解析几何三角形面积最值问题-解析版

合集下载

【经典压轴题】三角形面积最值问题30题含详细答案

【经典压轴题】三角形面积最值问题30题含详细答案

试卷第1页,总14页………外…………○…………订…………○……学:___________考号:___________………内…………○…………订…………○……三角形面积最值问题30题含详细答案1.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C . (1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当PAB ∆面积最大时,求点P 的坐标,并求PAB ∆面积的最大值.3.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+.试卷第2页,总14页……订…………○……※※内※※答※※题※※……订…………○……①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值. ③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.4.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.试卷第3页,总14页…○…………外………………订…………………线…………○……___________考号:______…○…………内………………订…………………线…………○……5.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.6.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标: (3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.7.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x试卷第4页,总14页装…………○……………○…………线※要※※在※※装※※订※答※※题※※装…………○……………○…………线轴的另一交点为E ,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.8.如图,四边形ABCD 是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D 重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB 、BA (或它们的延长线)于点E 、F ,∠EDF=60°,当CE=AF 时,如图1小芳同学得出的结论是DE=DF .(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E 、F 分别在CB 、BA 的延长线上时,如图3请直接写出DE 与DF 的数量关系;(3)连EF ,若△DEF 的面积为y ,CE=x ,求y 与x 的关系式,并指出当x 为何值时,y 有最小值,最小值是多少?9.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)试卷第5页,总14页…………○………………○………………○…………………○……学校:____:___________班级:____:___________…………○………………○………………○…………………○……(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.试卷第6页,总14页…○…………外………订…………○………………○……※内※※答※※题※※…○…………内………订…………○………………○……10.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图像经过点34,2A ⎛⎫⎪⎝⎭,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =________,点C 的坐标为________;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图像于点E ,求ODE 面积的最大值.11.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?12.(问题提出)试卷第7页,总14页……○…………外装…………○……姓名:___________班级:____……○…………内装…………○……(1)如图①,在等腰Rt ABC 中,斜边4AC =,点D 为AC 上一点,连接BD ,则BD 的最小值为 .(问题探究)(2)如图2,在ABC 中,5AB AC ==,6BC =,点M 是BC 上一点,且4BM =,点P 是边AB 上一动点,连接PM ,将BPM △沿PM 翻折得到DPM △,点D 与点B 对应,连接AD ,求AD 的最小值.(问题解决)(3)如图③,四边形ABCD 是规划中的休闲广场示意图,其中135BAD ADC ∠=∠=︒,30DCB ∠=︒,AD =,3AB km =,点M 是BC 上一点,4MC km =.现计划在四边形ABCD 内选取一点P ,把DCP 建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP 、MP ,从实用和美观的角度,要求满足PMB ABP ∠=∠,且景观绿化区面积足够大,即DCP 区域面积尽可能小.则在四边形ABCD 内是否存在这样的点P ?若存在,请求出DCP 面积的最小值;若不存在,请说明理由.13.在平面直角坐标系中,点O 是原点,四边形AOBC 是矩形,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O B C ,,的对应点分别为D E F ,,.(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .求点H 的坐标; (3)记K 为矩形AOBC 对角线的交点,S 为KDE 的面积,求S 的取值范围(直接写出结果即可).试卷第8页,总14页……外…………○……………订…………○…※※请※※线※※内※※答※※题※※……内…………○……………订…………○…14.(1)如图1,四边形ABCD 中,//AD BC ,点E 为DC 边的中点,连接AE 并延长交BC 的延长线于点F ,求证:ABF ABCD S S ∆=四边形.(S 表示面积)(2)如图2,在ABC ∆中,过AC 边的中点P 任意作直线EF ,交BC 边于点F ,交BA 的延长线于点E ,试比较EBF ∆与ABC ∆的面积,并说明理由.(3)如图3,在平面直角坐标系中,已知一次函数y kx b =+的图像过点()2,4P 且分别于x 轴正半轴,y 轴正半轴交于点A 、B ,请问AOB ∆的面积是否存在最小值?若存在,求出此时一次函数关系式;若不存在,请说明理由.15.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.16.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.试卷第9页,总14页…外…………○………………○…………订………○……学校:_____名:___________班级:___________考号…内…………○………………○…………订………○……(1)求x 的取值范围; (2)求ABC 面积的最大值.17.在平面直角坐标系中,抛物线265y x mx =-+与y 轴的交点为A ,与x 轴的正半轴分别交于点B (b ,0),C (c ,0).(1)当b =1时,求抛物线相应的函数表达式;(2)当b =1时,如图,E (t ,0)是线段BC 上的一动点,过点E 作平行于y 轴的直线l 与抛物线的交点为P .求△APC 面积的最大值;(3)当c =b + n .时,且n 为正整数.线段BC (包括端点)上有且只有五个点的横坐标是整数,求b 的值.18.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式; (2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P试卷第10页,总14页…外…………○…※…内…………○…的坐标;若不存在,请说明理由. 19.综合与实践问题情境:在综合与实践课上,老师让同学们以“两个大小不等的等腰直角三角板的直角顶点重合,并让一个三角板固定,另一个绕直角顶点旋转”为主题开展数学活动,如图1,三角板ABC 和三角板CDE 都是等腰直角三角形,90C ∠=︒,点D ,E 分别在边BC ,AC 上,连接AD ,点M ,P ,N 分别为DE ,AD ,AB 的中点.试判断线段PM 与PN 的数量关系和位置关系.探究展示:勤奋小组发现,PM PN =,PM PN ⊥.并展示了如下的证明方法:∵点P ,N 分别是AD ,AB 的中点,∴PNBD ,12PN BD =. ∵点P ,M 分别是AD ,DE 的中点,∴PM AE ∥,12PM AE =.(依据1)∵CA CB =,CD CE =,∴BD AE =,∴PM PN =. ∵PNBD ,∴DPN ADC ∠=∠.∵PM AE ∥,∴DPM DAC ∠=∠.∵90BCA ∠=︒,∴90ADC CAD ∠+∠=︒.(依据2)∴90MPN DPM DPN CAD ADC ∠=∠+∠=∠+∠=︒.∴PM PN ⊥. 反思交流:(1)①上述证明过程中的“依据1”,“依据2”分别是指什么? ②试判断图1中,MN 与AB 的位置关系,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,把CDE △绕点C 逆时针方向旋转到如图2的位置,发现PMN 是等腰直角三角形,请你给出证明;(3)缜密小组的同学继续探究,把CDE △绕点C 在平面内自由旋转,当4CD =,10CB =时,求PMN 面积的最大值.20.如图,在平面直角坐标系中,四边形 OABC 为菱形,点 C 的坐标为(4,0),∠AOC = 60°,垂直于 x 轴的直线 l 从 y 轴出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,设直线 l 与 菱形 OABC 的两边分别交与点 M 、N (点 M 在点 N 的上方).○…………外…………订………………○……级:___________考号:__○…………内…………订………………○……(1)求 A 、B 两点的坐标;(2)设 OMN 的面积为 S ,直线 l 运动时间为 t 秒(0 ≤t ≤6 ),试求 S 与 t 的函数表达 式;(3)在题(2)的条件下,t 为何值时,S 的面积最大?最大面积是多少.21.如图,抛物线y=ax 2+bx+c 经过点A (﹣1,0),C (0,3),抛物线的顶点在直线1x =上.(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设△PBC 的面积为S ,求S 的最大值并求出此时点P 的坐标; 22.综合与探究如图,已知抛物线()20y ax bx c a =++≠与x 轴交于A 、()20B ,两点,与y 轴交于点C ,顶点坐标为点1924D ⎛⎫⎪⎝⎭,. (1)求此抛物线的解析式;(2)点P 为抛物线对称轴上一点,当PA PC +最小时,求点P 坐标;(3)在第一象限的抛物线上有一点M ,当BCM ∆面积最大时,求点M 坐标; (4)在x 轴下方抛物线上有一点H ,ABH ∆面积为6,请直接写出点H 的坐标.○…………装………○…………线…………※※请※※不※※要※※在※※○…………装………○…………线…………23.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.二、填空题24.如图,直线AB 交坐标轴于A(-2,0),B(0,-4),点P 在抛物线1(2)(4)2y x x =--上,则△ABP 面积的最小值为__________.25.如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.………○…………装………………订……………线…………○……学校:___________姓名:_级:___________考号:………○…………装………………订……………线…………○……26.如图,30AOB ∠=,C 是BO 上的一点,4CO =,点P 为AO 上的一动点,点D 为CO 上的一动点,则PC PD +的最小值为 ________,当PC PD +的值取最小值时,则OPC ∆的面积为________.27.如图,已知直线433y x =-与x 轴、y 轴分别交于A ,B 两点,P 是以(0,1)C 为圆心,1为半径的圆上一动点,连接PA ,PB ,当PAB ∆的面积最大时,点P 的坐标为__________.28.如图,在Rt ABC ∆中,90ACB ∠=︒,4AB =,点D ,E 分别在边AB ,AC 上,且2DB AD =,3AE EC =连接BE ,CD ,相交于点O ,则ABO ∆面积最大值为__________.…………装…………○…订…………○……线…………○……※请※※不※※要※※在※※装※※订内※※答※※题※※…………装…………○…订…………○……线…………○……29.如图,在△ABC 中,∠ACB =120°,AC =BC =2,D 是AB 边上的动点,连接CD ,将△BCD 绕点C 沿顺时针旋转至△ACE ,连接DE ,则△ADE 面积的最大值=_____.30.如图,∠AOB=45°,点M 、N 分别在射线OA 、OB 上,MN=7,△OMN 的面积为14,P 是直线MN 上的动点,点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,当点P 在直线NM 上运动时,△OP 1P 2的面积最小值为_____参考答案1.(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛-+- ⎝⎭或⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解; (2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+, ()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =AC = 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛-+- ⎝⎭或13,22⎛-+ ⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.2.(1)抛物线的解析式为223y x x =--,直线AB 的解析式为3y x =-,(2)(2,1)-或33(22+-+.(3)当32m =时,PAB∆面积的最大值是278,此时P 点坐标为33(,)22-. 【解析】 【分析】(1)将(0,3)A -、(3,0)B 两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则2CE =,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,可分别得到方程求出点M 的坐标;(3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -,可由12PAB S PG OB ∆=,得到m 的表达式,利用二次函数求最值问题配方即可. 【详解】解:(1)∵抛物线22y ax x c =-+经过(0,3)A -、(3,0)B 两点,∴9603a c c -+=⎧⎨=-⎩,∴13a c =⎧⎨=-⎩,∴抛物线的解析式为223y x x =--, ∵直线y kx b =+经过(0,3)A -、(3,0)B 两点,∴303k b b +=⎧⎨=-⎩,解得:k 1b 3=⎧⎨=-⎩,∴直线AB 的解析式为3y x =-,(2)∵2223(1)4y x x x =--=--,∴抛物线的顶点C 的坐标为(1,4)-, ∵//CE y 轴, ∴(1,2)E -, ∴2CE =,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE MN =, 设(,3)M a a -,则2(,23)N a a a --,∴223(23)3MN a a a a a =----=-+, ∴232a a -+=,解得:2a =,1a =(舍去), ∴(2,1)M -,②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE MN =,设(,3)M a a -,则2(,23)N a a a --,∴2223(3)3MN a a a a a =----=-, ∴232a a -=,解得:a =,a =(舍去),∴M ,综合可得M 点的坐标为(2,1)-或33(22+-+. (3)如图,作//PG y 轴交直线AB 于点G ,设2(,23)P m m m --,则(,3)G m m -, ∴223(23)3PG m m m m m =----=-+, ∴22211393327(3)3()2222228PAB PGA PGB S S S PG OB m m m m m ∆∆∆=+==⨯-+⨯=-+=--+, ∴当32m =时,PAB ∆面积的最大值是278,此时P 点坐标为33(,)22-.【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.3.①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为;③点N 的横坐标为:4或52+或52.【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-; ②先求出点P 到BC 的高h为sin 45)BP t ︒=-,于是211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC的距离d =N 作x轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN为等腰直角三角形,即NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得152m +=,252m =(舍去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得152m =(舍去),252m =.【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B(﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-;②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=,∴点P 到BC 的高h 为sin 45)2BP t ︒=-,∴211(4)2(2)2222PBE S BE h t t t ∆=⋅=⨯-⨯=-+当2t =时,△PBE 的面积最大,最大值为③由①知,BC 所在直线为:5y x =-,∴点A 到直线BC 的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即NQ PQ ==∴4PN =,Ⅰ.4NH HP +=,∴265(5)4m m m -+---=解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,∴4m =;Ⅱ.4NH HP +=,∴()25654m m m ---+-=解得152m =,252m =, ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴m =,Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=,解得1m =,2m = ∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴52m =,综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或52或52-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.4.(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫ ⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭. 【解析】【分析】(1)将点A (-1,0),B (3,0)代入y=ax 2+bx+2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD=BD ,即可求y 的值; (3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE 是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,-103)或M (-2,-103); 【详解】 解:(1)将点()()1,0,3,0A B -代入22y ax bx =++, 可得24,33a b =-=, 224233y x x ∴=-++; ∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+,∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠CD BD ∴=,22CD BD ∴=()22214y y ∴-+=+14y ∴=, 11,4D ⎛⎫∴ ⎪⎝⎭;(3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=,∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--矩形,()()(),,0,2,1,1E x y C F ,111•222CEF SEQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅- ()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯--- 224233y x x =-++, 21736CEF S x x ∆∴=-+ ∴当74x =时,面积有最大值是4948, 此时755,424E ⎛⎫ ⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x += 2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭ ②四边形CNBM 时平行四边形时,3122x += 2x ∴=,()2,2M ∴;③四边形CNNB 时平行四边形时,1322x +=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭; 综上所述:()2,2M 或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.5.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大.方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.6.(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DF DO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得; (3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG•MN 列出关于k 的等式求解可得.【详解】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2;(2)由(1)知点D 坐标为(1,0),设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0),则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°,∵∠BDC =90°,∴∠BDO+∠CDF =90°,∴∠BDO =∠DCF ,∴△BDO ∽△DCF , ∴BO DF DO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1,∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N ,由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0.∴x 1+x 2=2+k ,x 1•x 2=k .∴MN =|x 1﹣x 2|=|2﹣k|.则过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,1),所以DG=1,∴S△PDQ=12DG•MN=12×1×|x1﹣x2|=12|2﹣k|,∴当k=0时,S△PDQ取得最小值1.【点睛】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.7.(1)y=﹣x2+2x+3;(2)t=32时,△PAE的面积最大,最大值是278;(3)t的值为1.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线的对称性可求得E点坐标,从而可求得直线EA的解析式,作PM∥y轴,交直线AE于点M,则可用t表示出PM的长,从而可表示出△PAE的面积,再利用二次函数的性质可求得其最大值即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.【详解】解:(1)由题意得:0 4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴抛物线对称轴为x=1,∴E(3,0),设直线AE的解析式为y=kx+3,∴3k+3=0,解得,k=﹣1,∴直线AE的解析式为y=﹣x+3,如图1,作PM∥y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),∴PM=﹣t2+2t+3+t﹣3=﹣t2+3t,∴12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,∴t=32时,△PAE的面积最大,最大值是278.(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t =﹣t 2+2t+3﹣3,即﹣t 2+t =0,解得t =1或t =0(舍去), ②当∠APE =90°时,如图3,作PK ⊥x 轴,AQ ⊥PK ,则PK =﹣t 2+2t+3,AQ =t ,KE =3﹣t ,PQ =﹣t 2+2t+3﹣3=﹣t 2+2t , ∵∠APQ+∠KPE =∠APQ+∠PAQ =90°, ∴∠PAQ =∠KPE ,且∠PKE =∠PQA , ∴△PKE ∽△AQP , ∴PK KEAQ PQ=, ∴222332t t t t t t-++-=-+,即t 2﹣t ﹣1=0,解得:t 或t 0(舍去),综上可知存在满足条件的点P ,t 的值为1或12+. 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与几何面积最值问题以及二次函数与特殊三角形的问题,解题的关键是灵活运用二次函数的性质及几何知识.8.(1)成立,证明见解析;(2)DF=DE .(3)当x=0时,y 最小值 【分析】(1)如图1,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE (ASA ),得DF=DE ;(2)如图2,连接BD .根据题干条件首先证明∠ADF=∠BDE ,然后证明△ADF ≌△BDE(ASA ),得DF=DE ;(3)根据(2)中的△ADF ≌△BDE 得到:S △ADF =S △BDE ,AF=BE .所以△DEF 的面积转化为:y=S △BEF +S △ABD .据此列出y 关于x 的二次函数,通过求二次函数的最值来求y 的最小值. 【详解】(1)DF=DE .理由如下: 如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(2)DF=DE .理由如下: 如图2,连接BD .∵四边形ABCD 是菱形, ∴AD=AB . 又∵∠A=60°,∴△ABD 是等边三角形, ∴AD=BD ,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE . ∵在△ADF 与△BDE 中,ADF BDE AD BDA DBE ∠=⎧∠=∠=∠⎪⎨⎪⎩, ∴△ADF ≌△BDE (ASA ), ∴DF=DE ;(3)由(2)知,△ADF ≌△BDE .则S △ADF =S △BDE ,AF=BE=x . 依题意得:y=S △BEF +S △ABD =12(2+x )xsin60°+12×2×2sin60°x+1)2.即x+1)20, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=29.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【分析】(1)由DE ∥BC ,得到DB ECAB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可. 【详解】[初步感知](1)∵DE ∥BC , ∴DB ECAB AC=, ∵AB=AC , ∴DB=EC , 故答案为:=, (2)成立.理由:由旋转性质可知∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形, ∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC , 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴DB=CE ,∠ABD=∠ACE , ∵∠BOD=∠AOC , ∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形, ∴∠AED=45°, ∴∠AEC=135°, 在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ), ∴∠ADB=∠AEC=135°,BD=CE , ∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高, ∴AM=EM=MD , ∴AM+BD=CM ;故答案为:90°,AM+BD=CM ; 【拓展提升】 (5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变, △ADE 与△ADC 面积的和达到最大, ∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变, ∴要△ADC 面积最大, ∴点D 到AC 的距离最大, ∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7. 【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.10.(1)m=6,()2,0;(2)当a=1时,ODE 面积的最大值为278【分析】(1)将点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数解析式求出m ,根据坐标中点公式求出点C 的横坐标即可;(2)由AC 两点坐标求出直线AB 的解析式为3342y x =-,设D 坐标为33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,则6,E a a ⎛⎫⎪⎝⎭,进而得到2327(1)88ODESa =--+,即可解答【详解】解:(1)把点34,2A ⎛⎫ ⎪⎝⎭代入反比例函数(0)m y x x=>,得:324m =,解得:m=6,∵A 点横坐标为:4,B 点横坐标为0,故C 点横坐标为:4022+=, 故答案为:6,(2,0);(2)设直线AB 对应的函数表达式为y kx b =+.将34,2A ⎛⎫ ⎪⎝⎭,(2,0)C 代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33,(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭, 因为//DE y 轴,交反比例函数图像于点E .所以6,E a a ⎛⎫ ⎪⎝⎭. 所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a =1时,ODE 面积的最大值为278. 【点睛】本题考查了函数与几何综合,涉及了待定系数法求函数解析式、三角形面积、坐标中点求法、二次函数的应用等知识点,解题关键是用函数解析式表示三角形面积.11.(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m --,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M在整个运动过程中用时最少是3秒. 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;。

一道过定点直线与坐标轴围成三角形面积问题的探究

一道过定点直线与坐标轴围成三角形面积问题的探究

一道过定点直线与坐标轴围成三角形面积问题的探究笔者近日在教学人教A版高中数学必修二《第三章直线方程》内容时,给学生列举了这样一道试题:过点P(1,2)的直线l与x轴的正半轴、y轴的正半轴分别交于A,B两点,当∆AOB的面积最小时,求直线l的方程。

同学们主要有以下几种解法:解法1:由题意知,直线l斜率存在。

设直线l的方程为:y-2=k(x-1)(k<0),则A(1- ,0),B(0,2-k),所以 = OA∙OB= |1- |∙|2-k |= |-k+ +4|≥ |2 |=4,当且仅当 =,即k=-2时取等号。

∴∆AOB的面积的最小值为4,此时直线l的方程为y-2=-2(x-1),即2x+y-4=0。

思路小结:本解法通过设出直线的点斜式方程,将面积表示为关于斜率k的函数,通过研究函数的最小值进而得到围成三角形面积的最小值。

解法2:由题意,设直线l的方程为: + =1(a>1,b>2),∵点P(1,2)在直线l上,∴ + =1。

由基本不等式,得1= +≥2,即ab≥8,于是 =ab≥4,当且仅当 =,即a=2,b=4时取等号。

∴∆AOB的面积的最小值为4,此时直线l的方程为 + =1,即2x+y-4=0。

思路小结:本解法通过设出直线的截距式方程,然后构建出基本不等式对围成三角形面积的最值进行求解。

解法3:同解法2,得 + =1。

由于a>0,b>0,令 =, =,则a=,b=,于是= ab= =。

∵≤1,∴≥4,即≥4,当且仅当=±1,即α= +,k∈Z时取等号,此时a=2,b=4。

∴∆AOB的面积的最小值为4,此时直线l的方程为 + =1,即2x+y-4=0。

思路小结:本解法根据直线截距式方程的特点,类比三角函数的平方关系,通过三角代换,结合三角函数的有界性,对围成三角形面积的最小值进行了求解。

解法4:如图1所示,过点P分别作x轴、y轴的垂线,PM,PN,垂足分别为M,N。

解析几何法巧解三角形的范围问题

解析几何法巧解三角形的范围问题

b
n+1+c
n+1=
b
n+c 2
n
+a1,
所以b n+1+c n+1-2a1=
1(b 2
n+c
n-2a1)=…=
21n(b 1+c 1-2a1)=0援
所以bn+cn=2a1援 淤
因为bn+1-cn+1=- 12(bn-cn),所以{bn-cn}是以b1-c1为首
蓸 蔀 项,-
1 2
为公比的等比数列,bn-cn=(b1-c1) -
2
2
姨3 援 解法2院如图1,以A B的中点为
原点O,直线A B为x轴建立平面直 角 坐 标 系 ,则 A(-1,0),B(1,0).
y C
A
B
-2 -1 O 1 x
设C(x,y)(y屹0),据题意,a=姨 3 b,
求 得 点 C 的 轨 迹 方 程 为(x +2)2+
图1
y2=3,S=
1 2
|A B||y|=|y|,易知x=-2时S取到最大值 姨
a1|yn|,故{Sn}为递增数列援
例4 (2016年咸阳市二模·理
16)如图5,在 吟A BC中,O是外 接 圆
的圆心,若OB·OC=- 1 ,A = 仔 ,则
2
3
B
吟A BC周长的最大值为_____援
解法1院设吟A BC外接圆的半径
A 仔 O3
a= 姨 3 C 图5
为R.由OB·OC=R2cos
b1>c
1,b 1+c 1=2a1,an+1=an,b n+1=
an+c n 2

圆助攻,巧解三角形最值问题

圆助攻,巧解三角形最值问题

2021345圆助攻,巧解三角形最值问题广东省佛山市第四中学(528000)黄仪解三角形中的最值问题,一般是利用正余弦定理,结合基本不等式,或三角函数的有界性,二次函数的最值等方法求解,但通常会推导过程繁冗,计算量大,容易出错,尤其是选择填空题,做题耗时过多,得不偿失.三角形中角度和边长的变化,其实就是平面几何中点和线的变化,能否跳出知识的局限,利用平面几何辅助解题?平面几何中的圆,由于其半径和圆心角,圆周角的特性,往往成为一个很好的解题助力工具.一、角的转化三角形中,当点动而角不变时,如果定角所对的边也是定值,求最值问题时,可将角转化为同圆中同弧所对的圆周角或圆心角,利用同弧所对的圆周角或圆心角不变的性质,化动为静.例1(2014高考新课标Ⅰ卷理科)已知a,b,c 分别为∆ABC 的三个内角A,B,C 的对边,a =2且(2+b )(sin A −sin B )=(c −b )sin C ,则∆ABC 的面积的最大值为.解由正弦定理,(2+b )(sin A −sin B )=(c −b )sin C 即(2+b )(a −b )=c (c −b ),将a =2代入整理得b 2+c 2−a 2=bc ,所以cos A =b 2+c 2−a 22bc =12,A =π3.边a 为定长2,角A 为π3定值,构造∆ABC 外接圆O ,则点A 可看作圆O中所对的圆周图1角∠BAC 的顶点,由垂径定理易知当AO ⊥BC 时,∆ABC的面积最大,为√3.评析这是一道求面积最值的经典题目,方法多样.构造圆,利用几何辅助解题是最灵活,计算量最少的解法.通过角度不变,点A 可看作在圆周上运动,角A 两边长的变化转化为三角形高的变化,求面积的最值即求高的最值.例2∆ABC 中,∠ABC =90◦,AC =2BC =2√3,P 是∆ABC 内一动点,∠BP C =120◦,则AP 的最小值为.解以BC 为x 轴,BA 为y 轴建立平面直角坐标系,构造圆O ,使BC 为圆O 的弦,∠BP C 为优弧BC 所对的圆周角恒为120◦,则点P 的运动轨迹为弧BC .线段AP 的最小值就转化为点A 到弧BC 的距离的图2最小值.由BC =√3,圆心角∠BOC =120◦易知O点坐标为(√32,−12),圆O 半径为2,则AP 的最小值=|OA |−|OP |=√13−1.评析此处巧妙地用了平面几何与解析几何中圆的性质.首先由动点P 形成的角为定值,将点动转化为角动,根据角度不变构造出同弧所对的圆周角,再将AP 的值转化为点到圆的位置关系求解,利用坐标系大大简化了计算量.垂足为A ,则tan (α+β)=AC OA.因此,只需要利用α,β的正切线表示ACOA即可.过点C 作CD 垂直于BT ,并交BT 的延长线于点D ,则AB =CD ,AC =BD .注意到∠CT D =α,故在Rt ∆T DC中,由sin α=CD T C 知CD =tan αtan β;由cos α=T DT C知T D =tan β.在Rt ∆OAC 中,根据正切的定义及三角函数线可知tan (α+β)=AC OA =BT +T D OB −CD =tan α+tan β1−tan αtan β,即tan (α+β)=tan α+tan β1−tan αtan β.本文通过三角函数线推导三角公式,从而实现复杂、抽象的三角公式可视化.这种直观呈现的方式,能够激发学生的学习兴趣、培养学生的创造性思维,使得数学知识的学习变得简单、自然、易于理解.参考文献[1]王位高.透析常见误区优化公式教学[J].中学数学研究(华南师范大学版),2013(15):22-24.[2]李小华,邵琼.“教学关键点”视角下培养学生数学核心素养的实践与思考—–以“任意角的三角函数”为例[J].中学数学研究(华南师范大学版),2020(18):14-16+44.4620213二、边的转化三角形中,点动,角变,而边不变,结合圆中的定长为半径或直径,可将三角形中的一条动边构造为圆的半径或直径,将点动转化为圆中半径位置的转动,进而引起其他顶点或角度的变化,再结合圆的性质,求出相应的取值范围.例3在∆ABC 中,AB =1,BC =2,求角C 的取值范围.解以B 为圆心,AB =1为半径构造半圆,当顶点A 从点M 沿着半圆弧运动到点N 的过程中,角C 从零开始,先逐渐图3增大,当CA 与半圆B 相切时,角C 最大,为30◦,然后又逐渐减小至零,得出角C 的取值范围是(0,30◦].评析本题中角C 的对边为定值,以定长为半径构造圆,当角C 变化时,点A 在半圆周上运动,角C 的值随着角A 的变化而变化,由角A 的取值范围得出角C 的取值范围.这一招可谓“动中求变化,变中有方法”!三、三角形的转化平面四边形中,某动点在变化,带动其它的点也在对应变化(这两个称之为对应点),相当于整个图形在变化,其中蕴含着变化的三角形与不变的对应关系,将其中变化的三角形构造圆,对应点利用其对应关系也构造出相应的圆,两圆相结合辅助解题,事半功倍.例4在平面四边形ABCD 中,AD =2,CD =4,∆ABC 为正三角形,则∆BCD 面积的最大值为.图4解以点C 为原点,CD 为x 轴建立平面直角坐标系,则D (4,0),由AD =2,CD =4可知点A 在圆D :(x −4)2+y 2=4上,因为是点A 绕原点C 旋转60◦得到点B ,所以点A 的轨迹圆D 绕原点C 逆时针旋转60◦所得点B 的轨迹圆E ,可求得E (2,2√3),所以点B (x,y )在圆E :(x −2)2+(y −2√3)2=4上,易知|y | 2√3+2,所以有y max =2√3+2,所以∆BCD 面积的最大值为S max =12|CD |·y max =4√3+4|.评析本题中点A,C 在变化,带动点B 也在动,其不变关系是等边∆ABC .构造出动点A 作圆周运动的圆D ,再根据等边三角形中的定角∠ACB 及等边,得出动点B 的运动轨迹圆E ,相当于把∆ACD 旋转到∆BCE ,动点B 的的运动过程,就是∆BCD 高的变化过程,从而确定面积的变化.本题是“点(A )动—–点(B )动—–线(高)动”的变化过程,构思巧妙,技巧性强.例5如图5在凸四边形ABCD 中,AB =1,BC =√3,AC ⊥CD ,AC =CD ,当∠ABC 变化时,对角线BD 的最大值为.解以B 为圆心,AB 半径构造圆B ,以C 为圆心,将圆B 旋转90◦得到圆E ,则∠BCE =90◦,BC =CE =√3,BE =√6,当点A 在圆B 上运动时,点D 在以E 为圆心,1为半径的半圆上运动,由图得BD 的最大值即BE 的长加圆E 的半径,即√6+1.图5评析本题与例4异曲同工,也是构造双圆辅助解题.将∆ABC 旋转变换到∆DEC ,即圆B 变换到圆E ,即利用点A 的运动轨迹求出点D 的运动轨迹,此时,即可眼前一亮,豁然开朗,进而结合圆的性质解出此题.三角形的转化,其实就是边和角的转化,归根到底还是根据点的运动、点和线的变化,把点、线的运动与圆相结合,构造圆解题.借助圆这个工具,解题跳出知识的局限,回归平面几何与解析几何的本质时,则可以从几何要素点、线、角、三角形等角度,将问题转化为观察变化规律的几何问题,避免大量的三角运算,缩短解题时间,化繁为简.在教学中,要求学生有较强的抽象思维能力以及平面几何,空间几何的想象能力,平时多观察,多思,多练,多画(图),跳出思维的框架,发挥想象的空间;还要善于将知识点融会贯通,综合运用,将三角函数与平面几何、解析几何综合运用,灵活转换,学生要有扎实的数学基础和培养良好的数学素养;最后要有模型意识,善于建立数学模型.与圆相结合的解三角形问题具有较高的特定性和技巧性,需要在实际解题过程中多体会模型的特征,提高解三角形问题的几何意识.参考文献[1]于涛.平面几何视角下解三角形问题的四大类型[J].中学数学研究,2017(9):40-42.。

解析几何-三角形面积相关最值问题

解析几何-三角形面积相关最值问题

✧ 难度:★★✧ 特点:已知高(作为一个限制弦的条件),求弦长的最大值✧ 来源:07陕西高考已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值.解:(Ⅰ)设椭圆的半焦距为c ,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=. (Ⅱ)设11()A x y ,,22()B x y ,.(1)当AB x ⊥轴时,AB =.(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+.=,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=, 122631km x x k -∴+=+,21223(1)31m x x k -=+.22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k=,即k =时等号成立.当0k =时,AB =综上所述max 2AB =. ∴当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. ✧ 难度:★★✧ 特点:椭圆已知,直线过定点(由椭圆定),求三角形面积的最大值✧ 来源:已知椭圆的中心在坐标原点O ,焦点在x 轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.(Ⅰ)求椭圆的方程;(Ⅱ)直线l 过点P(0,2)且与椭圆相交于A 、B 两点,当ΔAOB 面积取得最大值时,求直线l 的方程.解:设椭圆方程为).(0b a 1b y a x 2222>>=+(I )由已知得2222cb a 4c 2a cb +===⇒1c 1b 2a 222=== ∴所求椭圆方程为.1y 2x 22=+(II )解法一:由题意知直线l 的斜率存在,设直线l 的方程为2kx y +=,),(),,(2211y x B y x A 由1y 2x 2kx y 22=++=消去y 得关于x 的方程:068kx x 2k 122=+++)(由直线l 与椭圆相交A 、B 两点,∴△02k 12464k 022>+-⇒>)(,解得23k 2>,又由韦达定理得2212212k 16x x 2k 18kx x +=⋅+-=+ 212212212x 4x x x k 1x x k 1AB -++=-+=∴)(2416k 2k 1k 1222-++=. 原点O 到直线l 的距离2k 12d +=2222ADB 2k132k 222k 12416k d AB 21S +-=+-=⋅=∴∆ 所以,所求直线方程为:042y x 14=+-±.解法2:令)(0m 32k m 2>-=,则3m 2k 22+=,222m4m 224m m 22S 2≤+=+=∴. 当且仅当m4m =即2m =时,22S ma x =此时214k ±=.所以,所求直线方程为042y x 14=+-±.解法二:由题意知直线l 的斜率存在且不为零.设直线l 的方程为2kx y +=,)(11y ,x A ,)(22y ,x B则直线l 与x 轴的交点),(0k2D - 由解法一知:23k 2>且2212212k 16x x 2k 18kx x +=⋅+-=+解法1:2kx 2kx k 221y y OD 21S 2121AOB --+⋅=-⋅=∆ 解法2:POA POB AOB S S S ∆∆∆-=✧ 难度:★★✧ 特点:椭圆差一个条件,直线过定点(由椭圆定),已知三角形面积的最大值确定椭圆 ✧ 来源:已知中心在原点,焦点在x 轴上的椭圆的离心率为22,21,F F 为其焦点,一直线过点1F 与椭圆相交于B A ,两点,且AB F 2∆的最大面积为2,求椭圆的方程. 解:由e =22得1:1:2::=c b a ,所以椭圆方程设为22222c y x =+设直线c my x AB -=:,由⎩⎨⎧=+-=22222cy x c my x 得:02)2(222=--+c mcy y m 0)1(8)22(4)2(4422222222>+=+=++=∆m c m c m c c m 设),(),,(2211y x B y x A ,则21,y y 是方程的两个根 由韦达定理得⎪⎪⎩⎪⎪⎨⎧+-=+=+2222221221m c y y m mc y y 所以21224)(222122121++=-+=-m m c y y y y y y c c y y F F S ABF 222121212∙=-=∆2122++m m =222222212211122c c m m c =∙≤+++ 当且仅当0=m 时,即x AB ⊥轴时取等号1,222==∴c c 所以,所求椭圆方程为1222=+y x ✧ 难度:★★✧特点:椭圆方程已知,直线过定点,已知面积确定直线✧ 来源:已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左右焦点分别为12,F F ,且12||F F =2点3(1,)2在该椭圆上。

重难专攻(四) 三角函数与解三角形中的最值(范围)问题

重难专攻(四) 三角函数与解三角形中的最值(范围)问题
+(x+1)cos x=(x+1)cos

π
= .因为f
2
2
=cos
π
π

2
2

1=- ,又f(0)=cos
2
π
x.令f'(x)=0,解得x=-1(舍去),x= 或x
2
+ 1 sin
π
π

+1=2+ ,f
2
2
2
+ 1 sin


2
0+(0+1)sin 0+1=2,f(2π)=cos 2π+(2π+
增.∴当cos
1
x= 时,f(x)有最小值.又f(x)=2sin
2
x),∴当sin x=-
3 3
- .
2
3 3
答案:-
2
x+sin 2x=2sin x(1+cos
3
时,f(x)有最小值,即f(x)min=2×
2

3
2
× 1+
1
2

利用三角函数性质求某些量的最值(范围)
【例3】 (1)已知函数f(x)=asin x-2 3cos
重难专攻(四)
三角函数与解
三角形中的最值()问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
x=
,而-1≤sin
+1

2−5
x≤1,所以-1≤
≤1,
+1

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

【高考数学经典题型】抛物线与圆,求三角形面积最值(一题多解)

1/ 5试题出处:2020届湖北省“荆、荆、襄、宜”四地七校联考(改编)抛物线与圆,求三角形面积最值若点P 是抛物线22x y =上的动点,点,M N 在x 轴上,圆22(1)1x y +−=内切于,PMN ∆求PMN ∆面积的最小值. 答案:8解法一:动点设一个参数,利用勾股定理列等式如图,不妨设点2(2,2)P t t (1)t >,圆心为C ,两切点为,D E .分别过点P 作PH x ⊥,作PG x 轴,过点M 作x 轴垂线与PG 交于点G ,且,OM m ON n ==. 在Rt PCE ∆中,由勾股定理得,22222244(21)14PE PC CE t t t =−=+−−=,即22PE t =.在Rt PNH ∆中,由勾股定理得222,PN PH NH =+ 即()224224(2)t n t t n +=+−,可得1t n t =+. 在Rt PMG ∆中,由勾股定理得222,PM PG GM =+ 即()224224(2)t m t t m +=++,可得1t m t =−. 42224122()21121PMNt S m n t t t t ∆∴=⋅+⋅==−− 又2242111111()244t t t −=−−+≥ ∴当22t =时,PMN S ∆有最小值8.2 / 5解法二:动点设两个参数,利用直线与圆相切列等式 设00(,),(,0),(,0)P x y M a N b ,其中02y >且a b <.∴直线PN 的方程为:00()y y x b x b=−−, 直线PN 与圆相切,∴圆心(0,1)到直线PN 的距离为1, ∴1=∴()2000220y b x b y −+−= 同理可得,()2000220y a x a y −+−=.∴实数,a b 是关于x 的一元二次方程()2000220y x x x y −+−=的两根, ∴0000222x a b y y a b y −⎧+=⎪−⎪⎨−⎪⋅=⎪−⎩, ∴()()()22220002044842x y y a b a b ab y +−−=+−=−,2002x y =∴()()2202042y a b y −=−,0022y a b y −=− 20000014()248222PMNy S b a y y y y ∆∴=⋅−⋅==−++≥−− ∴当04y =时,PMN S ∆有最小值8.解法三:动点设两个参数,利用内切圆性质列等式 设点00(,),(,0),(,0)P x y M a N b −圆心为(0,1)C ,两切点为,D E . 在Rt PCD ∆中,PD =2002x y =,∴0PD y = PM PD DM PD MO =+=+3 / 5∴0y a =+,化简得20000002()x y MO a y x y x ===−−同理,可得20000002()x y NO b y x y x ===++0000000011()()22PMN y y S MO NO y y y x y x ∆∴=⋅+⋅=+⋅−+ 32000220000424822PMNy y S y y x y y ∆∴===−++≥−−− ∴当04y =时,PMN S ∆有最小值8.解法四:动点设一个参数、再设直线斜率,利用直线与圆相切列等式 设21(,)(2)2P m m m >,直线,PM PN 的斜率一定存在,分别设其为12,k k ,则直线PM 的方程为:211()2y m k x m −=−,1=,化简得:22342111(1)(2)04m k m m k m m −+−+−=……..① 同理可得:22342221(1)(2)04m k m m k m m −+−+−=……..②∴实数12,k k 是关于x 的一元二次方程223421(1)(2)04m x m m x m m −+−+−=的两根, ∴31224212221141m m k k m m m k k m ⎧−+=⎪−⎪⎨−⎪⋅=⎪−⎩, 分别令方程①,②中的0y =,得21,2M m x m k =−22,2N m x m k =−222112121122M N k k m m MN x x k k k k −=−=⋅−=2412121228PMNk k m m S MN k k ∆−∴=⋅⋅=⋅48m =4/ 5化简得4222116(48)82824PMNm S m m m ∆==−++≥−− ∴当28m =时,PMN S ∆有最小值8.解法五:动点设两个参数,利用内切圆性质列等式如图,设00(,),P x y 切点分别为,D E 且PMN ∆的内切圆半径1r = 则011()22PMN S MN y PM PN MN r ∆=⋅=++⋅1()2PM PN MN =++ 1()2PMN S OM PE ON PE MN MN PE ∆∴=++++=+MN MN ==0MN y MN =+≥012y MN ∴⋅≥ 016y MN ∴⋅≥0182PMN S y MN ∆∴=⋅≥ ∴PMN S ∆有最小值8.评论与赏析:圆锥曲线中求三角形面积的最值一直是考试的热点、难点问题.解法1跳出了解析几何的大量计算,两次用勾股定理将线段长用动点中的参数表示出.解法2利用直线与圆相切的性质及韦达定理找到线段整体与动点中的参数的关系.解法3利用三角形内切圆的性质和坐标运算将线段长用动点中的参数表示出来.解法4设切线斜率利用韦达定理找到线段与动点中的参数的关系.解法5巧妙利用三角形内切圆性质、这一题的数量特点及基本不等式直接得出面积的最值.5 / 5推广:过抛物线22(0)x py p =>上一点000(,)(2)P x y y p ≥作圆222:()C x y p p +−=的两条切线,分别与x 轴交于,M N 两点,则PMN ∆的最小值为28p .相似题:在平面直角坐标系xoy 中,过点2(2,21)P t t +作圆22:(1)(1)1E x y −+−=的两条切线,PM PN ,切点分别为,M N .当(1,)t ∈+∞时,设切线,PM PN 与y 轴分别交于点,,B C 求PBC ∆面积的最小值. 答案:8。

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何三角形面积最值问题未命名一、解答题1.(2019·黑龙江哈尔滨市·哈师大附中高三开学考试(文))已知(0,2)A -,椭圆2222:1(0)x y E a b a b +=>>的离心率2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)22y x =-或22y x =--【解析】试题分析:(1)由离心率与斜率可求得a,b,c.(2) 设:2l y kx =-,与椭圆组方程组,由弦长公式,点到距离公式,求得三角形面积. 试题解析:(1)设(),0F c,由条件知,2c c =⇒=又22c a b a =⇒==, 故椭圆E 的方程为22182x y +=;(2)当l x ⊥轴时,不合题意,故可设:2l y kx =-,()22222,1416801,82y kx k x kx x y =-⎧⎪⇒+-+=⎨+=⎪⎩, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,241PQ k ==+又点O 到直线l 的距离d =∴△OPQ 的面积12OPQS PQ d ∆==,t =,则0t >, ∴2OPQ S t t∆==≤+,当且仅当2t t t =⇒=k =时等号成立,满足0∆>,∴当k =±时,△OPQ 的面积取得最大值2,此时直线l 的方程为2y x =-或2y x =-. 【点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-2.(2020·江苏高二单元测试)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.【答案】(Ⅰ)22143x y +=;(Ⅱ)6. 【分析】(Ⅰ)由离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为222,ce a b c a==+,列方程组求得,a b 的值,即可求出椭圆C 的方程;(Ⅱ)点()4,M t ,直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,利用韦达定理解出P 点坐标,同理可求得Q 点的坐标,利用三角形面积公式将四边形面积表示为t 的函数,利用换元法结合函数单调性求解即可. 【详解】(Ⅰ)由题设知,2,2a c ab ==又222a b c =+,解得2,1a b c ===,故椭圆C 的方程为22143x y +=.(Ⅱ)由于对称性,可令点()4,M t ,其中0t >.将直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,由22410827A P t x x t -⋅=+,2A x =-得2225427Pt x t -=+,则21827P t y t =+. 再将直线BM 的方程()22t y x =-代入椭圆方程22143x y +=,得()2222344120t xt x t +---=,由224123B Q t x x t -⋅=+,2B x =得22263Q t x t-=+,则263Q t y t -=+. 故四边形APBQ 的面积为122P Q P Q S AB y y y y =⋅-=-= 221862273t t t t ⎛⎫+ ⎪++⎝⎭()()()()()22222222248948948912273912)9t t t t t t t tt t t t ++===+++++++.由于296t tλ+=≥,且12λλ+在[)6,+∞上单调递增,故128λλ+≥,从而,有48612S λλ=≤+. 当且仅当6λ=,即3t =,也就是点M 的坐标为()4,3时,四边形APBQ 的面积取最大值6.注:本题也可先证明”动直线PQ 恒过椭圆的右焦点()0,1F ”,再将直线PQ 的方程1x ty =+ (这里t R ∈)代入椭圆方程22143x y +=,整理得()2234690t y ty ++-=,然后给出面积表达式2P Q S y y =-==令211m t =+≥,则S =当且仅当6λ=即3t =时, max 6S =. 3.(2020·宁夏银川一中高二期中(理))已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点⎭.(1)求椭圆M 的标准方程;(2)直线l :x ky n =+与椭圆M 相交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【分析】(1)首先根据题意得到2b a =,再根据椭圆经过点⎭,即可得到答案.(2)首先设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,得到()2224240ky kny n +++-=,根据0CA CB ⋅=得到所以直线l 恒过点6,05D ⎛⎫⎪⎝⎭,再计算ABC 面积的最大值即可. 【详解】(1)设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -, 则12B B F △是正三角形,所以2b a ==,则椭圆方程为222214x y b b+=.将⎭代入椭圆方程,可得2221142b b +=, 解得2a =,1b =,故椭圆的方程为2214x y +=.(2)由题意,设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240k y kny n +++-=. 设()11,A x y ,()22,B x y ,则有12224kn y y k -+=+,212244n y y k -=+,因为以线段AB 为直径的圆过椭圆的右顶点()2,0C ,所以0CA CB ⋅=, 由()112,CA x y =-,()222,CB x y =-,则()()1212220x x y y --+=, 将11x ky n =+,22x ky n =+代入上式,并整理得()()()()2212121220k y y k n y y n ++-++-=,则()()()()22222214222044kn k n n n k k +---++-=++, 化简得()()5620n n --=,解得65n =或2n =,因为直线x ky n =+不过点()2,0C , 所以2n ≠,故65n =.所以直线l 恒过点6,05D ⎛⎫ ⎪⎝⎭. 故121||||2ABC S DC y y =⋅-△16225⎛=⨯-= ⎝=, 设211044t t k ⎛⎫=<≤ ⎪+⎝⎭,则ABCS=10,4t ⎛⎤∈ ⎥⎝⎦上单调递增, 当14t=时,1625ABCS ==, 所以ABC 面积的最大值为1625. 【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于难题.本题中直线方程代入椭圆方程整理后应用韦达定理求出12y y +,12y y ⋅,然后利用0CA CB ⋅=得到直线l 恒过点6,05D ⎛⎫⎪⎝⎭为解题的关键,考查了学生的运算求解能力,逻辑推理能力. 4.(2021·安庆市第十中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的短轴长为12e =. (1)求椭圆C 的标准方程;(2)若12F F 、分别是椭圆C 的左、右焦点,过2F 的直线l 与椭圆C 交于不同的两点A B 、,求1F AB 的面积的最大值. 【答案】(1)22143x y +=;(2)3.【分析】(1)由题意,列出方程组,求得2,a b ==,即可得到椭圆的标准方程; (2)设()()1122,,,A x y B x y ,设直线l 的方程为1x my =+,根据根与系数的关系,求得1212,y y y y +,结合三角形的面积公式,得到1121212F ABSF F y y =⋅-=,利用换元法,结合函数的单调性,即可求解. 【详解】(1)由题意, 椭圆()2222:10x y C a b a b+=>>的短轴长为12e =.可得222212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2,a b ==,故椭圆的标准方程为22143x y +=.(2)设()()1122,,,A x y B x y ,因为直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=,所以12122269,3434m y y y y m m --+==++, 又因直线l 与椭圆C 交于不同的两点,故0∆>,即()22(6)36340,m m m R ++>∈,则112121221234F ABSF F y y y y m =⋅-=-==+,令t =,则1t ≥,则12124113132F ABt St t t ===++.令13()f t t t=+,由函数的性质可知,函数()ft 在⎫+∞⎪⎪⎣⎭上是单调递增函数, 即当1t ≥时,()f t 在[1,)+∞上单调递增,因此有4()(1)3f t f ≥=,所以13F AB S ≤△,即当1,0t m ==时,1F ABS最大,故当直线l 的方程为1x =时,1F AB 面积的最大值为3. 【点睛】求解圆锥曲线的最值问题的解答策略:1、若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.5.(2021·全国高二课时练习)已知点A (0,-2),椭圆E :22221x y a b+= (a >b >0)的离心F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)22y x =±-【解析】试题分析:设出F ,由直线AF c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF ,()0,2A -所以2c =c =又222c b a c a ==-解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l 的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t=2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.6.(2020·黑龙江建三江分局第一中学高二期中(文))已知椭圆C :22221(0)x y a b a b+=>>倍,且经过点).(1)求C 的标准方程;(2)C 的右顶点为A ,过C 右焦点的直线l 与C 交于不同的两点M ,N ,求AMN ∆面积的最大值.【答案】(1)22142x y +=;(2)2- 【分析】(1)利用已知条件,结合椭圆方程求出,a b ,即可得到椭圆方程.(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可. 【详解】(1)解:由题意22,211,a a b⎧=⎪⎨+=⎪⎩解得2a =,b = 所以椭圆的标准方程为22142x y +=.(2)点(2,0)A,右焦点)F,由题意知直线l 的斜率不为0,故设l的方程为x my =+()11,M x y ,()22,N x y ,联立方程得22142x y x my ⎧+=⎪⎨⎪=+⎩,消去x,整理得22(2)20m y ++-=,∴216(1)0m ∆=+>,12y y +=,12222y y m =-+,()()()21212122222222)224281m y y y y y y m m m ⎛⎫∴--=+ ⎪ ⎪+=+=++⎝+⎭16(1222y y m ∴-=+(12122AMNS y y ∆∴=⨯⨯-(22=(()122221=-,当且仅当0m =时等号成立,此时l :x = 所以AMN 面积的最大值为2- 【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题.7.(2021·浙江高三专题练习)平面直角坐标系xOy 中,过椭圆M :22221x y a b+=(0a b >>)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】(Ι) 22163x y +=(Ⅱ)12AB CD ⋅=【分析】(1)把右焦点()c,0代入直线方程可求出c ,设()11,,A x y ()22,B x y ,线段AB 的中点()00,P x y ,利用“点差法”即可得出a,b 的关系式,再与222a b c =+联立即可求出a,b ,进而可得椭圆方程;(2)由CDAB ⊥,可设直线CD 方程为y x m =+,与椭圆方程联立可得根与系数关系,即可得到弦长CD ,把直线0x y AB +=与椭圆的方程联立得到根与系数关系,即可得到弦长,利用ABCD 1S 2AB CD =⋅四边形即可得到关于m 的表达式,利用二次函数的单调性即可求出其最大值. 【详解】(Ι)设()11,,A x y ()22,,B x y 则()22112211x y a b +=,()22222212x y a b+=,(1)-(2)得:()()()()12121212220x x x x y y y y ab-+-++=,因为12121y y x x -=--,设()00,P x y ,因为P 为AB 的中点,且OP 的斜率为12,所以0012y x =,即()121212y y x x +=+,所以可以解得222a b =,即()2222a a c=-,即222ac =,又因为c =,所以26a =,所以M 的方程为22163x y +=.(Ⅱ)因为CD AB ⊥,直线AB 方程为0x y +=,所以设直线CD 方程为y x m =+,将0x y +=代入22163x y +=得:230x -=,即(A 、B ⎝⎭,所以可得AB =;将y x m =+代入22163x y +=得:2234260x mx m ++-=,设()33,,C x y ()44,,D x y 则CD =()221612260m m ∆=-->,即33m -<<,所以当0m =时,|CD|取得最大值4,所以四边形ACBD 面积的最大值为12AB CD ⋅= . 【点睛】本小题考查椭圆的方程的求解、直线与椭圆的位置关系,考查数学中的待定系数法、设而不求思想 ,考查同学们的计算能力以及分析问题、解决问题的能力.圆锥曲线是高考的热点问题,年年必考,熟练本部分的基础知识是解答好本类问题的关键.8.(2021·长春市第二十九中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为()1F,)2F,且经过点)M.(1)求椭圆C 的标准方程;(2)若斜率为2的直线与椭圆C 交于,A B 两点,求AOB 面积的最大值(O 为坐标原点).【答案】(1)22142x y +=;(2. 【分析】(1)根据椭圆的定义求得a ,由此求得b ,从而求得椭圆C 的标准方程;(2)设出直线AB 的方程2y x m =+,联立直线AB 的方程和椭圆方程,化简后写出根与系数关系,求出弦长AB ,表示出AOB 的面积,利用不等式求出最值即可. 【详解】(1)由椭圆的定义,可知12214a MF MF =+==.解得2a =.又2222b a =-=.所以椭圆C 的标准方程为22142x y +=.(2)设直线l 的方程为2y x m =+, 联立椭圆方程,得2298240x mx m ++-=,2264721440m m ∆=-+>,得m -<<设()11,A x y ,()22,B x y ,1289m x x ∴+=-,212249m x x -=,12AB x x ∴=-=== 点()0,0O 到直线:20l x y m -+=的距离d=11||22AOBS AB d ∴=⋅⋅=⋅△=≤=当2218m m-=即29m=,3m=±时取等;所以AOB.【点睛】方法点睛:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生逻辑思维能力和计算能力,直线y kx b=+上两点()()1122,,,A x yB x y间的距离公式为:1.12AB x x=-;2.12A yB y=-;3.若AB过焦点,也可以使用焦半径公式.9.(2019·广东中山市·中山纪念中学高三月考(文))已知椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为1F,2F1F的直线l与C交于A,B两点,2ABF的周长为()1求椭圆C的方程;()2当2ABF的面积最大时,求l的方程.【答案】(1)2212xy+=;(2)1x=-.【解析】试题分析:()1根据椭圆定义及2ABF∆的周长为得出a=cea=知1c ea==,求出21b=,进而得到椭圆C的方程;()2将三角形分割,以12F F为底,A B、两点的纵坐标差的绝对值为高表示三角形面积,运用基本不等式求得结果解析:(1)由椭圆的定义知4a=,a=由cea=知1c ea==2221b a c =-=所以椭圆C 的方程为2212x y +=(2)由(1)知()()121,0,1,0F F -,122F F = 设()()1122,,,A x y B x y ,:1l x my =-联立1x my =-与2212x y +=得到()222210m y my +--=,12y y -=2ABF S ==当211,0m m +==时,2ABF S ∆,:1l x =-点睛:在求过焦点的弦与另一个焦点构成的三角形面积时可以对其分割,转化为两点纵坐标差的绝对值,为简化计算,由于直线过横坐标上一定点,故设直线方程1x my =- 10.(2016·云南昆明市·高三一模(理))已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.【答案】(1)x 22+y 2=1,(2)√22【解析】试题分析:(Ⅰ)由椭圆的离心率为√22,可得c a=√2,可设椭圆方程为x 22n 2+y 2n 2=1,再代入点A 的坐标得代入设出的椭圆的方程,即可得椭圆E 的方程(Ⅱ)先设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),将直线方程与椭圆的方程联立:消去一个元,得到一个一元二次方程.再求解判别式:写出根与系数的关系.计算点A 到直线l 的距离,得到用m 表示ΔABC 的面积,利用基本不等式求出ΔABC 面积的最大值. 试题解析:(Ⅰ)因为ca =√2,所以设a =√2n ,c =n ,则b =n ,椭圆E 的方程为x 22n 2+y 2n 2=1. 代入点A 的坐标得12n 2+12n 2=1,n 2=1,所以椭圆E 的方程为x 22+y 2=1.(Ⅱ)设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),由{y =√22x +m x 2+2y 2=2得x 2+2(12x 2+√2mx +m 2)=2,即x 2+√2mx +m 2−1=0, x 1+x 2=−√2m ,x 1⋅x 2=m 2−1 Δ=2m 2−4(m 2−1)>0,m 2<2.|BC|=√(1+k 2)[(x 1+x 2)2−4x 1x 2] =√32[2m 2−4(m 2−1)] =√32(4−2m 2),点A 到直线l 的距离d =√32,ΔABC 的面积S =12|BC|⋅d =12√32(4−2m 2)√32=√22√m 2(2−m 2)≤√22⋅m 2+2−m 22=√22,当且仅当m 2=2−m 2,即m 2=1时等号成立.所以当m =±1时,ΔABC 面积的最大值为√22.考点:(1)椭圆的方程;(2)直线与椭圆的综合问题.【方法点睛】解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.。

相关文档
最新文档