化工传递过程基础知识

合集下载

化工传递过程讲义

化工传递过程讲义

《化工传递过程》讲稿【讲稿】第一章 传递过程概论(4学时)传递现象是自然界和工程技术中普遍存在的现象。

传递过程:物理量(动量、热量、质量)朝平衡转移的过程即为传递过程。

平衡状态:物系内具有强度性质的物理量如速度、温度、组分浓度等不存在梯度。

*动量、热量、质量传递三者有许多相似之处。

*传递过程的研究,常采用衡算方法。

第一节 流体流动导论流体:气体和液体的统称。

微元体:任意微小体积。

流体质点:当考察的微元体积增加至相对于分子的几何尺寸足够大,而相对于容器尺寸充分小的某一特征尺寸时,便可不计分子随机运动进出此特征体积分子数变化所导致的质量变化,此一特征体积中所有流体分子的集合称为流体质点。

可将流体视为有无数质点所组成的连续介质一、静止流体的特性(一)流体的密度流体的密度:单位体积流体所具有的质量。

对于均质流体 对于不均质流体点密度dVdM d =ρ *流体的点密度是空间的连续函数。

*流体的密度随温度和压力变化。

流体的比体积:单位流体质量的体积。

MV =υ (二)可压缩流体与不可压缩流体可压缩流体:密度随空间位置和时间变化的流体,称为可压缩流体。

(气体)不可压缩流体:密度不随空间位置和时间变化的流体,称为不可压缩流体。

(液体)(三)流体的压力流体的压力(压强,静压力):垂直作用于流体单位面积上的力。

A P p =(四)流体平衡微分方程1.质量力(重力)单位流体质量所受到的质量力用B f 表示。

在直角坐标z y x ,, 三个轴上的投影分量分别以 X ﹑Y ﹑Z 表示。

B F V M =ρ2.表面力:表面力是流体微元的表面与其临近流体作用所产生的力用Fs 表示。

在静止流体中,所受外力为重力和静压力,这两种力互相平衡,利用平衡条件可导出流体平衡微分方程。

916:16化工传递过程基础黄山学院化学系首先分析x 方向的作用力,其质量力为由静压力产生的表面力为XdxdydzdF Bx ρ=dydz dx x p p pdydz dF sx ⎪⎭⎫ ⎝⎛∂∂+-=12(五)流体静压力学方程流体静压力学方程可由流体平衡微分方程导出。

化工原理传质知识点总结

化工原理传质知识点总结

化工原理传质知识点总结一、基本概念1.1 传质的意义传质是指物质在不同相之间的传递过程。

在化工工程中,传质是指溶质在溶剂中的扩散、对流、传热、反应等传输现象。

1.2 传质的分类传质可以根据溶质与溶剂之间的接触方式分为不同的分类:(1)扩散传质:溶质在溶剂中的自由扩散过程,不需要外力的帮助。

(2)对流传质:通过溶剂的对流运动,加快溶质的扩散速率。

(3)辐射传质:发射源释放的辐射物质在空气中传输的过程。

1.3 传质的单位在化工工程中,我们通常使用质量通量或摩尔通量来描述传质的速率。

质量通量用kg/(m^2·s)或g/(cm^2·min)表示,摩尔通量用mol/(m^2·s)或mol/(cm^2·min)表示。

1.4 传质的驱动力传质的驱动力可以通过浓度差、温度差、压力差等来实现。

在传质过程中,驱动力越大,传质速率越快。

1.5 传质的应用传质在化工工程中有着广泛的应用,例如在化学反应中,传质过程可以影响反应速率和产物浓度。

在洗涤、脱水、吸附等过程中,传质也起到重要的作用。

二、传质过程2.1 扩散传质扩散传质是指溶质在溶剂中的自由扩散过程,不需要外力的帮助。

扩散传质的速率与溶质浓度梯度成正比,与扩散距离成反比,与传质物质的性质、温度等因素有关。

2.2 对流传质对流传质是指通过溶剂的对流运动,加快溶质的扩散速率。

对流传质速率与对流速度和溶质浓度梯度成正比,与传质物质的性质、温度等因素有关。

2.3 质量传递系数质量传递系数是评价传质速率的重要参数,表示单位时间内溶质通过单位面积的传质速率。

它与溶质的性质、溶剂的性质、温度、压力等因素有关。

2.4 传质速率传质速率是指单位时间内溶质通过单位面积的传质量。

它由传质物质的性质、浓度梯度、温度、压力等因素决定。

三、传质原理3.1 扩散传质的原理扩散传质的原理是由于溶质在溶剂中的无规则热运动。

在热运动的影响下,溶质会沿着浓度梯度自行扩散,直到浓度均匀。

化工传递过程基础(第三版)

化工传递过程基础(第三版)

计算:在流动截面上任取一微分面积dA,其点流速为ux,则通过该微元面积 的体积流率dVs?通过整个流动截面积A的体积流率Vs?
求解: 1.体积流率定义式: 2.体积流率积分: 3.质量流率(w):
?A
A
w Vs
主体平均流速(ub): 截面上各点流速的平均值
x方向微分平衡方程:
p X x
y方向微分平衡方程:
p Y y
p Z z
自己推?
z方向微分平衡方程:
※ 静止流体平衡微分方程(欧拉平衡微分方程)
fB
单位体积流体的质量力

p
静压力梯度
重要
(五)流体静压力学方程
欧拉平衡微分方程
p X x
p Y y
化工传递过程基础

一、化工研究的基本问题?

精馏段操作线 平衡线
过程的平衡和限度 –《化工热力学》 过程的速率和实现过程所需要的设备
• 化学反应速率和设备 –《化学反应动力学》和《化学反应工程》 • 物理过程速率和设备 – 《化工传递》和《化工单元操作》 提馏段操作线
图0-1 McCabe-Thiele图
2
※ DAB:质量扩散系数
AB D
m2 = s
※ d(ρA/dy):质量浓度梯度
A kg 3 y m m
重要
(质量通量)= —(质量扩散系数)x (质量浓度梯度)
二、动量通量、热量通量与质量通量的普遍表达式
(通量)= —(扩散系数)x (浓度梯度)
dux dy
动量通量
dt dy
热量通量
d dy
质量通量
通量

化工传递过程基础知识(ppt 63页)

化工传递过程基础知识(ppt 63页)
3、通量为单位时间内通过与传递方向相垂直的单位面积上的动、热、质量, 各量的传递方向均与该量的浓度梯度方向相反,故普遍式中加“-”号。
第二节 湍流传递条件下传递通量的通用表达 式
一、涡流传递的通量表达式
在湍流流体中,质点的脉动、混合和旋涡运动,使动、热、质量的传
递程度大大加剧。仿照分子传递的方程式,1877年Boussinesq提出了涡流
d (ux )
dy
——在y方向上的动量浓度梯度,kg m / s m

“-”表示动量通量的方向与动量浓度梯度的方向相反,即动量朝着速度降 低的方向传递。 动量通量 = -动量扩散系数×动量浓度梯度
四、动量通量与剪应力
两层流体以ux1和 ux2向前运动,且分子运动引起分子在流层间交换。若质 量为m的流体从1层跳到2层,动量由mux1 增到 mux2 ,同时质量为m的流体 从2层下到1层,动量由mux2减少到 mux1 。从宏观上表现为1层受到2层的 推力,2层受到1层的阻力,动量交换的结果产生了剪应力。
d (cpt)
dy
——在y方向上的热量浓度梯度,
J
/ m3 m

“-”表示热量通量的方向与热量浓度梯度的方向相反,即热量朝着 温度降低的方向传递。 热量通量 = -热量扩散系数×热量浓度梯度
三、动量通量
dux d (ux ) d (ux )
dy dy
dy
式中:τ——动量通量(kg·m/s)/(m2·s);ν ——动量扩散系数,m2/s;
传递方式:由微观分子热运动所产生的传递为分子传递; 依靠宏观的流体质点的运动造成的传递,称为湍流传递。
传递过程的大小常用传递速率或通量(传递量/m2 s)描述。
第一节 分子传递条件下传递通量的通用表达式

化工传递过程基础第三

化工传递过程基础第三

计算:在流动截面上任取一微分面积dA,其点流速为ux,则通过该微元面积 的体积流率dVs?通过整个流动截面积A的体积流率Vs?
求解: 1.体积流率定义式: dVs uxdA
??
2.体积流率积分: 3.质量流率(w):
Vs uxdA
A
w Vs
主体平均流速(ub): 截面上各点流速的平均值
单位:SI单位和物理单位
SI单位制:

u /
y

N / m2 m/s

N s m2

Pa s
m
物理单位制:

u / y

dyn / cm2 cm / s

dyn s cm2

g cm s

P(泊)
cm
特性:是温度、压力的函数; f T , P

ux
y



kgm/ s m3 m

重要
(动量通量)= —(动量扩散系数)x (动量浓度梯度)
(二)热量通量
q k d cpt d cpt
A cp dy
dy
※ q/A:热量通量

q A

J m2
s

p Y
y
z方向微分平衡方程:
p Z
z
自己推?
※ 静止流体平衡微分方程(欧拉平衡微分方程)


fB
p
重要
单位体积流体的质量力 静压力梯度
(五)流体静压力学方程
欧拉平衡微分方程
p X p Y
x
y
p Z
z
质量力:X = 0,Y = 0,Z = - g

(化工原理)第6章:质量传递过程基础

(化工原理)第6章:质量传递过程基础
从浓度高处向浓度低处传递从微观上看分子作随机热运动从宏观上看相内浓度均衡是自发的62均相混合物内的质量传递621传质的基本方式依靠分子热运动的质量传递方式称为分子扩散621传质的基本方式在理论上化学势表象为浓度大量质点的脉动和漩涡的扰动混合这种依靠质点脉动混合的质量传递方式称为涡流扩散湍流流动也伴随着分子扩散对于固体静止的流体和作层流流动的流体内部分子扩散涡流扩散同时存在以涡流扩散为主对于湍流流动的流体内分子扩散单独存在扩散存在的前提条件
D z
c0 cBm
cA1 cA2
对于理想气体
cBm
cB2 cB1
ln
cB2 cB1
cB1 c0 cA1 cB2 c0 cA2
NA
D RTz
p pBm
pA1 pA2
p pBm
pBm
pB2 pB1
ln
pB2 pB1
pB1 p pA1 pB2 p pA2
c cBm
称为漂流因子 反应总体流动对传质通量的影响
NA ky y yi
NA kx xi x
NA kG pA pAi
NA kL cAi cA
传质系数 k=f (D,η,ρ,u,d )
经验关联式很多,但普遍偏差较大 主要通过实验获得
JA
DAB
dcA dz
yi Ki xi
NA
D z
c0 cBm
cA1 cA2
NA
D RTz
主体中高度湍流传质阻力为零,即无浓度
O
距离 z
相际传质双膜模型
梯度。 ④ 相界面上气液处于平衡状态,无传质阻
力存在。
(2)总传质速率方程
① 气膜和液膜传质速率方程 对气相:
NA kG pA pAi

化工传递过程基础

化工传递过程基础

化工传递过程基础概述化工传递过程是指在化工工艺过程中,物质的质量、能量、动量等通过传递方式从一个系统传递到另一个系统的过程。

化工传递过程是化工工艺的基础,对于化工工艺的设计、优化和控制都起着重要的作用。

在化工过程中,常见的传递过程包括质量传递、能量传递和动量传递。

质量传递是指物质在化工过程中的传递过程,常用的传递方式包括传递过程基础(如扩散、对流和反应等)及相关的传递机制(如浓度差、温度差、压力差等)。

能量传递是指热能在化工过程中的传递过程,常用的传递方式包括传导、对流和辐射。

动量传递是指动量在化工过程中的传递过程,常用的传递方式包括流动、压力和阻力。

质量传递扩散扩散是质量在化工过程中传递的一种基本方式。

在扩散过程中,物质会沿着浓度梯度从高浓度区域向低浓度区域传递。

扩散过程的速度与浓度差、扩散系数和传递距离等因素有关。

常见的扩散方程有弥散方程和菲克定律。

对流对流是质量传递中常用的一种方式,通过流体的运动将物质从一个地方传递到另一个地方。

对流传递可以分为自然对流和强制对流两种方式。

在自然对流中,传递过程由于密度差产生的浮力驱动;而在强制对流中,传递过程由外部施加的力(如搅拌、泵送等)驱动。

反应是化工过程中重要的一种质量传递方式。

在化学反应中,物质通过反应转化成另一种物质,并伴随着质量的传递过程。

反应速率常常与反应的浓度、温度和反应物之间的反应机理等因素有关。

能量传递传导传导是能量传递中的一种方式,是指通过物质的直接接触将热能从一个地方传递到另一个地方。

传导过程的速度与热传导系数、温度差和传递距离等因素有关。

常见的传导方程有傅里叶定律和斯廷定律。

对流对流也是能量传递中常用的一种方式,通过流体的运动将热能从一个地方传递到另一个地方。

对流传递可以分为自然对流和强制对流两种方式,原理与质量传递中的对流类似。

辐射是能量传递中的一种方式,是指通过电磁辐射将能量从一个地方传递到另一个地方。

辐射能量的传递与物体的温度、表面特性和辐射波长等因素有关。

化工传递过程基础总结

化工传递过程基础总结

化工传递过程基础总结化工传递过程是化学工程学科的基础,它是研究化学物质在不同状态下的传递现象的学科。

化工传递过程包括物质的传质、热传、动量传递等。

在化学工程中,化工传递过程是实现化学反应和物料加工的关键环节。

本文将介绍化工传递过程的基础知识,包括传质、热传和动量传递。

一、传质传质是指物质在不同相之间的传递现象,包括气体、液体、固体之间的传递。

传质过程是化学反应、物料加工等过程中的重要环节。

传质的速率取决于传质物质的性质、传质界面的性质、传质系统的温度、压力、浓度等因素。

1. 传质的基本概念传质过程可以分为扩散、对流和传递过程的组合。

扩散是指物质通过分子扩散的方式在不同相之间传递,其速率与浓度梯度成正比。

对流是指物质在流体中的传递,其速率与流体速度成正比。

传递过程是扩散和对流的组合,其速率取决于扩散和对流的贡献。

2. 传质的速率传质速率可以用传质通量来表示,传质通量是单位时间内通过传质界面的物质量。

传质通量可以用菲克定律来计算,菲克定律是指在扩散过程中,单位时间内通过单位面积传递物质的量与浓度梯度成正比,与传质物质的性质和传质界面的性质有关。

传质速率还可以用对流传质公式来计算,对流传质公式是指在对流过程中,传质通量与速度梯度成正比,与流体的性质和传质界面的性质有关。

3. 传质的机理传质的机理包括分子扩散、对流传递和物理吸附等。

分子扩散是指物质通过分子间的碰撞在不同相之间传递。

对流传递是指物质在流体中的传递,其速率受到流体的速度、流动方式、物质的性质等因素的影响。

物理吸附是指物质在传质界面上的吸附现象,吸附物质的性质、传质界面的性质等因素会影响吸附的速率。

二、热传热传是指热量在不同相之间的传递现象,包括传导、对流和辐射三种方式。

热传过程是化学反应、物料加工等过程中的重要环节。

热传的速率取决于热传物质的性质、热传界面的性质、热传系统的温度、压力等因素。

1. 热传的基本概念热传过程可以分为传导、对流和辐射三种方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工传递过程重点探讨物理过程进行的速率及其 传递机理,动量、热量、质量传递过程的类似性。
第一章 传递过程概述
体系内部具有强度性质的物理量存在梯度时的状态称为
不平衡状态。任何处于不平衡状态的物系都有向平衡状态转 移的倾向,这些物理量朝平衡方向转移的过程称传递过程。 质量传递指物系中的组分由高浓区向低浓区扩散或通过相界 面的转移;热量传递指热量由高温区向低温区的转移;动量 传递则是在垂直于流动方向上,动量由高速区向低速区的转 移。
第二章 总动量、总热量、总质量衡算
在化工中需对系统或某一过程的总动量(对过程包含的力进行分析)、 总热量(了解过程热量和其它能量间的转化关系)、总质量(掌握过程物 料的变化)进行衡算,为研究动、热、质量传递和单元操作的基础,同时 对推导微分动、热、质量衡算也有指导作用(依据定律相同)。
前提:规定衡算范围、基准和对象。在流动过程,通常将进行总衡算 时所 限定的空间区域称为控制体,包围此空间区域的边界面称控制面。
流传r递的通 量d(表u达x式) :
dy
qe
H
d(cPt)
dy
jAe
M
dA
dy
其中:涡流扩散系数ε、εH 、εM 非流体物性参数,与流动条件有关。
二、湍流传递的动量、热量、质量通量表达式
t r
()d(ux)
dy
qt qqe(H)d(dcPyt)
jAtjAjA e(DAB M)ddAy
因此,不仅层流时的三种传递过程之间具有类似性,而且湍流时的三 种传递过程之间也具有类似性,同时层流与湍流传递过程之间均具有类似 性。故可采用类比的方法研究动、热、质量传递过程,在许多场合可用类 似的数学模型来描述动、热、质量传递过程的规律。
3、通量为单位时间内通过与传递方向相垂直的单位面积上的动、热、质量, 各量的传递方向均与该量的浓度梯度方向相反,故普遍式中加“-”号。
第二节 湍流传递条件下传递通量的通用表达 式
一、涡流传递的通量表达式
在湍流流体中,质点的脉动、混合和旋涡运动,使动、热、质量的传
递程度大大加剧。仿照分子传递的方程式,1877年Boussinesq提出了涡
剪应力τyx为动量在其垂直方向上传递的结果, 其大小和动量通量在数值上相等。
说明;对剪应力可正可负,对动量通量只能取负,
表示动量传递的方向和动量浓度梯度的方向相反。
同时动量通量方向和剪应力的方向垂直。
五、小结
1、动、热、质量通量普遍的表达方程式:通量 = -扩散系数×浓度梯度
2、动、热、质量扩散系数具有相同的因次,均为m2/s;
d (cpt) dy
J /m3 ——在y方向上的热量浓度梯度, m

“-”表示热量通量的方向与热量浓度梯度的方向相反,即热量着 温度降低的方向传递。 热量通量 = -热量扩散系数×热量浓度梯度
三、动量通量
d dxu y d(d uxy ) d(d uxy )
式中:τ——动量通量(kg·m/s)/(m2·s);ν ——动量扩散系数,m2/s;
绪论
一、化学工程学科的发展阶段 1、工艺过程考察阶段 单纯的过程实践考察,结论异
业各殊,化工厂是由不同的化学反应和物理过程组成, 代 表 作 为 1898 年 F.H.Thorpe “ Outline of Chemistry”。 2、单元操作认识阶段 以某些设备和过程组成的系统是相
同(近)的,将相同的系统经分析、归纳和分类分成若干单 元操作来考察生产过程,化工厂是由若干单元操作和化学反 应 过 程 组 成 的 , 结 论 异 业 有 同 。 代 表 作 为 1923 年 Walker , Lewis “ Principles of Chemical Engineering”。
d A —A在y方向上的质量浓度梯度,kg / m 3
dy
m
“-”表示质量通量的方向与浓度梯度的方向相反,即A朝着浓度降低的方
向传递。
质量通量 = -质量扩散系数×质量浓度梯度
二、热量通量
qkd d y tk cpd( dcpty) d( dcpty)
式中:q——热量通量,J/(m2·s); α ——热量扩散系数,m2/s;
d (ux) dy
——在y方向上的动量浓度梯度k,g m / s m

“-”表示动量通量的方向与动量浓度梯度的方向相反,即动量朝着速度降 低的方向传递。 动量通量 = -动量扩散系数×动量浓度梯度
四、动量通量与剪应力
两层流体以ux1和 ux2向前运动,且分子运动引起分子在流层间交换。若质 量为m的流体从1层跳到2层,动量由mux1 增到 mux2 ,同时质量为m的流 体从2层下到1层,动量由mux2减少到 mux1 。从宏观上表现为1层受到2层 的推力,2层受到1层的阻力,动量交换的结果产生了剪应力。
4、信息化阶段
二、化工传递过程课程的内容和任务
化工传递过程是据三个基本定律,采用微分衡算 的方法研究动、热、质量传递过程的基本原理,及三 种传递现象之间的定量关系。其基本出发点是将三种 传递现象归结为过程速率问题加以探讨。动、热、质 量传递过程和现象是不可分割,而且互相作用。
学习本课程的任务是:①进一步理解各种传递 过程的本质,启发和指导我们改善各类传递过程的途 径;②为化工过程的开发和研究提供理论基础和基本 数学模型思路,从而将高新技术应用到化工生产中去。
传递方式:由微观分子热运动所产生的传递为分子传递; 依靠宏观的流体质点的运动造成的传递,称为湍流传递。
传递过程的大小常用传递速率或通量(传递量/m2 s)描述。
第一节 分子传递条件下传递通量的通用表达式
一、质量通量
jA
DAB
dA
dy
式中:jA—A的质量通量,kg/(m2·s); DAB —A的扩散系数,m2/s;
3、化工传递认识阶段 对单元操作研究的基础上
获得共同实质为动、热、质量传递过程,从理论上 步入了异业相同。虽传递过程使用的定律与单元操 作过程一样但方法不同,内容上实践—理论、理 论—实践和理论、实践的统一,方法上采用宏观— 微观、微观—宏观和宏观、微观的统一。代表作为 1960 年 R.B.Bird “ Transport Phenomena” , J.R.Welty , C.E.Wicks , R.E.Wilson “ Fundementals of Momentum,Heat and Transfer”。
相关文档
最新文档