白光LED荧光粉综述
白色荧光粉末

白色荧光粉末
白色荧光粉末通常是指在紫外线或其他光源的激发下能够发出明亮荧光的白色粉末状物质。
以下是关于白色荧光粉末的一些详细讲解:
1. 成分:白色荧光粉末的成分可以是多种荧光材料,其中常见的包括荧光染料、荧光颜料和荧光树脂等。
2. 发光原理:当白色荧光粉末受到紫外线或其他光源的激发时,其中的荧光物质会吸收光能并进入激发态。
在激发态下,荧光物质会通过放出光能的方式回到基态,同时发出荧光。
3. 应用领域:白色荧光粉末常用于各种领域,如荧光涂料、荧光标记、防伪印刷、夜间标识等。
它可以在黑暗环境中提供可见的标识或装饰效果。
4. 安全性:一般情况下,白色荧光粉末是相对安全的,但仍需遵循正确的使用和处理方法。
避免直接接触皮肤和眼睛,并确保在通风良好的环境中使用。
荧光粉文献综述资料

荧光粉文献综述荧光粉文献综述杨颖任满荣关键字:荧光粉;制备及应用;展望与前景;LED照明1、前言稀土荧光粉的应用解决了常规卤粉存在的发光效率低、色温大及稳定性差等问题,提高了照明光源的质量,为新型荧光灯的研究与应用提供了前提保障,同时为稀土三基色节能灯、LED、平板显示、转换发光材料及夜光涂料的研究和应用提供了保证,将照明灯行业推向新的阶段。
[1]就当前技术而言,LED 照明的实现方式主要是采用荧光粉配合 LED 芯片的单芯片方式,这是因为多芯片型白光 LED 中各芯片的衰减速度及寿命均不一样,并且需要多套控制电路,成本高。
通过引入荧光粉,只需要 1 种芯片 (蓝光或紫外光 LED 芯片) 就可以产生白光,大大简化了白光 LED 装置,节约了成本。
所以荧光粉已经成为半导体照明技术中的关键材料之一。
由于其优异的发光性能,荧光粉的研究具有重大的理论意义和应用价值,近年来取得了飞速的发展,下面将对其进行简单介绍。
2、荧光粉的发展历史1949 年,出现了性能优异的锑、锰激活的卤磷酸钙荧光粉,其不仅量子效率高,稳定性好,价格便宜,原料易得,且可以通过调整配方比例来获得日光、暖白和冷白色的输出,这些特点使它一直沿用了相当长时间,但其显色性较差。
20世纪 70年代初,依据人眼对颜色三种独立响应的视觉系统概念,荷兰科学家推断出了三基色原理,即采用红、绿、蓝三基色荧光粉就可以获得高显色指数和高光效的荧光灯。
1974 年,荷兰飞利浦公司研制成功稀土铝酸盐体系三基色荧光粉,解决了荧光灯发明以来几十年都未能解决的问题,打破了卤粉荧光灯的局限性,实现了荧光灯高显色性和高光效的统一。
[2]20世纪90年代日本率先在蓝光上获得技术突破,这时人们研制了钇铝石榴(YAG)黄色荧光粉配合蓝光于1996年实现首只白色LED。
如今被人们誉为第四种照明光源——以白光为主的半导体照明光源正迎来新的发展契机。
[3]3、荧光粉的制备3.1固相反应法(solid-state reaction)传统高温固相反应法是一个多相参与的高温扩散反应,大致的制备过程如下:称量一定量Al2O3、Y2O3、CeO2按化学计量比配比称量,混合后进行球磨,一般采用无水乙醇为介质的湿法球磨,球磨料进行烘干,烘干后压制成片,再于还原气氛中进行锻烧,锻烧后需要重新球磨,过筛分级后得到荧光粉产品。
文献综述白光LED研究进展

文献综述白光LED研究进展白光LED(White Light Emitting Diodes)是一种新型的半导体发光器件,具有高亮度、高颜色还原度和低功耗等优点。
自20世纪90年代以来,白光LED研究得到了广泛的关注和深入的研究。
本文将对白光LED的研究进展进行综述。
首先,白光LED的发展历程是我们了解该研究的基础。
20世纪60年代初,应用无机发光物质的荧光粉将蓝光发光二极管和黄光荧光体组合构成白光源,实现了最早的白光LED。
之后,半导体发光材料的研究和发展推动了白光LED技术的进一步突破。
20世纪90年代,新型的宽禁带半导体材料氮化镓(GaN)和蓝光LED发光二极管的成功制备,为白光LED的发展奠定了基础。
其次,白光LED的研究主要集中在发光材料的选择和光谱调控。
现有的白光LED技术主要包括基于蓝光LED的荧光粉转换、基于磷化镓和氮化铟的LED和基于量子点的LED等。
荧光粉转换技术是最早被广泛应用的方法,通过将蓝光LED的紫外辐射转化为可见光辐射来产生白光。
磷化镓和氮化铟的LED具有较高的光电转换效率,可实现高亮度的白光发光。
而量子点的LED由于其在带宽调节方面的优势,成为白光LED领域的研究热点。
在白光LED的光谱调控方面,主要包括发光材料的配方和结构设计技术。
发光材料的配方要求能够提供较宽的光谱范围,以实现良好的颜色还原度。
结构设计技术则包括辐射结构和超晶格结构等,用于调控发光材料中载流子的复合和辐射,提高发光效率和光谱性能。
此外,白光LED的研究还包括光学设计和封装技术。
光学设计技术主要用于提高白光LED的光效和颜色均匀性。
通过调整发光材料的位置、尺寸和形状等参数,使其产生更加均匀的光强分布和色温。
封装技术则是将LED芯片和其他器件封装在一起,以提高白光LED的亮度和稳定性。
最后,白光LED技术的应用前景也是白光LED研究的重点之一、目前,白光LED已广泛应用于室内照明、背光源、汽车照明、显示屏等领域。
白光LED用荧光粉Ba2.9

白光LED用荧光粉Ba2.9-x M x Si6O12N2:Eu2﹢(M=Mg2+, Ca2+)的制备及发光性能的研究随着科技进步,人们对照明显示技术的研究有了更高的追求。
近些年,新一代的照明显示技术LED等,取得了突飞猛进的进展。
在照明及显示器件中, 荧光材料因承担了将光源发出的光转化成所人们所需要色彩的作用, 是其重要的组成部分。
正因为荧光材料具有如此重要的地位,近年来随着照明显示技术的快速发展,对荧光材料的研究也越来越受到重视。
传统的荧光材料如:氧化物、硫化物、含氧酸盐等由于合成方法简单以及经过长时间的研究技术方面已较成熟,在性能上已经逐渐难以满足需要。
作为一种优秀的荧光材料,它需具有以下基本性质:光转化效率高、化学及热稳定性好等。
氮氧化物荧光材料正是由于在这些方面有很大的发展潜力,在近些年逐渐兴起并取得了快速的发展。
本文采用高温固相法制备Eu2+ 掺杂的Ba3Si6O12N2荧光粉,反应条件为1350℃的NH3气氛中保温5h。
本文用XRD对其结构进行测定,得出单相。
并对其进行Eu2+掺杂,研究其光谱性质。
第一章绪论1.1 发光二极管(LED)概述1.1.1 LED的基本结构图 1.1 LED的基本结构图发光二极管的结构图如图1.1所示。
其核心部分是由一个n型和p型半导体组成的半导体晶片,该晶片置于一个有引线的楔形上,引线一端是负极引擎,另一端是正极引擎,然后用环氧树脂将四周密封,以便保护内部芯线、增加LED 的抗震性能[1,2]。
1.1.2 LED的发光原理[3,5]图1.2 LED的发光原理示意LED是由Ⅲ-Ⅴ族化合物单晶,如磷化镓(GaP)、砷化镓(GaAs)、磷砷化镓(GaAsP)、磷化铝镓铟(AlGaInP)等半导体制成的,其核心是P-N结。
由于P区带有过量的正电荷(空穴),N区带有过量的负电荷(电子),当把一定的正向偏置电压施加在该PN结上时,电子会受电场影响由N区向P区移动,而空穴则会由P 区向N区移动,在P区和N区的交界处发生复合,复合过程中以光子的形式释放能量,实现发光。
《白光LED用红色荧光粉的制备及发光性能研究》范文

《白光LED用红色荧光粉的制备及发光性能研究》篇一一、引言随着科技的不断发展,白光LED作为现代照明的重要来源,已成为我们日常生活和商业用途的主要照明设备。
而在白光LED 的制作中,红色荧光粉是关键的组成部分,它的制备及发光性能直接影响着LED的照明效果和性能。
本文旨在探讨白光LED用红色荧光粉的制备方法,并对其发光性能进行深入研究。
二、红色荧光粉的制备红色荧光粉的制备方法多种多样,主要包括高温固相法、溶胶凝胶法、沉淀法等。
本实验主要采用高温固相法进行制备。
1. 材料准备实验所需的主要材料包括稀土氧化物(如氧化钇、氧化铕等)、硅酸盐等。
这些材料需经过精细研磨,以达到所需的粒度。
2. 制备过程将研磨后的材料按照一定比例混合,放入高温炉中,在还原气氛下进行高温烧结。
烧结完成后,进行冷却和研磨,得到红色荧光粉。
三、发光性能研究红色荧光粉的发光性能主要取决于其激发光谱、发射光谱、色坐标、量子效率等参数。
本部分将对这些参数进行详细研究。
1. 激发光谱和发射光谱通过光谱仪对红色荧光粉进行激发和发射测试,得到其激发光谱和发射光谱。
激发光谱反映了荧光粉对不同波长光的响应情况,而发射光谱则反映了荧光粉发出光的波长和强度。
2. 色坐标和量子效率色坐标是描述颜色的一种方法,它反映了荧光粉发出的光的颜色。
量子效率则反映了荧光粉的光转换效率,即吸收的光能转化为发出光能的效率。
通过测量色坐标和量子效率,可以评估红色荧光粉的性能。
四、结果与讨论1. 结果通过实验,我们得到了红色荧光粉的激发光谱、发射光谱、色坐标和量子效率等数据。
数据显示,我们制备的红色荧光粉具有较好的发光性能,其色坐标接近标准红光色坐标,量子效率也较高。
2. 讨论我们对实验结果进行了详细分析,发现红色荧光粉的发光性能受制备过程中温度、气氛、原料比例等因素的影响。
通过优化这些因素,我们可以进一步提高红色荧光粉的发光性能。
此外,我们还发现,通过调整荧光粉的成分和结构,可以改变其发光颜色和亮度,为白光LED的调色提供了更多的可能性。
2024年白光LED用荧光粉市场需求分析

2024年白光LED用荧光粉市场需求分析引言随着科学技术的不断进步和人们对环境保护意识的提高,白光LED(Light Emitting Diode)得到了广泛的应用。
然而,白光LED的发光效果与传统白炽灯相比还存在一定的差距。
为了改善白光LED的发光效果,目前工业界普遍采用荧光粉进行补光。
本文旨在对白光LED用荧光粉市场需求进行分析,以了解当前市场的发展趋势和需求情况。
市场概述白光LED用荧光粉的定义和应用领域白光LED用荧光粉是一种能够通过吸收蓝色光线并转换为其他颜色的荧光粉。
它广泛应用于照明领域,包括室内照明、户外照明、汽车照明等。
市场规模和增长趋势白光LED用荧光粉市场呈现出快速增长的态势。
根据市场研究,2019年全球白光LED用荧光粉市场规模约为10亿美元,预计到2025年将达到15亿美元,年复合增长率约为5%。
市场需求分析技术要求1.发光效率高:白光LED用荧光粉的发光效率对于提高白光LED整体发光效果至关重要。
2.色彩稳定性好:白光LED用荧光粉需要具有较好的色彩稳定性,能够保持长时间的发光颜色不变。
3.光衰小:白光LED用荧光粉的光衰应尽可能小,以保证长时间的稳定发光。
市场需求特点1.节能环保:白光LED用荧光粉的应用能够显著降低能源消耗,并减少环境污染。
2.高品质照明需求:人们对照明品质要求越来越高,希望能够获得更舒适、自然的光线效果。
3.应用范围广泛:白光LED用荧光粉适用于各种照明场景,包括室内、室外、商业、家庭等领域。
市场竞争格局目前,白光LED用荧光粉市场竞争激烈,主要的竞争者包括LuminoChem、Nichia Corporation和OSRAM等国际知名企业,以及一些国内厂商。
市场上存在一些品牌效应和专利技术的竞争,大型企业通过技术研发和市场推广不断提升竞争力。
市场前景和发展机遇白光LED用荧光粉市场具有良好的发展前景和广阔的发展机遇。
主要原因包括:1.白光LED市场规模扩大:随着白光LED的应用领域逐渐扩大,对白光LED用荧光粉的需求也将进一步增加。
文献综述白光LED研究进展

文献综述白光LED研究进展白光LED是一种新型的照明光源,它具有高效能、长寿命、低功耗等优点,成为了照明行业的热点研究方向。
本文将对白光LED的研究进展进行综述,包括材料、器件结构以及应用等方面的最新研究成果。
白光LED的核心是发光材料。
目前,主要有三种发光材料可以实现白光发光:磷光材料、有机-无机杂化材料和量子点。
磷光材料是最常用的白光LED材料,具有宽发射光谱和高显色性能的优点。
然而,磷光材料在长时间使用后容易发生光衰,影响白光质量。
有机-无机杂化材料是一种新兴的白光LED材料,它可以通过调节材料的结构和组分来改变其发光性质。
量子点是一种具有优异光电性能的材料,可以实现窄带谱发射和高显色性能的白光发光。
然而,量子点材料的制备成本较高,制造过程中容易出现毒性物质的释放问题。
白光LED的器件结构通常由LED芯片、封装、散热等组成。
LED芯片是白光LED的核心部件,其选择和设计对白光质量和效率具有重要影响。
常见的LED芯片材料有GaN、InGaN和GaAs等。
GaN材料具有较高的热稳定性和电性能,适合用于白光LED的制备。
在封装方面,常见的封装材料有环氧树脂、硅胶等,封装材料的选择对于白光LED的散热和光学传输有较大影响。
散热是保障白光LED长寿命和高效能的关键因素,常用的散热方法包括金属散热器、热管等。
白光LED在照明领域具有广泛的应用前景。
目前,已经有一系列的白光LED照明产品问世,如室内照明、室外照明以及专业光源等。
其中,室内照明是最主要的应用领域,白光LED可以替代传统的白炽灯和荧光灯,实现节能减排。
此外,白光LED还可以应用于显示领域,如手机屏幕、电视背光等。
近年来,白光LED在植物生长照明领域也取得了一定的研究成果,利用不同波长的白光LED可以调节植物的生长周期和光合作用效率。
虽然白光LED在照明领域取得了广泛的应用,但仍然存在一些挑战和问题需要解决。
首先,白光LED的发光效率和光衰问题仍然是研究的重点。
白光LED荧光粉的特性

白光LED荧光粉的特性、发展和应用近年来能源紧缺,地球暖化,威胁人类安全,哥本哈根会议未能达成实质协议。
低碳经济成为时尚的号角,具有节能环保特点的LED成为低碳经济产业的新宠。
提高白光LED的发光效率,成为LED产业中芯片制造者和荧光粉工程师最为紧迫的任务。
本文从荧光粉的性质、白光LED荧光粉的发展到LED荧光粉的应用阐述自己的认识,与广大读者交流。
一、荧光粉的特性1. 定义荧光粉是在一定激发条件下能发光的无机粉末材料,这些材料应是粉末晶体。
在人类文明史中荧光粉起着至关重要的作用,特别是在信息时代的今天,荧光粉已成为人们日常生活中不可或缺的材料,它广泛应用于货币的防伪标识,手机、电脑显示器,彩色电视荧光屏,医院胸透设备、机场安检、消防指示牌,车灯,道路照明、室内照明,在工业、农业、医疗、国防、建筑、通讯、航天、高能物理等诸多领域有着广泛的用途。
2. 荧光粉的分类有多种方法(1)按照激发的方式可分为:(2)按激发光的波长的分类如表1所示。
表1 光波长的划分(3)按照基质材料分类情况及代表性材料如下:硫化物:CaS∶Eu2+,SrS∶Eu2+,CaSrS∶Eu2+,Dy2+,Er3+红色荧光粉;氧化物:Y2O3∶Eu2+,Lu2O3:Eu3+(Lu=Y,Gd,La);硫氧化物:Y2O2S∶Eu3+;氮化物:BaSi7N10;氮氧化物:SrSi2O2N2∶Yb2+;CaSi9Al3ON15∶Yb硅酸盐:CaAlSiN3∶Eu2+;BaSrSiO4∶Eu2+;磷酸盐:Sr2P2O7∶Eu2+,Mn2+;铝酸盐:Y3Al5O12∶Ce3+;Tb3Al5O12∶Ce3+;还有钼酸盐等。
(4)按制备方法可分为:高温固相反应法,溶胶-凝胶法,固液相结合法,燃烧法,微波法,喷雾合成法,电弧法,水热合成法等。
3、荧光粉的性质荧光粉的性质,也叫一次特性,主要包括以下几种:相对亮度在规定的激发条件下,荧光粉试样与参比荧光粉的亮度之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白光LED用荧光粉的研究现状与发展方向吕学谦新特能源股份有限公司乌鲁木齐市830000摘要应用荧光粉作为发光转换材料的白光LED具有节能、环保、体积小和发光时间长等这些优点,是最有前景的下一代固体发光光源。
与目前普及使用的荧光灯相比,荧光转换的白光LED灯研发的主要优点是具有较高的发光效率,颜色稳定性和优异的显色指数。
为了达到上述的特点,其根本途径就是改善荧光粉的发光性能。
全面的了解荧光粉的发光现状、影响因素和现阶段主要研发的荧光粉类型对增进荧光粉的研究具有重要的意义。
本文首先简单介绍白光LED荧光粉发展历程,然后介绍目前的合成和制备技术,再着重分析蓝光LED激发的荧光粉和紫外LED激发的荧光粉的发展现状,最后讨论所面临的挑战和发展方向。
关键词:荧光粉,白光LED,研究现状Current situation and development trend of the fluorescent powder forwhite light LEDLv Xueqian XINTE ENERGY CO.,LTD Urumqi 830000Abstract: Light emitting white light LED conversion material application asfluorescent powder has the advantages of energy saving, environmental protection, small volume and long luminous time etc. these advantages, is the next generation solid state light source is the most pared with the current popularity of the use of fluorescent lamps, a white LED lamp R & D of the main advantages of fluorescence conversion is the luminous efficiency is high, the color stability and excellent color rendering index.In order to meet the above characteristics, the fundamental way is to improve the luminescent properties of phosphor. It is very important to study the fluorescent powder type main R & D and comprehensiveunderstanding of the phosphor status, influencing factors and the present stage to enhance the fluorescent powder. This paper first introduces the development of white LED phosphor powder, and then introduces the technology of synthesis and preparation of the present, and then analyzes the current situation of the development of phosphor excited by blue LED phosphor and LED ultraviolet excitation, challenge and development direction finally faces.Key words:fluorescent powder, white light LED, Current research situation1.前言为了解决不断增长的能源需要,导致人们对化石能源的开采和需求不断增加。
而化石能源的更大规模的开采和使用,恶化了全球的能源结构并给环境带来了巨大的污染[1]。
目前普遍使用的白炽灯和荧光灯依靠热致发光或气体电子转移发光,但是这两种发光方式由于需要很高的温度或较大的斯托克位移导致了的能量损耗[2]。
特别典型的是,白炽灯所消耗的电能只有很小一部分(12-18%)可转化为光能,其余都以热能散失[3]。
1996年,日亚化工有限公司最早采用表面涂覆铝酸钇黄光荧光粉的蓝光发射的InGaN LED实现了全新的发光器件[4]。
这种全新的白光光源的具有新的发光机理。
在一定的电流下条件下, InGaN的PN结的电子空穴对产生复和而发出蓝光,这次半导体发出的蓝光一部分激发其表面涂覆的铝酸钇荧光粉发出黄光,最后剩余的蓝光和黄光混合形成白光发射.这种基于LED的发光器件被称为固态光源[5].这种类型的固态光源的优点主要是发光效率高,节能,环保,体积小和工作时间长等.到目前,传统的白光灯(如白炽灯和荧光灯)基本已经达到发光效率的物理上限,所以发光效率提高的空间很小.同时LED 固体光源已经基本达到传统的白光灯的发光亮度和效率,更重要的是白光LED灯具有更大的提高空间[6].所以科学界普遍认为基于LED的白光固体光源是下一代的常规照明光源.一般来说,基于LED实现白光发射有三条路径:第一是混合使用三种颜色LED光[7],第二是利用紫外LED灯激发红绿蓝三种荧光粉,将这三种荧光粉的光混合成白光[8],第三是利用蓝光LED和相应的蓝光激发的黄光荧光粉[9]。
目前已经商用的白光LED是利用发射450-470纳米蓝光的GaN基质LED芯片和表面涂覆的蓝光激发黄光发射的荧光粉,主要是铈掺杂的铝酸钇荧光粉。
这种商用的荧光粉也存在一些缺点,主要是较差的色饱和度和色温的不稳定性[10]。
色饱和度较差是由于白光中缺少红光部分,色温的不稳定性是由于长时间使用使LED和荧光粉性能退化导致的。
这种色温的不稳定性同理也存在于紫外激发的白光LED和混合三种不同颜色的LED的白光。
同时三种红光、绿光、蓝光的LED的色温还受到电流的波动影响[11]。
由于芯片的材质不一样,采用三种LED芯片需要不同的电路和控制系统,所以价格相对昂贵。
由于可产生稳定的发光的LED的种类相对较少,荧光粉的研究和性能改善被认为是提高推进白光LED发展的关键性因素。
到目前为止,稀土掺杂的荧光粉由于量子效率已经接近理论的上限(100%),已经应用于荧光灯管、X射线显示和彩色电视等方面。
这些应用主要是基于其优良的性能:发光峰尖锐、发光效率高、发光亮度高。
然而,应用于电子器件显示或X射线显示性能优良的荧光粉不一样可以很好的应用于半导体发光LED芯片[12]。
这是由于前面的荧光粉的研究主要针对于低压汞灯,其激发位置主要位于254nm和365nm[13]。
研究的主要体系是氧化物,在氧化物中只有很少几类能被蓝光的InGaN芯片所激发。
而商用的可被蓝光LED激发的铈掺杂铝酸钇荧光粉热稳定性比价差。
所以据此,热稳定性好的氮化物和氮氧化物成了荧光粉的研究热点[14]。
同时蓝光激发,紫外激发的高效红光荧光粉还相当的少,也是研究的热点领域。
2.材料合成和制备技术现状众所周知,物质的性能与制备的方法有着密切的联系。
所以,荧光粉的制备技术对荧光粉的微结构、发光性能和量子效率具有至关重要的影响。
荧光粉常规的合成方法是固相合成法[15]:采用粉末状的固体颗粒作为初始原料,均匀混合后,在一定温度条件下煅烧一段时间得到需要的荧光粉。
由于原料的粒径一般为微米级别以上,所以合成需要的物相需要较高的温度。
对非氧化物荧光粉而言,由于在高温是有明显的挥发性和化学不稳定性,高温煅烧很难实现。
为了克服这个问题,降低烧结温度,通用的方法是减小原料的颗粒粒度和提高颗粒粒度的均匀性。
一般是通过湿化学方法得到亚微米和纳米及的颗粒,这些方法主要是水热合成法[16]、化学共沉积法[17]、溶胶凝胶法[18]和燃烧法[19]。
各种合适方法的优劣比较如表一。
表一各种制备方法比较3.蓝光LED激发的荧光粉3.1石榴石类荧光粉石榴石类类荧光粉[20]是指具有相近物理性能和晶体结构但是化学组成不同的一类荧光粉。
铝酸钇(YAG)是一种使用最广泛的黄色荧光:粉基质材料。
早在1967年,Blasse等人就已经对YAG:Ce的光谱进行了系统的研究。
他们研究发现此种荧光粉存在相对长波长的激发光谱(~460nm)和黄光发射(~530nm),这种激发光学性能归因于Ce3+离子的5d能级的劈裂。
激发波长位于460nm,正好可应用于蓝光发射的LED芯片。
YAG:Ce荧光粉发光位置为黄光发射,因此于蓝光组合成的白光由于缺少红光部分使其色饱和度值很低。
近些年,许多课题组稀土共掺的方法试图解决这个问题。
例如,通过Pr3+或Tb3+离子可在发光带中引出红光部分。
不幸的是共掺降低了荧光粉的量子效率[21]。
另一种研究思路是选择其他种类石榴石结构,但未取代突破性进展。
最后一种研究方法通过不同的合成方法控制荧光粉的形貌和表面结构来改善发光性能。
但是通过这些方法改进基本只能使发光峰位发生移动,达不到改善发光效率的目的。
3.2非石榴石结构的氧化物基质荧光粉为了解决色YAG:Ce荧光粉存在的色饱和度低和温度稳定性差的问题,许多研究组致力于发展非石榴石基质荧光粉[22]。
绝大部分研究组选择硅酸盐和铝酸盐作为研究对象,因为硅酸盐铝酸盐化学性能稳定,种类较多。
而发光用的稀土材料较多的选取Ce3+或Eu2+,因为这两种发光中心具有较高的发光效率。
值得一提的是,通过基质材料中阳离子的含量的变化,发光峰位可以进行调节。
例如在Sr3SiO5:Eu2+ 荧光粉中,用Ba2+替代Sr2+可以是发光峰位红移[23]。
3.3硫化物基质荧光粉硫原子的电负性小于氧原子,所以氧原子可以很容易极化。
所以硫化物电子云延伸效应比氧化物更明显。
这就导致硫化物的晶格结构比氧化物将会对发光位置有更大的影响。
所以采用不同的基质材料法规性性能将有很大的变化。
目前,研究比较多的硫化物基质使SrS,CaS或两者共有。
但是硫化物的化学性能不够稳定,易潮解,易发光热淬灭,限制了硫化物的规模应用。
3.4氮化物和氮氧化物荧光粉氮化物和氮氧化物荧光粉[24]是近些年新发展的荧光粉体系。
目前为止,绝大多数应用于蓝光LED激发的氮化物和氮氧化物荧光粉是采用Ce3+或Eu2+掺杂的硅基质化合物。
这是由于这种物质具有共价键由此产生了很强的晶体场。