2015年凤庆一中八年级“希望杯”初中数学竞赛试卷

合集下载

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案

希望杯竞赛初二试题及答案一、选择题(每题2分,共20分)1. 已知x+y=5,x-y=1,求2x+3y的值。

A. 12B. 11C. 10D. 92. 一个数的平方等于该数本身,这个数可能是:A. 1B. -1C. 1或-1D. 03. 如果一个三角形的两边长分别是5和12,第三边长x满足三角形的三边关系,那么x的取值范围是:A. 7 < x < 17B. 2 < x < 14C. 5 < x < 13D. 12 < x < 154. 一个圆的半径为3,求圆的面积。

A. 28.26B. 9C. 18D. 365. 若a^2 + b^2 = 13,且a + b = 5,求ab的值。

A. 6B. 2C. 12D. 无法确定6. 一个等差数列的前三项分别为2,5,8,求第10项的值。

A. 27B. 29C. 21D. 227. 一个长方体的长、宽、高分别是2,3,4,求其体积。

A. 24B. 12C. 36D. 488. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 09. 一个直角三角形的两条直角边分别是3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 若a、b、c是三角形的三边,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 等边三角形B. 直角三角形C. 等腰三角形D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。

12. 一个数的立方等于-27,这个数是________。

13. 一个数的平方根是4,这个数是________。

14. 一个数的倒数是2,这个数是________。

15. 一个圆的直径是10,这个圆的周长是________。

16. 若a、b互为倒数,则ab=________。

17. 一个数的平方是25,这个数是________。

18. 一个数的绝对值是3,这个数可能是________。

第 27届“希望杯”全国数学邀请赛初二1试解析

第 27届“希望杯”全国数学邀请赛初二1试解析

第27届“希望杯”全国数学邀请赛初二1试解析一、选择题1、【解析】A ,B 选项SSA 不能判定全等;C 明显不是判定全等的条件,D 项正确,选D .2、【解析】由3-=x y 与k kx y -=,得ky k x -+-=-+=122121,,∵交点为整点,∴k 可取1-,0,2,3,共计4个不同的值,故选B .3、【解析】由题可得混合后男女生的比为23:22)1112(:)1210(=++,故选D .4、【解析】解不等式2|1|>+x ,得1>x 或3-<x ;解不等式)0(||≥≤a a x ,得a x a ≤≤-,∵它们的解集没有公共部分,∴1≤a 且3-≥-a ,∴10≤≤a ,故选A .5、【解析】解不等式组,得5<x 且21m x ->,∵要满足不等式组只有四个整数解,∴需要满足以下关系:1210<m -≤,解得11≤-m <,故选C .6、【解析】∵ED AE =,∴A EDA ∠=∠,∴A A EDA DEB ∠=∠+∠=∠2;∵DB ED =,∴A DEB DBE ∠=∠=∠2,∴A DBE A CDB ∠=∠+∠=∠3;∵CD BC =,∴A CBD CDB ∠=∠=∠3,∴A CBD DBE ABC ∠=∠+∠=∠5;∵AC AB =,∴A ABC C ∠=∠=∠5,∴︒=∠=∠+∠+∠18011A ABC C A ,∴11180︒=∠A ,故选D .7、【解析】当0=n 时,4205==A ;当1=n 时,44411==A ;当2=n 时,47619==A ;当3=n 时,411629==A ……,要使得p A +的平方根是有理数,需满足p A +是一个平方数,观察发现,有且仅有各项的分子加上5,就使各数均成为平方数,故45=p ,答案是D .8、【解析】∵504201625.0=⨯,63)42(504=⨯÷,∴动点p 回到A 点;∵7251820151⋯=÷⨯,即动点p 再从A 往原方向移动7个单位到AD 中点,故选D .9、【解析】不妨从1开始,取1,2,3,5,8,13共六个数,其中没有任何3条线段可以构成三角形,如果往其中加入任意一个141-的其它数,那么必有3可以构成一个三角形;故n 最小可取值为7,选A .10、【解析】不妨设)(2x k a C ,)00(>,>k a ,则ak BC BC a OB 2'===,,设'AA 的中点为D ,延长'AA 交'BC 于E ;∵A 点在xy 1=上,∴1=⋅DO AD ;易证CBO Rt ODA Rt △∽△,∴有22a k OB BC AD DO ==,∴222ak DO =,∴a k DO =,k a D A AD ==',∴k a a D A OB E A -=-='',a k a OB AD AE +=+=,a k a k BC DO BC EB EC 2+=+=+=,ak a k EB BC EC -=-=2'';∴10'=+ECA AEC S S △△,即10))((21))((2122=--+++a k a k k a a a k a k a k a ,整理得20222=+k ,∴92=k ,∵0>k ,∴3=k ,∴6)(21)(212122=+=+⋅=⋅=k k a k a a k AE BC S ABC△,故选B .二、A 组填空题11、【解析】∵1>ab ,1>bc ,1>ca ,∴1)(2>abc ,∴1>abc 或1-<abc ,∴1)(2016>abc A =,故1>A .12、【解析】∵A ,B 关于原点对称,∴21x x -=,21y y -=,∴221221253y x y x y x =-;∵422=y x ,∴8222=y x ,即8531221=-y x y x .13、【解析】∵0)11()3()12(=--+--k y k x k ,∴0)113()12(=-+---y x y x k ∴⎩⎨⎧=-+=--0113012y x y x ,解得⎩⎨⎧==32y x ,∵无论k 取何值,当32==y x ,时,关于x 的一次函数的值恒为零,∴不论k 取何值,关于x 的一次函数0)11()3()12(=--+--k y k x k 的图象必经过点)32(,.14、【解析】设a =+⋯⋯+++2016131211,原式20161)201611()20161)(1(=-----=a a a a .15、【解析】根据题意,三角形三边长可以有以下情形:16153,,,16144,,,15145,,,16135,,,15136,,,16126,,,14137,,,15127,,,16117,,,14128,,,15118,,,16108,,,13129,,,14119,,15109,,,131110,,,故有16个.16、【解析】原式2223223)1)(1()1)(1(1)1(+-+=+-+=+-++-=a a a a a a a a a a a ,∵31131=+-=+a ,33663)113324()1(222-=++--=+-a a ,∴108363)33663(3)1)(1(22-=-=+-+a a a ,∴10836312345-=+-++-a a a a a .17、【解析】易证BCE Rt AFE Rt △≌△,∴1==CE FE ,∴2222=-==AE AF AE BE ,∴122+=+=CE AE AC ,∴2422)122(2121+=⨯+⨯=⋅=BE AC S ABC △.18、【解析】40722⋯=÷,617)32(22⋯=÷+,147)432(222⋯=÷++,577)5432(2222⋯=÷+++,6127)65432(22222⋯=÷++++677)765432(222222⋯=÷+++++,297)8765432(2222222=÷++++++4407)98765432(22222222⋯=÷+++++++,∵62877)12016(⋯=÷-,∴a 除以7所得的余数是6.19、【解析】设梯形两条对角线分别为a ,b ,根据题意有16=+b a ,14422=+b a ,∴56=ab ∴28562121=⨯==ab S 梯形.20、【解析】∵20162016)2016)(2016(2222=-+=-+++x x x x x x ,∴y y x x ++=-+2016201622,∴y x -=,∴0=+y x .三、B 组填空题21、【解析】如图,易证BEC Rt ADB Rt △≌△,∴2==AD BE ,1==DB EC ,∴)25(,C ;∴)25(')32('--,,,C A ,设直线''C A 的解析式为b kx y +=,则有⎩⎨⎧-=+-=+2532b x b x ,解得⎪⎪⎩⎪⎪⎨⎧-==31131b k ,∴直线''C A 的解析式为31131-=x y .22、【解析】所有多边形的内角和是︒=︒⨯+36000360)199(;边数最多的多边形最多有103499=+条边.23、【解析】依题意有⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=+++4141664313927212481d c b a d c b a d c b a d c b a ,解得241-=a ,125=b ,∴83=+b a ,∴85)(1=+-=+b a d c .24、【解析】∵ABC △是△Rt ,∴①222c b a =+,∵0111=+--ba b a ,∴②ab a b =-22,②①+得③ab c b +=222,①②-得④ab c a -=222;④③⨯得2222245210(b a b a =-+,∴252+=ab 或252--=ab 舍去,将252+=ab 代入④解得2=a 或2-=a 舍去;∴1521+==ab S ABC △.25、【解析】如图,将CDM △绕点D 顺时针旋转︒60得到EDN △,连接AM ,MN ,则EN CM =,∵ND MD =,︒=∠60MDN ,∴MDN △是等边三角形,∴MN MD =;∵CM 与AM 关于BD 对称,∴CM AM =,∴当E 、N 、M 、A 共线时,AE NE AM MN MC MD =++=+2(最小),此时︒=∠=∠=∠60DMN BMA BMC ,作DA EF ⊥交AD 的延长线于F ,则︒=∠90F ,由旋转可得︒=∠60CDE ,2==ED CD ,∴︒=︒-︒=∠306090EDF ,∴在DEF Rt △中,2221==DE FE ,∴2622=-=EF DE DF ,∴262+=+=DF AD AF ;∴AEF Rt △中,22EF AF AE +=22)22()262(++=13+=.故答案为:13+,︒60.。

数学同步练习题考试题试卷教案第15届希望杯数学邀请赛初二第2试及答案

数学同步练习题考试题试卷教案第15届希望杯数学邀请赛初二第2试及答案

第十五届“希望杯”全国数学邀请赛初二第2试及答案初二第2试一、选择题(每小题5分,共50分)1.方程|x+1|+|x-3|=4的整数解有( C)(A)2个(B)3个(C)5个(D)无穷多个2.若等式对任意的x(x≠±3)恒成立,则mn=( D)(A)8 (B)-8 (C)16 (D)-163.若x>z,y>z,则下列各式中一定成立的是( C)(A)x+y>4z (B)x+y>3z (C)x+y>2z (D)x+y>z4.规定[a]表示不超过a的最大整数,当x=-1时,代数式2mx3-3nx+6的值为16,则[m-n]=( A)(A)-4 (B)-3 (C)3 (D)45.如图1,在ABCD中,AC与BD相交于O,AE⊥BD于E,CF⊥BD于F,那么图中的全等三角形共有(C)(A)5对(B)6对(C)7对(D)8对6.如图2,在直角扇形ABC内,分别以AB和AC为直径作半圆,两条半圆弧相交于点D,整个图形被分成S1,S2,S3,S4四部分,则S2和S4的大小关系是(B)(A)S2<S4 (B)S2=S4(C)S2>S4 (D)无法确定7.Given m is a real number, and |1-m|=|m|+1,simplify an algebraic expression, then =( D)(A)|m|-1 (B)-|m|+1 (C)m-1 (D)-m+1(英汉小词典simplify:化简;algebraic expression:代数式)8.二(1)班共有35名学生,其中的男生和的女生骑自行车上学,那么该班骑自行车上学的学生的人数最少是(D)(A)9 (B)10 (C)11 (D)129.李编辑昨天按时间顺序先后收到A、B、C、D、E共5封电子邮件,如果他每次都是首先回复最新收到的一封电子邮件,那么在下列顺序:①BAECD②CEDBA③ACBED④DCABE中,李编辑可能回复的邮件顺序是(B)(A)①和②(B)②和③(C)③和④ (D)①和④10.有A、B、C三把刻度尺,它们的刻度都是从0到30个单位(单位长度各不相同),设三把尺子的0刻度和30刻度处到尺子边缘的长度可以忽略不计,现用其中的一把尺子量度另两把尺子的长度.已知用C尺量度,得A尺比B尺长6个单位;用A尺量度,得B尺比C 尺长10个单位;则用B尺量度,A尺比C尺( A)(A)长15个单位 (B)短15个单位 (C)长5个单位(D)短5个单位二、填空题(每小题5分,共50分)11.若方程|1002x-10022|=10023的根分别是x1和x2,则x1+x2=__2004____.12.分解因式:a4+2a3b+3a2b2+2ab3+b4=__(a2+b2+ab)2____.13.对于任意的自然数n,有f(n)=,则f(1)+f(3)+f(5)+…+f(999)=___ 5___.14.x1,x2,x3,x4,x5,x6都是正数,且,,,,,,则x1x2x3x4x5x6=__6____.15.(Figure 3)In a trapezoid ABCD,AE=DE,CE⊥AD,CE is a bisectorto ∠BCD,then the ratio of the area of a quadrilateral ABCE to thatof a triangle CDE is __7:9___.(英汉小词典trapezoid:梯形;bisector:平分线;ratio:比值;quadrilateral:四边形)16.已知a,b,c,d为正整数,且,,则的值是___21___;的值是__7 ___.17.一个直角三角形的三条边的长均为整数,已知它的一条直角边的长是18,那么另一条直角边的长有__2____种可能,它的最大值是__80____.18.“神舟”飞船由返回舱、轨道舱和推进舱三个舱组成,已知三个舱中每两个舱的长度和分别为4859mm、5000mm、5741mm,那么这三个舱中长度最大的是__2941___mm,长度最小的是_2059____mm.19.若(|x+1|+|x-2|)(|y-2|+|y+1|)(|z-3|+|z+1|)=36,则x+2y+3z的最大值是__15____,最小值是__-6___.20.图4是某电台“市民热线”栏目一周内接到的热线电话的统计图,其中有关房产城建的热线电话有30个,那么有关环境保护的电话有_45;____个;如果每年按52周计算,每周接到的热线电话的数量相同,那么“市民热线”一年内接到的热线电话有__7800_个.三、解答题(每题10分,共30分)21.民航规定:旅客可以免费携带a千克物品,若超过a千克,则要收取一定的费用,当携带物品的质量为b千克(b>a)时,所交费用为Q=10b-200(单位:元).(1)小明携带了35千克物品,质量大于a千克,他应交多少费用?(2)小王交了100元费用,他携带了多少千克物品?(3)若收费标准以超重部分的质量m(千克)计算,在保证所交费用Q不变的情况下,试用m表示Q.21.(1)Q=35×10-200=150(元);(2)设小王携带了x千克物品,则10x-200=100,解得x=30.(3)已知最多可以免费携带a千克物品,则10a-200=0,解得a=20.所以m=b-a=b-20,即b=m+20.故所交费用Q=10b-200=10(m+20)-200=10m(元).22.如图5,一张矩形纸片ABCD的边长分别为9cm和3cm,把顶点A和C叠合在一起,得到折痕EF.(1)证明四边形AECF是菱形;(2)计算折痕EF的长;(3)求△CEH的面积.22.(1)如图1,因为AB∥CD,所以AF∥CE,CF∥HE,根据对称性,知∠CEH=∠AED,因为D、E、C三点共线,所以A、E、H三点共线,所以AE∥CF,所以四边形AECF是平行四边形.又AF=CF,所以四边形AECF是菱形.(2)设AF=x,则CF=x,BF=9-x.在△BCF中,CF2=BF2+BC2,所以x2=(9-x)2+32,解得x=5,即CF=5,BF=4.过E作EM⊥AB交AB于M,则MF=BM-BF=CE-BF=CF-BF=1,EM=3.所以.(3)根据对称性,知△CEH≌△AED,所以S△CEH=S△AED=DE·AD=(AF-MF)·AD=×4×3=6(cm2).23.如图6,用水平线与竖直线将平面分成若干个边长为1的正方形格子,点O、A、B 均在正方形格子的顶点(格点)处,其中点O与点A位于同一水平线上,相距a格,点O与点B位于同一竖直线上,相距b格.(1)若a=5,b=4,则△OAB中(包括三条边)共有多少个格点?(2)若a,b互质,则在线段AB上(不包括A、B两点)是否有格点?证明你的结论.(3)若a,b互质,且a>b>8,△OAB中(包括三条边)共有67个格点,求a,b的值.23.(1)如图2,a=5,b=4,△OA B中(包括三条边)的格点的个数为1+2+3+4+6=16.(2)若a,b互质,假设线段AB上存在某一点P(恰为格点),可设点P到点O的水平距离为x,竖直距离为y(x,y均为整数),则S△AOB=ab,S△AOP+S△BOP=ay+bx,所以ab=ay+bx,即ab=ay+bx,ay=b(a-x).因为a,b互质,所以a-x是a的倍数,它与a-x<a矛盾,因此,假设不正确,即线段AB上(除A、B两点外)不存在其它格点.(3)由(2)知,线段AB上(除A、B两点外)不存在其它的格点.以OA、OB为边作一个矩形OACB,则在△CAB中格点的个数与△OAB中格点的个数相同,且只有A、B两点是公共的,而矩形OACB中格点的个数为(a+1)(b+1).因此,(a+1)(b+1)+2=2×67=134,(a+1)(b+1)=132=2×2×3×11.由a>b>8,得a+1=12,b+1=11,即a=11,b=10.参考答案一、1.C 2.D 3.C 4.A 5.C 6.B 7.D 8.D 9.B 10.A二、11.2004 12.(a2+b2+ab)213.5 14.6 15.7:9 16.21;7 17.2;8018.2941;2059 19.15;-6 20.45;7800三、21.(1)Q=35×10-200=150(元);(2)设小王携带了x千克物品,则10x-200=100,解得x=30.(3)已知最多可以免费携带a千克物品,则10a-200=0,解得a=20.所以m=b-a=b-20,即b=m+20.故所交费用Q=10b-200=10(m+20)-200=10m(元).22.(1)如图1,因为AB∥CD,所以AF∥CE,CF∥HE,根据对称性,知∠CEH=∠AED,因为D、E、C三点共线,所以A、E、H三点共线,所以AE∥CF,所以四边形AECF是平行四边形.又AF=CF,所以四边形AECF是菱形.(2)设AF=x,则CF=x,BF=9-x.在△BCF中,CF2=BF2+BC2,所以x2=(9-x)2+32,解得x=5,即CF=5,BF=4.过E作EM⊥AB交AB于M,则MF=BM-BF=CE-BF=CF-BF=1,EM=3.所以.(3)根据对称性,知△CEH≌△AED,所以S△CEH=S△AED=DE·AD=(AF-MF)·AD=×4×3=6(cm2).23.(1)如图2,a=5,b=4,△OAB中(包括三条边)的格点的个数为1+2+3+4+6=16.(2)若a,b互质,假设线段AB上存在某一点P(恰为格点),可设点P到点O的水平距离为x,竖直距离为y(x,y均为整数),则S△AOB=ab,S△AOP+S△BOP=ay+bx,所以ab=ay+bx,即ab=ay+bx,ay=b(a-x).因为a,b互质,所以a-x是a的倍数,它与a-x<a矛盾,因此,假设不正确,即线段AB上(除A、B两点外)不存在其它格点.(3)由(2)知,线段AB上(除A、B两点外)不存在其它的格点.以OA、OB为边作一个矩形OACB,则在△CAB中格点的个数与△OAB中格点的个数相同,且只有A、B两点是公共的,而矩形OACB中格点的个数为(a+1)(b+1).因此,(a+1)(b+1)+2=2×67=134,(a+1)(b+1)=132=2×2×3×11.由a>b>8,得a+1=12,b+1=11,即a=11,b=10.。

八年级数学下册第十二届希望杯邀请赛第二试试题试题

八年级数学下册第十二届希望杯邀请赛第二试试题试题

第十二届“希望杯〞数学邀请赛初二第二试试题一. 选择题〔每一小题5分,一共50分〕以下每一小题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每一小题后面的圆括号内。

1. 化简代数式322322++-的结果是〔 〕A. 3B. 12+C. 22+D. 222. 多项式ax bx cx d 32+++除以x -1时,所得的余数是1,除以x -2时所得的余数是3,那么多项式ax bx cx d 32+++除以()()x x --12时,所得的余式是〔 〕 A. 21x - B. 21x + C. x +1 D. x -13. a <1且||a ba ba -+=,那么〔 〕 A. ab <0 B. ab >0 C. ab ≤0 D. a b +<0 4. 假设||||ac <,b a c b a =+<22,||||,S a b c S b c a 12=-=-||||,,S a cb3=-||,那么 S S S 123、、的大小关系是〔 〕A. S S S 123<<B. S S S 123>>C. S S S 132<<D. S S S 132>>5. 假设一个三角形的一个外角的平分线平行于三角形的一条边,那么此三角形肯定是〔 〕A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形6. 假设∆ABC 的三边长是a 、b 、c ,且满足a b c b c 44422=+-,b c a a c 44422=+-,c a b a b 44422=+-,那么∆ABC 是〔 〕A. 钝角三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形7. 平面内有n 条直线〔n ≥2〕,这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,那么a b +的值是〔 〕A. n n ()-1B. n n 21-+ C. n n 22- D. n n 222-+8. In fig. 1, let ∆ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and ∠=BFC 120 , then the magnitude relation between Ad and CE is 〔 〕 A. AD CE > B. AD CE < C. AD CE = D. indefinite〔英汉词典:equilateral 等边的;intersection 交点;magnitude 大小,量;indefinite 不确定的〕9. 两个不同的质数p ,q 满足以下关系:p p m q q m 222001020010-+=-+=,,m 是适当的整数,那么p q 22+的数值是〔 〕A. 4004006B. 3996005C. 3996003D. 400400410. 小张上周工作a 小时,每小时的工资为b 元,本周他的工作时间是比上周减少10%,而每小时的工资数额增加10%,那么他本周的工资总额与上周的工资总额相比〔 〕 A. 增加1% B. 减少1% C. 增加1.5% D. 减少1.5%二. 填空题〔每一小题6分,一共60分〕11. 化简:2532306243+--+的结果是_________。

26届希望杯答案

26届希望杯答案

26届希望杯答案【篇一:第26届希望杯初二第1试试题word版及详细解答】s=txt>初二第1试试题2015年3月15日上午8:30至10:00 一、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(a) 48 (b)76 (c)58(d)522.若一次函数y=x+5的图像经过点p(a,b)和q(c,d),则ad+bc-ac-bd的值是() (a) 9(b)16 (c)25(d)-25 3.已知为的平方根,则满足此关系的x的值得个数是()(a) 4(b)3 (c)2 (d)14.suppose a is an integer ,solutions to the equationax+5=4x+1 are positive integers.then thenumber of a is( )(a) 2 (b)3(c)4(d)5(d)126.如图1所示,点m,n,p,q分别是边长为1的正方形abcd各边的中点,则阴影部分的面积是() (a)(b)(c) (d)7.如图2所示,字母a到g分别代表1到7中的一个自然数,若a+g+d,b+g+e,c+g+f分别被3除,都余1,则g是() (a) 1或4(b) 1或7 (c ) 4或7 (d)1或4或7 8.下列说法:①平行四边形包含矩形、菱形和正方形②平行四边形是中心对称图形③平行四边形的任一条角平分线可把平行四边形分成两个全等的三角形④平行四边形两条对角线把平行四边形分成四个面积相等的三角形其中正确说法的序号是( )(a) ①②④(b) ①③④(c ) ①②③ (d) ①②③④ 9.有一列数:10,2,5,2,1,2,x,(x是正整数),若将这列数的平均数、中位数及众数依照大小次序排列,恰好中间的数是左、右两个数的平均数,则x可能取得值得和是() (a) 3(b)9(c)17 (d)2010.对于自然数m,如果m能够整除13232223(m-1),那么称m为“公除数”,则4到20(包括4和20)的自然数中,“公除数”的个数是()(a) 9(b) 10(c ) 11(d) 12二、 a组填空题(每小题4分,共40分) 11.若,,则,则a+b=_____________12.已知a,b都是有理数,且13.已知a+b+c=1.14.已知m,n是实数,且当x2015时,15.设a,b,c都是正整数,且1abc,abc=2015,那么16.若关于x,y的方程组与方程组的解相同,则a+b=___________17.as shown in the fig.3,b and c are points on ad in △aed.ab=cd,eb=ec=10,bc=12. the perimeter of △aed is twice the perimeter of △ebc. then.( s△aed represents the area of △aed, s△ebc represents the area of △ebc) .(英汉小词典;perimeter 周长,area 面积) 18.若19.如图4所示,四边形abcd中,对角线ac平分∠bad, 且ab=21,ad=9,bc=dc=10,则ac=_______ 20.已知三、b组填空题(每小题8分,共40分)21.若xy0,则点(x,y)在直角坐标系中位于第_____象限或第_____象限 22.已知,则x+y的值等于______或_________根据数阵排列的规律,第5行从左向右第5个数位________,第n (n≥3,且n是整数)行从左向右第5个数是_____(用含n的代数式表示)25.长为的三条线段可以构成三角形,则自然数n=_____或________.答案详细解析2015年3月15日上午8:30至10:00 三、选择题(每小题4分,共40分)1.若a+b=10,ab=24,则a2+b2的值是()(a) 48 (b)76 (c)58(d)52解析:因为(a+b)2=a2+b2+2ab,代入得 102=a2+b2+48,a2+b2=100-48=52这是完全平方公式(a+b)2=a2+b2+2ab 公式得变式应用,把a+b ,a2+b2,ab 看做一个整体,知道其中2个求第三个式子都可以,只要把其中2个值代入即可求得,这是数学的整体思想。

历年1-16届希望杯初二年级竞赛试卷(共34份)[下学期]

历年1-16届希望杯初二年级竞赛试卷(共34份)[下学期]

希望杯第一届(1990年)初中二年级第一试试题 (2)希望杯第一届(1990年)初中二年级第二试试题 (6)希望杯第二届(1991年)初中二年级第一试试题 (10)希望杯第二届(1991年)初中二年级第二试试题 (17)希望杯第三届(1992年)初中二年级第一试试题 (23)希望杯第三届(1992年)初中二年级第二试试题 (28)希望杯第四届(1993年)初中二年级第一试试题 (37)希望杯第四届(1993年)初中二年级第二试试题 (45)希望杯第五届(1994年)初中二年级第一试试题 (53)希望杯第五届(1994年)初中二年级第二试试题 (60)希望杯第六届(1995年)初中二年级第一试试题 (69)希望杯第六届(1995年)初中二年级第二试试题 (71)希望杯第七届(1996年)初中二年级第一试试题 (78)希望杯第七届(1996年)初中二年级第二试试题 (86)希望杯第八届(1997年)初中二年级第一试试题 (97)希望杯第八届(1997年)初中二年级第二试试题 (105)希望杯第九届(1998年)初中二年级第一试试题 (115)希望杯第九届(1998年)初中二年级第二试试题 (118)希望杯第十届(1999年)初中二年级第一试试题 (129)希望杯第十届(1999年)初中二年级第二试试题 (133)希望杯第十一届(2000年)初中二年级第一试试题 (137)希望杯第十一届(2000年)初中二年级第二试试题 (140)希望杯第十二届(2001年)初中二年级第一试试题 (145)希望杯第十二届(2001年)初中二年级第二试试题 (150)希望杯第十三届(2002年)初中二年级第一试试题 (156)希望杯第十三届(2002年)初中二年级第二试试题 (158)希望杯第十四届(2003年)初中二年级第一试试题 (167)希望杯第十四届(2003年)初中二年级第二试试题 (169)希望杯第十五届(2004年)初中二年级第一试试题 (174)希望杯第十五届(2004年)初中二年级第二试试题 (177)第十六届“希望杯”全国数学邀请赛初一第1试 (180)第十六届“希望杯”全国数学邀请赛初一第2试 (184)第十六届“希望杯”全国数学邀请赛初二第1试 (188)第十六届“希望杯”全国数学邀请赛初二第2试 (192)希望杯第一届(1990年)初中二年级第一试试题一、选择题(每题1分,共10分)以下每个题目里列出的A ,B ,C ,D ,四个结论中,有且仅有一个是正确的,请你在括号内填上你认为是正确的那个结论的英文字母代号.1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°B .75°C .55°D .65°2.2的平方的平方根是 ( )A .2B . 2C .±2D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27,则下列式子成立的是( )A .∠A >∠C >∠B B .∠C >∠B >∠AC .∠B >∠A >∠CD .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个C .6个D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组C .4组D .5组9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值,则这个值是( )A .0.B .1.C .2D .4.把f 1990化简后,等于 ( )A .1-x x . B.1-x. C.x 1. D.x. 二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB 的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组 826532113533451x y z x z x y x y z x y x y z -+++⎧=-⎪⎪++-+⎪+=⎨⎪+=-⎪⎪⎩则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).<3,根据大边对大角,有∠C>∠B>∠A.5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a<0,故选(C).8.有△ABE,△ABM,△ADP,△ABF,△AMF等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x,y取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990年)初中二年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你将正确结论的英文字母代号填到括号内.1.等腰三角形周长是24cm ,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是( )A .7.5B .12C .4D .12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则有( )A .M >P >N 且M >Q >NB .N >P >M 且N >Q >MC .P >M >Q 且P >N >QD .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1∶3,则∠BDA=[ ]A .30°B .45°C .60°D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( )A .是不存在的B .恰有一种C .有有限多种,但不只是一种D .有无穷多种二、填空题(每题1分,共5分)1.△ABC 中,∠CAB ∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2.21(2)0a ab --=,那么111(1)(1)(1990)(1990)ab a b a b ++++++L L 的值是_____.3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=30053三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______.5.设a,b,c 是非零整数,那么a bcabacbc abca b c ab ac bc abc ++++++的值等于_________.三、解答题(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD和A'B'C'D',且正方形A'B'C'D'的顶点A'在正方形ABCD的中心.当正方形A'B'C'D'绕A'转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n之和被7除余数都不为1,将所有满足上述条件的自然数n由小到大排成一列n1<n2<n3<n4……,试求:n1·n2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7). 而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n . 又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.希望杯第二届(1991年)初中二年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A ,B ,C ,D 四个结论中,仅有一个是正确的.请在括号内填上正确的那个结论的英文字母代号.1.如图24,已知AB=8,AP=5,OB=6,则OP 的长是( )A .2B .3C .4D .52.方程x 25x+6=0的两个根是( )A .1,6B .2,3C .2, 3D .1, 63.已知△ABC 是等腰三角形,则( )A .AB=ACB .AB=BCC .AB=AC 或AB=BCD .AB=AC 或AB=BC 或AC=BC 22345(13)41(5)34b c ---==-+,则a,b,c 的大小关系是( ) A .a >b >c B .a=b=c C .a=c >b D .a=b >c(1)BO5.若a ≠b,则(b-a)a b -等于[ ]A.33()a b -;B.33()a b ---;C.33()a b --;D.33()b a --6.已知x ,y 都是正整数,那么三边是x ,y 和10的三角形有( ) A .3个 B .4个 C .5个 D .无数多个 7.两条直线相交所成的各角中, ( )A .必有一个钝角B .必有一个锐角C .必有一个不是钝角D .必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角( )A .一个是锐角另一个是钝角B .都是钝角C .都是直角D .必有一个角是直角 9.方程x 2+|x|+1=0有( )个实数根.( )A .4B .2C .1D .010.一个两位数,用它的个位、十位上的两个数之和的3倍减去2,仍得原数,这个两位数是( )A .26B .28C .36D .3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是 ( )A .179B .181C .183D .185 12.如果231,x x >+那么323(2)(3)x x +-+等于[ ]A .2x+5B .2x5 C .1D .113.方程2x 5+x 4-20x 3-10x 2+2x+1=0有一个实数根是 ( ) A.53+; B.52+; C.32+; D.53-14.当a <1时,方程(a 3+1)x 2+(a 2+1)x (a+1)=0的根的情况是 ( ) A .两负根 B .一正根、一负根且负根的绝对值大 C .一正根、一负根且负根的绝对值小 D .没有实数根15.甲乙二人,从M 地同时出发去N 地.甲用一半时间以每小时a 公里的速度行走,另一半时间以每小时b 公里的速度行走;乙以每小时a 公里的速度行走一半路程,另一半路程以每小时b 公里的速度行走.若a ≠b 时,则( )到达N 地.( )A . 二人同时B .甲先C .乙先D .若a >b 时,甲先到达,若a <b 时,乙先二、填空题(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母:5757-+=______________.3.方程10x x ++=的解是x=________.4.分解因式:x 3+2x 2y+2xy 2+y 3=______.5.若方程x 2+(k 29)x+k+2=0的两个实数根互为相反数,则k 的值是______.6.如果2x 2-3x-1与a(x-1)2+b(x-1)+c 是同一个多项式的不同形式,那么a bc+=__.7.方程x 2y 2=1991有______个整数解.8.当m______时,方程(m 1)x 2+2mx+m 3=0有两个实数根.9.如图25,在直角△ABC 中,AD 平分∠A ,且BD ∶DC=2∶1,则∠B 等于______度.DCBAGEDCFEDCBA10.如图26,在圆上有7个点,A ,B ,C ,D ,E ,F ,和G ,连结每两个点的线段共可作出______条.11.D ,E 分别是等边△ABC 两边AB ,AC 上的点,且AD=CE ,BE 与CD 交于F ,则∠BFC 等于______度.12.如图27,△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是△ABD 的角平分线,DF ∥AB 交AE 延长线于F ,则DF 的长为______.13.在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______. 14.等腰三角形的一腰上的高为10cm ,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x 2+px+q=0有两个不相等的整数根,p ,q 是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q 为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2. ∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题(每题1分,共10分)以下每个题目里给出的A ,B ,C ,D 四个结论中,有且仅有一个是正确的.请你在括号内填上你认为是正确的那个结论的英文字母代号.1.如图29,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 为线段AC 的中点,P 为NA 的中点,Q 为MA 的中点,则MN ∶PQ 等于( ) A .1 B .2 C .3 D .42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为 ( ) A.ts; Bs-ts; C.1ts s +; D.1s t+. 3.y>0时,3x y -等于( )A.-x xy ;B.x xy ;C.-x xy -;D.x xy -.4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成 ( )A .a <b <cB .(a b)2+(b c)2=0C .c <a <bD .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( ) A .4倍 B .3倍 C .2倍 D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A .AD 2=BD 2+CD 2B .AD 2>BD 2+CD 2C .2AD 2=BD 2+CD 2 D .2AD 2>BD 2+CD 2( ) 7.方程2191()1010x x -=+的实根个数为( ) A .4 B .3 C .2 D .18.能使分式33x y y x-的值为1123的x 2、y 2的值是( ) A.x 2=1+3,y 2=2+3; B. x 2=2+3,y 2=2-3; C. x 2=7+43,y 2=7-43; D. x 2=1+23,y 2=2-3.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15C .13D .11 10.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b aa b+等于( ) A.2213; B.5821; C.240249; D.36538.二、填空题(每题1分,共10分)1.1989×199119911991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________.5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______.6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______. 8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab≠1.且 2a2+1234567890a+3=0,3b2+1234567890b+2=0,则a=______.b三、解答题(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK ∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

15到20届希望杯初二第一试试题及培训题

第十五届希望杯初二第1试试题一、选择题:(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

1、小伟自制了一个孔成像演示仪,如图1所示,在一个圆纸筒的两端分别用半秀明纸和黑纸封住,并用针在黑纸的中心刺出一个小孔。

小伟将有黑纸的一端正对着竖直放置的“”形状的光源,则他在半透明纸上观察到的像的形状是( )(A)(B)(C)(D)2、代数式的化简结果是( )(A)(B)(C)(D)3、已知是实数,且,那么( )(A)31(B)21(C)13(D)13或21或314、已知(>)是两个任意质数,那么下列四个分数( )①;②;③;④中总是最简分数的有( )(A)1个(B)2个(C)3个(D)4个5、Given are real numbers, and , then the valueof is ( )(A)4(B)6(C)3(D)4or66、某出版社计划出版一套百科全书,固定成本为8万元,每印制一套需增加成本20元。

如果每套定价100元,卖出后有3成给承销商,出版社要盈利10%,那么该书至少应发行(精确到千位)( )(A)2千套(B)3千套(C)4千套(D)5千套7、△ABC的三个内角∠A、∠B、∠C,满足3∠A>5∠B,3∠C≤∠B,则这个三角形是( )(A)锐角三角形(B)直角三角形(C)钝角三角形(D)等边三角形8、如图2,正方形ABCD的面积为256,点E在AD上,点F在AB的延长线上,EC⊥FC,△CEF的面积是200,则BF的长是( )(A)15(B)12(C)11(D)109、如图3,在四边形ABCD中,∠ABC=∠ADC=90°,点E、F分别是对角线AC、BD的中点,则( )(A)(B)(C)(D)10、表示不大于的最大整数,如[3.15]=3,[-2.7]=-3,[4]=4,则( )( )(A)1001(B)2003(C)2004(D)1002二、A组填空题(每小题4分,共40分。

“希望杯”第三届全国数学大赛八年级初赛题(含答案)

“希望杯”第三届全国数学大赛八年级初赛题一、选择题(每小题5分,共30分)1.已知点P 到x 轴的距离为5,到y 轴的距离为6,则满足此条件的点P 共有( ).(A )1个 (B )2个 (C )3个 (D )4个 2.如图所示,若AB ∥CD ,AP ,CP 分别平分∠BAC 和∠ACD ,PE ⊥AC 于E ,且PE=3cm ,•则AB 与CD 之间的距离为( ) (A )3cm (B )6cm (C )9cm (D )无法确定3.若a=-255,b=-344,c=-533,d=-622,那么a ,b ,c ,d 的大小关系为( )(A )a>b>c>d (B )a>b>d>c (C )b>a>c>d (D )a>d>b>c 4.在凸n (n ≥3的正整数)边形的所有内角中,锐角的个数最多是( ) (A )0 (B )n (C )n-3 (D )35.若则关于a 的说法正确的是( ) (A )是正整数,而且是偶数 (B )是正整数,而且是奇数 (C )不是正整数,而是无理数 (D )无法确定 6.桌上摆着一个由若干相同的正方体组成的几何体,•其正视图和左视图如下图所示,那么这个几何体最多可以由( )个这样的正方体组成. (A )22 (B )23 (C )24 (D )25二、填空题(每小题5分,共30分)7.如图,在平行四边形ABCD 中,E ,F 分别为AD ,AB 的中点,且平行四边形ABCD •的面积为1平方单位,那么四边形DEFC 的面积为________平方单位.F E BCA D8.若分式212x x m-+不论x 取何值总有意义,则直线y=mx-m 一定经过_______象限.9.一串有趣的图案按一定规律排列,请仔细观察,•按此规律画出第11•个图案是_____;在前30个图案中有_____个“”;第2007个图案是______.10.如图所示,在等边三角形ABC 中,AD=BE=CF ,若三个全等的三角形为一组,则图中共有_______组全等三角形.11.设直线kx+(k+1)y=1(k ≥1的正整数)与两坐标轴围成的面积为S k (k=1,2,•…,2007),则S 1+S 2+…+S 2007=_______.12.如果设y=1x x+=f (x ),并且f (1)表示当x=1时y 的值,即f (1)=111+=12;f (12)表示当x=12时y 的值,即f (12)=12112+=13,那么f (1)+f (2)+…+f (2006)+f (12)+f (13)+…+f (12006)=______.三、解答题(每题15分,共60分) 13.求值:112111334420072007+++++++++FE B C A D Q GH14.如图所示,五边形ABCDE中,∠A=∠B=∠C=∠D=120°,且AB=4,BC=4,CD=8,•求该五边形的周长和面积.EBCAD15.2008年是我国首次举办奥运会的一年,同时也是我们八年级同学完成九年义务教育的最后一年,为迎接2008年的到来,数学刘老师在讲完重要不等式:a+1a≥2,•a>0后,随手出了这样一道题目:解方程(x2008+1)(1+x2+x4+…+x2006)=2008²x2007,你能求x的值吗?16.悦耳电视台在黄金时段的4分钟广告时间内,计划插播长度为30秒和60•秒的两种广告.30秒广告每播1次收费1.2万元,60秒广告每播1次收费2万元,•若要求每种广告播放不少于1次,试问:(1)两种广告的播放次数有几种安排方式?(2)电视台选择哪种方式播放收益最大?哪种方式收益最小?其最大收益、•最小收益各为多少?(3)若既要考虑悦耳电视台的收益,•又要兼顾两种广告客户的利益和宣传力度,你认为电视台采用哪种播放方式最合适?参考答案一、1.D 2.B 3.D 4.D 5.B 6.D 7.58(平方单位) 8.第一、三、四象限 9., 10.511.2007401612.20051213.设1+1111.1111131142007xx x x x x==+=+++++++则原式=1 . 14.如图所示,分别延长ED 、BC 且相交于N ,延长EA ,CB •相交于M ,• 先证△MEN ,•△DCN ,△ABM 均为正三角形,得MN=16.∴DE=16-8=8,AE=16-4=12. ∴五边形的周长为: 8+8+4+4+12=36. 五边形的面积为: S △MNE -S △DNC -S △ABM . 易求S △MNE =12³16³16³2S △DNC =12³8³8S △ABM =12³4³4故五边形ABCDE 的面积为:15.方程两边同除以x 2007得 (x+20071x )(1+x 2+x 4+…+x 2006)=2008,∴x+x 3+x 5+…+x 2007+20071x +20051x +…+1x =2008, ∴(x+1x )+(x 3+31x)+…(x 2007+20071x )=2008.x+1x ≥2,易知x ≥0,x 3+31x≥2,∴,x 2007+20071x ≥2.∴(x+1x )+(x 3+31x)+…+(x+20071x )≥2008.要使方程成立,必须有x=1x ,x 3=31x,…,x 2007=20071x ,即x=±1.但x>0,故x=1.16.(1)设30秒广告播放x 次,60秒广告播放y 次,由题意得30x+60y=240,•则x=•8-2y .又∵x ,y 均为不少于1的正整数, ∴4,2,6,2;3; 1.x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩或或 故共有3种不同的播放方式:即30秒广告播放4次,60秒广告播放2次;30秒广告播放2次,60秒广告播放3次;30秒广告播放6次,60秒广告播放1次;(2)设悦耳电视台的收益为W 元,则 W=1.2x+2y .又∵x=8-y ,∴W=1.2(8-2y )+2y , 即W=-0.4y+9.6.∵k=-0.4<0,∴W 随y 的增大而减少, 故当y=1时,W 取最大值,且最大值为 W max =-0.4+9.6=9.2(万元).当y=3时,W 取最小值,且W 的最小值为 W min =-0.4³3+9.6=8.4(万元).即当电视台选择30秒广告播放6次,60秒广告播放1次这种方式,收益最大,•且最大值为9.2(万元),当电视台选择30秒广告播放2次,60秒广告播放3次这种方式,收益最小,且最小值为8.4(万元).(3)由(2)可知,当y=2时,W=-0.4³2+9.6=8.8(万元).而8.8万元>8.4万元,故为既考虑悦耳电视台的收益,•又考虑两种广告的客户的宣传力度的需要,应选择30秒广告播放4次,60秒广告播放2次.。

希望杯第8届八年级第1试及答案

希望杯第八届(1997年)初中二年级第一试试题一、选择题:1.下列四个从左到右的变形中,是因式分解的是[]A.(x+1)(x-1)=x2-1. B.(a-b)(m-n)=(b-a)(n-m)C.ab-a-b+1=(a-1)(b-1).2.关于x的方程(5-2a)x=-2的根是负数,那么a所能取的最大整数是[]A.3 B.2. C.1 D.03.直角三角形的两个锐角的外角平分线所夹的锐角的大小是[]A.30°B.45°. C.60°. D.15°或75°4.P是线段AB上的一点,AB=1,以AP和BP为边分别作两个正方形,当这两个正方形的面积的差的绝对值为时,AP的长是[ ]A.;B.;C.;D..5.若a使分式没有意义,那么a的值应是[ ]A.0;B.;C.;D..6.已知四个代数式:①m+n;②m-n;③2m+n;④2m-n.当用2m2n乘以上述四个式中的两个时,便得到多项式4m4n-2m3n2-2m2n3,那么这两个式子的编号是[]A.①与② B.①与③. C.②与③D.③与④7.△ABC中,AB=5,AC=3,则BC边上的中线AD的长l的取值范围是[]A.1<l<4 B.3<l<5. C.2<l<3 D.0<l<58.A、B、C为平面上的三点,AB=2,BC=3,AC=5,则[]A.可以画一个圆,使A、B、C都在圆周上B.可以画一个圆,使A、B在圆周上,C在圆内C.可以画一个圆,使A、C在圆周上,B在圆外D.可以画一个圆,使A、C在圆周上,B在圆内9.已知:m、n是整数,3m+2=5n+3,且3m+2>30,5n+3<40,则mn的值是[]A.70 B.72. C.77 D.8410.甲、乙两种茶叶,以x∶y(重量比)相混合制成一种混合茶,甲种茶叶的价格每公斤50元,乙种茶叶的价格每公斤40元,现在甲种茶叶的价格上调了10%,乙种茶叶的价格下调了10%,但混合茶的价格不变,则x∶y等于[]A.1∶1 B.5∶4. C.4∶5 D.5∶6二、A组填空题:11.已知x0,化简所得的结果是____________.12.五个连续奇数的平均数是1997,那么其中最大数的平方减去最小数的平方等于___.13.现有8根木棍,它们的长分别是1,2,3,4,5,6,7,8,若从8根木棍中抽取3根拼三角形,要求三角形的最长边为8,另两边之差大于2(以上单位:厘米).那么可以拼成的不同的三角形的种数为______.14.如图1,△ABC中,∠C=90°,∠BAC的平分线交BC于D,且CD=15,AC=30,则AB 的长为______.15.已知,那么的值是________.16.已知:a=-2000,b=1997,c=-1995,那么a2+b2+c2+ab+bc-ac的值是______.17.如图2,△ABC中,∠1=∠2,∠EDC=∠BAC,AE=AF,∠B=60°,则图中的线段AF、BF、AE、EC、AD、BD、DC、DF中与DE的长相等的线段有______条.18.如图3,∠A=60°,线段BP、BE把∠ABC三等分,线段CP、CE把∠ACB三等分,则∠BPE的大小是______.19. 已知,那么的值是______.20.某仓库贮存水果a吨,为保证每天供应市场20吨,则需每天从外地调入b吨水果,现实际调入量每天多了2吨,而市场每天供应量不变,那么比原来多供应的天数是______(用a、b表示).三、B组填空题21.若|a|-|b|=1,且3|a|=4|b|,则在数轴上表示a、b两数对应的点的距离是______或______.22.△ABC的周长为19,且满足a=b-1,c=b+2,则a、b、c的长分别为a=______,b =______,c=______.23.x,y为实数,且,则x=________,y=_____.24.如图4,△ABC中,AD平分∠BAC,EG⊥AD,分别交AB、AD、AC、BC的延长线于E、H、F、G,已知下列四个式子:其中有两个式子是正确的,它们是______和______.25.已知abc0,且,则的值是_______或_________.答案·提示一、选择题提示:1.根据因式分解的概念,选(C).2.由题意,方程的根为负,即∴ a所能取的最大整数是2,选(B).3.两个外角分别等于其不相邻的锐角与直角之和,因此两个外角之和等于270°.所以选(B).4.两正方形的面积差=AP2-(1-AP)2=2AP-16.对多项式做因式分解:原式=2m2n(2m2-mn-n2)=2m2n(2m+n)(m-n),故选(C).7.如图5,延长AD到E,使DE=AD,连接EC,△DEC与△ABD全等,∴ EC=AB=5.在△AEC中,AC+EC>AE,也就是3+5>2l,即l<4.AC+AE>EC,即3+2l>5,∴ l>1.因此有1<l<4.故选(A).8.由题意,A、B、C三点依次在同一直线上.排除(A),且(B)、(C)均不可能成立,选(D).如果选(A),只能n=7,m=10,与题中等式相驳.如果选(B),72=8×9或6×12,与题中不等式相驳.如果选(C),77=11×7,也与题中等式相驳,只有选(D)正确.10.由题意有50x+40y=50(1+10%)x+40(1-10%)y二、A组填空题提示:12:由题意可知这五个奇数是:1993,1995,1997,1999和2001.20012-19932=(2001+1993)(2001-1993)=3994×8=31952.13:三角形其他两边可以是:7和4、7和3、7和2、6和3,可拼成四种不同的三角形.因为,7+4=11>8且满足7-4=3>2;7+3=10>8且满足7-3=4>2;7+2=9>8且满足7-2=5>2;6+3=9>8且满足6-3=3>2.14.如图6,作DE⊥AB,则△ABC≌△DBE,在直角△DBE中,BD2=DE2+BE2即(2y-15)2=y2+152化简得到 y(y-20)=0,∴ y=20.AB=AE+BE=30+20=50.16.(a+b)2+(b+c)2+(a-c)2=a2+2ab+b2+b2+2bc+c2+a2-2ac+c2=2(a2+b2+c2+ab+bc-ac)将a、b、c的值代入(a+b)2+(b+c)2+(a-c)2=(-3)2+(2)2+(-5)2=38.∴原式=19.17.连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC≌△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等.)17解:连接FE交AD于O,△AFE为等腰三角形.∵∠1=∠2,∴AO⊥EF,且FO=OE,得到DF=DE.∵∠EDC=∠BAC,∴△ABC∽△EDC,∵∠ABC=60°,∴∠DEC=60°,∠AED=120°,则∠AFD=120°,∴△FBD为等边三角形.∴BF=BD=DF=DE.因此,与DE的长相等的线段有3条.(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等)故答案为:3.18.在△BPC中,∵BE平分∠CBP,CE平分∠BCP,∴PE是∠BPC的平分线.∵∠A=60°,∴∠ABC+∠ACB=120°.b(a2+b2)+a(a2+b2)+2(a+b)ab=0,a2b+b3+a3+ab2+2a2b+2ab2=0.20.设原来供应x天,现在供应y天.三、B组填空题提示:21.如图7,由题意|a|=1+|b|,∴3|a|=3+3|b|=4|b|,∴|b|=3,b=±3.|a|=1+|b|=4,∴a=±4.22.将a=b-1,c=b+2代入a+b+c=19,得b=6,则a=5,c=8.当b+c=-a,+b=-c,a+c=-b时,当b=c,a=b,a=c即a=b=c时,。

新希望杯八年级数学试题及答案

八年级试题(A 卷)(时间:120分钟 满分:120分)一、选择题(每小题4分,共32分) 1.若()422015+=mA ,则A 的算术平方根是( )A.(m 2+2015)4B.(m 2+2015)2C.m 2+2015D.m+20152.已知等腰三角形的两边长分别为a 、b ,且0243163=-++-+b a b a ,则此三角形的周长是( )A.13B.17C.13或17D.14或163.将一副三角板如下图叠放在一起,则∠1的度数是( )A.105°B.110°C.115°D.120°4.如图,在3×4的正方形网格中,已有3个方格涂色,若再选择一个方格涂色,且使得4个涂色的方格组成轴对称图形,可选择的方格共有( )A.1个B.2个C.3个D.4个5.已知201531+n 是整数,若n 是正整数,则n 的最小值是( )A.31B.59C.65D.1246.某超市购进50千克的散装糖果,决定包装后出售,方式一:1.5千克/盒,包装成本1.2元/个;方式二:1千克/盒,包装盒成本1元/个.根据需要1千克装的糖果数量不能少于1.5千克装的一半,且糖果全部包装完,那么包装盒的总成本最低是( )A.43.4元B.43.1元C.42.8元D.42.5元7.如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,且BO=DO ,点P 在△BCD 内部,下列说法:①S △AOD=S △AOB ;②BC +CD >PB +PD ;③AC +BD >AB +CD ;④AC +BD >AD >CD ,其中正确的有( ) A.1个 B.2个 C.3个 D.4个8.如图,等边三角形ABC 边长为6,点P 从B 点开始在BC 上向点C 运动,运动到点C 停止,以AP 为边在直线BC 的同侧作等边三角形APQ ,得到点Q ,则点Q 的运动路径长( ) A.6 B.33 C.24 D.23π二、填空题:(每小题5分,共40分)9.化简:.________________)2015(201522=+--x x )(10.已知正n 边形的一个内角是一个外角的5倍,则n=____________.11.如图,△ABC 是格点三角形,点D 是异于点A 的一个格点,则使△DBC 和△ABC 全等的D 点共有__________个.12.方程3100820151210071=+-+-xx x 的解是___________________.13.如图,等边三角形的边长为1,现将其各边n(n >2)等分,并以相邻分点为顶点向外作小等边三角形,再将相邻分点之间的线段去掉,得到一个锯齿图形,当n=k 时,锯齿图形的周长为___________.(用含k 的代数式表示).14.将1、2、3、4、5这五个数排成一列,要求第一个数和最后一个数都是偶数,且其中任意三个相邻的数之和都能被这三个数中的第一个数整除,这样的排列方法共有_____________种.15.对于实数m 、n ,定义运算m ※n=m(1-n),下面是关于这种运算的几个结论:①2※3=-4;②若m ※n=0,则n=0;③m ※n=(1-n )※(1-m);④若m+n=1,则(m ※n )-(n ※n)=0.其中正确的是___________. 16.如图,已知点A(1,1),点B (7,3),点P 为x 轴上一个动点,当PA+PB 的值最小时,点P 的坐标为_______________.三、解答题(10+12+12+14=48分)17..)32(32,2,29的值)求(若+--==-y x xy y x18.如图,△ABC 为等边三角形,点D 是BC 延长线上一点,且CD <BC ,BD 的垂直平分线交AC 于E ,过点E 作EF ∥BC 交AB 于F.(1)求证:△AEF 为等边三角形; (2)若BC=3CD ,求ECAE的值.19.某数学俱乐部组织60名会员租车进行自驾游,共有两种车型可供选择,A 型车共有8个座位,B 型车有4个座位,要求租用的车不能空座,也不能超载. (1)共有多少种不同的租车方案?(2)若A 型车的租金是400元/天,B 型车的租金是260元/天,请设计最划算的租车方案,并说明理由.20.已知:直角三角形斜边上的中线等于斜边的一半,如图1,在△ABC 中,∠CAB=90°,D 是BC 的中点,连接AD ,则AD=CD=BD.(1)如图2,过点D作DE⊥AB于E,以E为边作等边三角形AEF,以DF为边作等边三角形DFG,连接AG,求证:AG平分∠FAB.(2)如图3,过点C作CH⊥AF于H,连接DH,求证:DH=FG.1 2 3 4 5 6 7 8C B AD B C D A9 10 11 12 13 14 15 1610 1/2-8060X12 3 1008KK 66-6 ①③④⎪⎭⎫ ⎝⎛0,25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014学年凤庆一中“希望杯”八年级数学竞赛试卷
(考试时间90分钟,满分100分)
一、选择题(每小题只有一个正确选项,每小题3分,共10题,总共30分) 1.已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 3个
B 4个
C 5个
D 无数个
2.如图,三个图形的周长相等,则( )
A b a c <<
B c b a <<
C b c a <<
D a b c <<
3.计算
122
n
n +-得( )
A 2n
B -2n
C 2
D -2
4.已知2
2
()8,()12a b a b +=-=, 则2
2
a b +的值为( )
A.10
B.8
C.20
D.4
5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A 9cm B 12cm C 15cm D 12cm 或15cm
6.若a 是有理数,则4a 与3a 的大小关系是( )
A 4a>3a
B 4a=3a
C 4a <3a
D 不能确定
7.设0a b c ++=,abc >0,则b c c a a b
a b c +++++
的值是( ) A . 3- B. 1 C. 31-或 D. 31-或
8.规定a ○b = a b
a b +-错误!未找到引用源。

,则(6○4)○3等于( )
A 4
B 13
C 15
D 30
9.如图所示,两个边长都为2的正方形ABCD 和OPQR ,O 点是正方形ABCD 的对角线交点,而正方形OPQR 可以绕O 点旋转,那么它们重叠部分的面积为( )
A .4 B.2 C.1 D.2
1
10.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( ) A .不赔不赚 B . 赚160元 C .赚80元 D .赔80元 二、填空题(每小题3分,共6题,总共18分).
11.已知2x =a, 3x =t, 则 24x = (用含a,t 的代数式表示)
12.若0<a <1,则412
-⎪⎭⎫ ⎝⎛+a a -412
+⎪⎭⎫ ⎝
⎛-a a 的值等于 。

13.已知y 2+ (k-1)y+ 9 = 0是完全平方式,则k= 。

14.将矩形ABCD 纸片沿对角线BD 折叠。

使点C 落在平面上的点C 1处, BC 1交AD 于E,若∠EBD 为20°,则∠DEB 的度数是 。

15.平时我们常说的“刹那间……”,在梵文书《僧袛律》里有这样一段文字:“一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜(24小时)有三十须臾。

”那么,一刹那...
是 秒。

16.m 为正整数,已知二元一次方程组210
320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,
则2________m =。

三、解答题:(共5个小题,总共52分)
17.(9分)若不等式组 的正整数解只有4,
求a 的取值范围。

2a
2a
a a
b
c
c
C 第9题图
18.(9分)已知关于x, y 的方程组 的
解满足x > y > 0 , 化简丨a 丨+丨2 - a 丨。

19.(10分)如图,ABC ∆为等边三角形,D F 、分别是BC AB 、上的点,且CD BF =,
以AD 为边作等边ADE ∆。

⑴.求证AD CF =;
⑵. 当D 在线段BC 上何处时,四边形CDEF 为
平行四边形,且030DEF ∠=?证明你的结论。

20.(9分)若(x 2
+ax+10)( x 2
-3x+b)的展开式中不含x 2
项与x 3
项,试求 ( ) 2004a 2005 b 2003 的值。

21.(15分)如图,在边长为5的正方形ABCD 中,点E ,F 分别是BC ,DC 边上的点,且AE ⊥EF ,BE=2.
(1)延长EF 交正方形外角平分线CP 于点P (如图),试判断AE 与EP 的大小关系,并说明理由;
(2)在AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
1
3。

相关文档
最新文档