稳定、解决负荷电压闪变和不平衡等问题有重要作用。

(2)谐波治理。

谐波治理分为从谐波源本身出发抑制谐波的主动谐波治理和增加额外谐波治理装置的被动谐波治理。

(3)电压暂降抑制。

动态电压恢复器(DVR)是一种基于电压源逆变技术的串联型电能质量控制器,可以动态补偿正序、负序和零序电压,抑制不平衡的电压暂降。

4 电力电子装置的发展前景
电力电子装置在电力系统中的应用十分广泛,也是电力系统中的重要组成部分之一,电力电子装置在我国的起步较晚,但是发展却非常迅速。

同时,电力电子装置的快速发展与改善,对促进我国电力系统的发展作出了突出贡献,主要表现在以下几个方面:第一,体现在控制方法方面,模拟控制→数字控制;第二,体现在装置方面,半控型装置→全控型装置→复合型装置;第三,体现在关键技术壁垒方面,硬件设计→软件设计;第四,体现在电能传输介质方面,电缆传输→光纤传输等等。

5 结语
综上所述,随着能源消耗问题与环境污染问题的日趋尖锐,节能环保理念深入人心,在这样的背景下,电力系统逐渐向着智能化、可持续发展的方向转型,电力电子装置在电力系统中的合理、有效应用显得非常重要。

因此,应当加强对电力电子装置与电力系统的进一步研究,将更多。

相关文档
最新文档