矩阵,行列式, 秩, 相关计算

矩阵,行列式, 秩, 相关计算
矩阵,行列式, 秩, 相关计算

矩阵,行列式, 秩, 相关计算: 例

已知矩阵211121112A ?? ?= ? ???

,且A 与矩阵X 满足112AXA XA I

--=+,求X 。

例:已知3阶方阵

123023003A ?? ?= ? ???

,计算行列式 6A I *+。

例:已知32212232,26223A B ??

-?? ?

== ? ?-?? ?

??

,求行列式 10

2A B

-

例: 证明:若n 阶方阵A ,B ,C 满足:AB =AC ,B ≠C ,则A 不满秩。

例: 举例说明:由AB =AC ,A ≠0不能导出B =C 。

例 对于n 阶方阵A, 求证: r(A n )=r(A n+1)

例 A 和伴随阵的秩的关系。

方程组及其求解:

例: 对下列线性方程组

???

??=++=++=++2

321

3213211a ax x x a x ax x x x ax

试讨论:当a 取何值时,它有唯一解?无解?有无穷多解?并在有无穷多解时求其通解。(用导出组的基础解系表示通解)

例:已知线性方程组

123123123123121(1)2(1)3

ax x x x x ax x x x a x x a x -++=-??

++=-??

++=-??-+++=-? 问参数a 取何值时,上述方程组无解?有唯一解?有无穷多解

例: 已知A 是n m ?矩阵,m n >,m A =)(r ,B 是)(m n n -?矩阵,

m n B -=)(r ,且

0=AB 。证明:B 的列向量组为线性方程组0=AX 的一

个基础解系。

例:设有齐次线性方程组

(I )

12312300

ax x x x ax x ++=??

++=? (II ) 1230x x ax ++= (III )

1231231

23000

ax x x x ax x x x ax ++=??

++=??++=? 已知方程组(I )的解都是方程组(II )的解,

(1)证明:方程组(I )与方程组(III )的同解; (2)证明:方程组(III )有非零解; (3)求参数a 的值。

例:已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4元列向量,其中432,,ααα线性无关,3212ααα-=。

(1) 求线性方程组0=AX 的一个解;

(2) 如果4321ααααβ+++=,求线性方程组β=X A 的通解。

例 矩阵秩 为r 的充要条件是: 存在r 阶非0子式,但包含此非0子式的r+1阶子式都为0.

向量及其运算

例:已知

1234(1,1,1,1),(1,2,4,8),(1,3,9,27),(1,4,12,34)T T T T

αααα====

求向量组1234,,,αααα的秩和一个极大无关组。

例: 已知向量组

123(1,1,3,1),(5,2,8,9),(1,1,1,3),ααα==--=--

4(1,3,5,7)α=--,

(1)求生成子空间 1234(,,,)L αααα 的维数和一个基; (2)求生成向量组1234,,,αααα中的各向量关于取定基的坐标。

例: 设1234,,,αααα与1234,,,ββββ是4维向量空间V 的两个基,从1234

,,,αααα到1234,,,ββββ的过渡矩阵为3

100210000210

01

2A ?? ? ?= ? ?-??

。已知向量γ 关于基1234,,,ββββ的坐标为(1,1,2,2)--,求γ 关于基1234,,,αααα的坐标。

3

21ααα,,是向量空间

3

R 的一个

基,33212211232αβααβααβ=+=+=,,. (1) 证明321βββ,,为3R 的一个基;

(2) 求基321ααα,,到基321βββ,,的过渡矩阵; (3) 求向量321αααγ++=关于基321βββ,,的坐标。

例: 已知向量空间3R 的两个基

123(1,1,1),(0,1,1),(0,0,1)ααα===和123(1,1,1),(1,1,0),(1,0,0)βββ===

(1)求从基123,,ααα到基123,,βββ的过渡矩阵;

(2)对312,R γγ∈,证明:若1γ关于基123,,ααα的坐标与2γ关于基123,,βββ的坐标完全相同, 则1γ关于基123,,βββ的坐标与2γ关于基123,,ααα的坐标也完全相同。

线性空间和线性变换:

例:在2

2R

?中,令

, , , ,??

?

???=??????=??????=????

??=10000100001000014321αααα ??

????=??????=??????=??????=11110111001100014321ββββ , , , (1) 证明4321ββββ,,,为22R ?的一个基;

(2) 求自然基4321αααα,,,到基4321ββββ,,,的过渡矩阵;

求?

?

????--=1111γ在基4321ββββ,,,下的坐标

例: 在4][x F 中,求自然基321x x x ,,,到基3221111x x x x x x ++++++,,,的过渡矩阵,以及321x x x x h -+-=)(在后一个基下的坐标。

例 在多项式空间4[]R x 中定义变换σ:

233

012330201()()a a x a x a x a a a x a a x σ+++=-+++

1.证明:σ是4[]R x 上的线性变换;

2.求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。

矩阵特征值与特征向量,矩阵的相似对角化,JORDAN 标准型.

例:已知3阶矩阵A 有特征值1,2,且0=A 。

(1) 求I A +2

的所有特征值;

(2) 证明I A +2

为可逆矩阵。

例:已知n 阶矩阵A 的特征值为n λλλ,,, 21,且B B A ij

ij C R ?→??→?1。

(1) 求A ; (2) 求B 的特征值。

例:设A 是n 阶矩阵,n ααα,,, 21是n 元列向量,其中0≠n α,并且

013221====-n n n A A A A ααααααα , , , ,

(1) 证明向量组n ααα,,, 21线性无关; (2) 求A 的特征值和特征向量; (3) 判断A 是否可以相似对角化。

例: 已知n

R 中两个非零向量:()()T

n T n b b b a a a ,,,,,,,2121 ==βα,

其中021≠≥b n ,,矩阵T A αβ=。 (4) 求2A ;

(5) 求A 的特征值和特征向量; (6) 判断A 是否可以相似对角化:若可以,请写出相似变换矩阵P 和对角矩阵Λ;

若不可以,请说明理由。

例: 已知矩阵342010120A -?? ?= ? ?-??

,求可逆矩阵P ,使1

P AP -为对角矩阵。 例: (A+xI)(A+yI)=0, x 和y 不相等, 求证: A 可以相似对角化.

例: 设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得

1

1111

22P AP --?? ?- ?

?=- ?

?

???

试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。

例: 设5阶方阵A 的初等因子为

λλλλ ,1 ,1 ,22)(++-

试写出A 的Jordan 标准形。

实对称矩阵和二次型

例:设A 为3阶实对称矩阵,其特征值为201-,,,矩阵A 的属于特征值1和2-的特征向量分别是T ),,(121和T a ),,(11-。 (1) 求a 的值;

(2) 求方程组0=AX 的通解。

例: 举例说明,若A 是可相似对角化的矩阵,则不一定存在正交矩阵Q ,使得1Q AQ -是对角矩阵。

例: 设A 是n 阶方阵,证明:若存在n 阶正交矩阵Q ,使得1Q AQ -是对角矩阵,则A 是对称矩阵。

例: 已知实二次型AX X x x x f T =),,(321,其中A 相似于对角矩阵),,(diag 321。 (1) 求二次型),,(321x x x f 的一个标准形; (2) 判断二次型),,(321x x x f 是否正定。

例:已知实二次型222123123121323(,,)()222f x x x a x x x x x x x x x =+++++

1.问参数a 取何值时,123(,,)f x x x 正定? 2.写出123(,,)f x x x 被正交替换化成的标准形。

例: 设A是正定矩阵,B是任意对称阵,证明: 存在可逆阵C,使得: CTAC,CTBC 同时为对角形.

上海版教材 矩阵与行列式习题(有问题详解)

矩阵、行列式和算法(20131224) 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x ”能推出命题B :“x a >”,则a 的取值围是 . 5.若方程组111 222a x b y c a x b y c +=??+=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .

9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下 变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必 要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- =

矩阵与行列式的相似与不同

矩阵与行列式的相似与不同 学校:长江大学 院系:信息与数学学院 专业:信息与计算科学 姓名:郑洲 辅导老师:谢老师

【摘要】:本文中主要讨论了高等代数中矩阵和行列式的概念,并且从概念,性质以及运算几个方面阐述了行列式与矩阵的相似与不同。 【关键词】:矩阵.行列式.相似与区别 矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。数学上,一个m×n的矩阵是一个由m行n列元素排列成的矩形阵列.矩阵里的元素可以是数字、符号或数学式。其重要的作用是解线性方程组和表示线性变换。 行列式在数学中,是由解线性方程组产生的一种算式,是由若干数字组成的一个类似于矩阵的方阵。行列式是一个函数,值是一个标量。其值是按下述方式可能求得的所有不同的积的代数和,即是一个实数求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负取决于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是基数。 我们先看看矩阵和行列式有哪些相似。 1.形式上比较相似:矩阵和行列式看上去比较相似,主要表现在:它们中的元素都有顺序的排成行列表,表面上看起来很相似,导致很多初学者容易把行列式和矩阵弄混淆;其次,它们中的表示方法一致,比如说行列式和 矩阵中第i行第j列的元素都用a ij表示;并且,它们对行列的称呼一致,从 上到下依次称作第一行,第二行…第n行,记作r1,r2,…r n;从左到右依次称为第一列,第二列,…第n列,记作c1,c2…c n。 2.性质上有相同点:在一个不等于0的数乘行列式或矩阵的某一行或某一列时,等于该数乘以此行或此列的每一个元素;行列式和矩阵中把一个不为0的数乘行列式或矩阵的某一行或列后可以加到另一行或列对应的元素上,即某一行(列)的k倍可以加到另一行(列)上。 3.运算上具有相同点:(1)行列式和矩阵都满足叫法交换率和结合律。可以表示为 D1+D2=D2+D1(D1+D2)+D3=D1+(D2+D3) A+B = B+A (A+B)+C = A+(B+C) (2)行列式和矩阵满足乘法结合律,即 D1D2D3=(D1D2)D3 A(BC)=(AB)C (3)行列式适合乘法分配率,矩阵适合乘法左分配率和右分配率,也就是说 D1(D2+D3)=D1D2+D1D3(D2+D3)D1=D2D1+D3D1 A(B + C) = AB + AC (B + C)A=BA + CA 矩阵和行列式虽然说有很多相同点,但它们始终是两个不同的概念,那么矩阵和行列式有什么区别呢。 1.先从概念上可以看出:(1)n阶行列式D n是n2个数按一定顺序排列成的n行n列的方阵,其实际上是一个数,行列式在数表两端加||;而矩阵是m ×n个数按一定方式排列的m行n列数表,归根结底是一个数表,矩阵在数表两端加()或[]。行列式是方形数表中定义,对不上方形的数表,不能讨论任何行列式的问题,而矩阵无此限制(2)行列式和矩阵行列之间存在差

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1 i 1 tr(A)a ====λ∑∑,etrA=exp(trA)

性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y]

矩阵和行列式初步

第 九 章 矩阵和行列式初步 格致中学 王国伟 第一课时 9.1 矩阵的概念(1) [教学目标] 1、了解矩阵的产生背景,并会用矩阵形式表示一些实际问题; 2、了解矩阵、行向量、列向量、方矩阵、零矩阵、单位矩阵等概念; 3、理解同阶矩阵、相等的矩阵等概念; 4、理解线性方程组与系数矩阵及其增广矩阵之间的转化。 [教学重点] 1、与矩阵有关的概念; 2、线性方程组的系数矩阵及增广矩阵的概念。 [教学难点] 学习矩阵的目的。 [教学过程] 一、情境设置、引入: 引例1:已知向量()1,3OP = ,如果把的坐标排成一列,可简记为13?? ??? ; 引例2:2008 我们可将上表奖牌数简记为:512128363836232128?? ? ? ??? ; 引例3:将方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列,可简记为 2332441m n ?? ? - ? ? -?? ;若将常数项增加进去,则可简记为:2313242414m n ?? ?- ? ?-??。 二、概念讲解:

1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ?- ? ? -? ?这样的矩形数表 叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列的数 组成的向量12 n b b b ?? ? ? ???? ???称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵, m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ? ? ? ?? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个23 ?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有n 行(列), 可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ? - ? ?-?? 均为三阶方阵。在一个 n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线的元素均为1,其余 元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ???为2阶单位矩阵,矩阵100010001?? ? ? ? ?? 为 3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

可逆矩阵 矩阵乘积的行列式

§5.2 可逆矩阵 矩阵乘积的行列式 5.2.1 教学目的 5.2.1.1 掌握矩阵可逆,逆矩阵的定义和简单性质. 5.2.1.2 掌握矩阵可逆的充要条件及求逆矩阵的两种方法. 5.2.1.3 掌握矩阵乘积的行列式和秩的性质. 5.2.2 教学重点 矩阵可逆的定义,充要条件及求逆矩阵的方法. 5.2.3 教学难点 用初等变换法求逆矩阵的理论. 5.2.4 教学过程 一、矩阵可逆,逆矩阵的定义和简单性质. (一)矩阵可逆,逆矩阵的定义 Def 1 令A 是数域F 上一个n 矩阵,若存在F 上n 阶矩阵B ,使得 AB=BA=I 那么A 叫可逆矩阵(或非奇异矩阵),而B 叫作A 的逆矩阵. (二)逆矩阵的简单性质 1、若是矩阵A 可逆,则A 的逆矩阵唯一. 把A 的唯一的逆矩阵记作. 2、可逆矩阵A 的逆矩阵也可逆,并且 . 1、1、1、两个可逆矩阵A 和B 的乘积也可逆,并且 . 一般,m 个可逆矩阵A 1,A 2,…,A m 的乘积A 1A 2…A m 也可逆. 并且 (A 1A 2,…,A m )-1 = 4、可逆矩阵A 的转置 也可逆,并且 二、矩阵可逆的充要条件 (一)判断矩阵可逆的思路. 判断一般的n 阶矩阵A 是否可逆很复杂,但判断形如 ,矩阵的可逆 1 -A 1-A A A =--1 1 )(1 1 1 ) (---=A B AB 1 1 121---A A A m A ' )() (1 1 ' ='--A A ??? ? ? ?000r I

性十分简单,即当r=n 时,可逆;当r

矩阵与行列式知识梳理

矩阵与行列式知识梳理 一、矩阵的概念 1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来): ?? ? ? ? ? ? ??=mn m m n n a a a a a a a a a A 2 1 22221 11211称为一个m 行n 列的矩阵,简称n m ?矩阵,用______表示. 简记为_____.数ij a 称为矩阵的元素. 几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组?? ?=+=+222111c y b x a c y b x a ,则矩阵??? ? ??2211 b a b a 称为该线性方程组的系数矩阵. 矩阵??? ? ??22 2 111 c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换: (1) (2) (3) 4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解. 二、二阶行列式 1 定义:我们用记号 2 2 11b a b a 表示算式1221b a b a -,即 12212 2 11b a b a b a b a -=,记号 2 2 11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式 2 2 11b a b a 的展开式,其计算结果叫做 2 2 11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式 2 2 11b a b a 的元素. 2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积. 3作为判别式的二阶行列式:关于x 、y 的二元一次方程组???=+=+222 1 11c y b x a c y b x a ①其中1a 、2a 、 1b 、2b 不全为零,行列式2 2 11b a b a D = 叫做方程组①的系数行列式. 设2 2 11b c b c D x = ,

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例4.3. 证明二:利用AB 和BA 有相同的非零特征值的性质; 从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义:n n ii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质; 2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1tr(P AP)tr(A)-=;

5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1i 1tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B) 这里等号成立的充要条件是A=cB,c 为一常数。特别当A 和B 为实对称阵或Hermit 矩阵时 0≤|t r(AB)|≤ 定理:设A 和B 为两个n 阶Hermite 阵,且A≥0,

上海版教材矩阵与行列式习题(有答案)

矩阵、行列式和算法() 姓名 成绩 一、填空题 1.行列式 cos sin 3 6 sin cos 3 6 π π π π 的值是 . 2.行列式 a b c d (,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 3.将方程组203253x y z x y =?? +=??+=? 写成系数矩阵形式为 . 4.若由命题A :“ 2 2031x x >-”能推出命题B :“x a >”,则a 的取值范围是 . 5.若方程组111 222 a x b y c a x b y c +=?? +=?的解为2,1==y x ,则方程组 ?? ?=++=++03520 352222 111c y a x b c y a x b 的解为x = ,y = . 6.方程21 24 1 013 9 x x ≤-的解集为 . 7.把 22111133 33 22 2 4 x y x y x y x y x y x y +- 表示成一个三阶行列式为 . 8.若ABC ?的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----,其面积为 . 9.在函数()211 1 2 x f x x x x x -=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .

图2 11.矩阵的一种运算,???? ??++=???? ??????? ??dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵??? ? ??d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵??? ? ??11b a 的作用下变换成曲线10x y --=,则a b +的值为 . 12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n = 二.选择题 13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分也非必要条件 14.下列选项中错误的是( ). A. b d a c d b c a - = B. a b c d d b c a = C. d c d b c a 33++ d c b a = D. d c b a d b c a ----- = 15.若,,a b c 表示ABC ?的三边长, 且满足02 22 =++++++c b a c c c b a b b c b a a a , 则ABC ?是( ). A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形 16. 右边(图2)的程序框图输出结果S =( ) A .20 B. 35 C. 40 D .45

矩阵的秩与行列式的意义

这里首先讨论一个长期以来困惑工科甚至物理系学生的一个数学问题,即,究竟什么是面积,以及面积的高维推广(体积等)? 1 关于面积:一种映射 大家会说,面积,不就是长乘以宽么,其实不然。我们首先明确,这里所讨论的面积,是欧几里得空间几何面积的基本单位:平行四边形的面积。平行四边形面积的定义,几何上说是相邻两边边长乘以他们之间的夹角的正弦。 然而为了应对更一般情形和更高维度的数理问题,我们有必要把面积的定义推广开来。注意到以下事实:面积是一个标量,它来自于(构成其相邻边)两个矢量。因此,我们可以将面积看成一个映射: 其中V就是一个矢量,V*V代表两个矢量的有序对;f就是面积的值。 下面我们将说明这个映射是一个线性映射。 从最简单的例子出发。如果第一个矢量是(1,0),第二个矢量是(0,1);也就是说,两个矢量分别是X和Y轴上的单位正向量,那么由这两个矢量张成的四边形就是一个正方形,其面积根据定义,就是长乘以宽=1*1=1。 因此有:

如果我们把第一个矢量”缩放“a倍,面积将会相应是原来的a倍;把第二个矢量“缩放”b倍,面积也会成为原来的b倍。如果同时缩放,很显然,面积将会变成原面积的ab倍。这表明,面积映射对于其两个操作数(矢量)的标量积是各自线性的,如下: 最后,我们要说明,面积映射对于其操作数(矢量)的矢量加法也是线性的。因为矢量加法操作的本身是线性的,那么其面积映射理应对此也是一个线性映射。这里我们打算从几个实际的例子出发,说明映射的加法线性性的后果。 显然(两个共线矢量所张成的平行四边形还是一条线,因此面积为0): 假定面积映射是一个关于矢量加法的线性映射,那么我们有:

矩阵行列式(较难与困难)

第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题 1.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为() A.869 B.870 C.871 D.875

第II 卷(非选择题) 请点击修改第II 卷的文字说明 评卷人 得分 二、解答题 2.已知矩阵??????=121a A 的一个特征值3=λ所对应的一个特征向量?? ? ???=11e , 求矩阵A 的逆矩阵1-A . 3.已知矩阵 10120206A B -???? ==???? ???? ,,求矩阵1.A B - 4.选修4-2:矩阵与变换 已知直线:23l x y -=,若矩阵13a A b -?? = ??? ,a b R ∈所对应的变换σ把直线l 变换为它自身。 (Ⅰ)求矩阵A ; (Ⅱ)求矩阵A 的逆矩阵. 5.求曲线1x y +=在矩阵M 10103?? ??=?????? 对应的变换作用下得到的曲线所围成图形的面积. 6.(本小题满分7分)选修4-2:矩阵与变换 已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量??? ? ??=321e 并有特征值 12-=λ及属于特征值-1的一个特征向量???? ??-=112e , ??? ? ??-=11α (Ⅰ )求矩阵M ;(Ⅱ )求5 M αr . 7.选修4—2:矩阵与变换 已知矩阵00a b ??=????M 满足:i i i l =M αα,其中(1,2)i i l =是互不相等的实常数,(1,2)i i =α,是非零的平面列向量,11l =,211?? =???? α,求矩阵M . 8.变换T 1是逆时针旋转 2 π 的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=. (1)求点P (2,1)在T 1作用下的点P ′的坐标; (2)求函数y =x 2 的图象依次在T 1,T 2变换的作用下所得曲线的方程. 9.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-

第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题矩阵的数值特征 (行列式、迹、秩、相对特征根、范数、条件数) 一、行列式 已知A p×q, B q×p, 则|I p+AB|=|I q+BA| 证明一:参照课本194页,例4.3. 证明二:利用AB和BA有相同的非零特征值的性质; 从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。 行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。 二、矩阵的迹 矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。下面讨论有关迹的一些性质和不等式。 定义: n n ii i i1i1 tr(A)a == ==λ ∑∑,etrA=exp(trA) 性质: 1. tr(A B)tr(A)tr(B) λ+μ=λ+μ,线性性质;

2. T tr(A )tr(A)=; 3. tr(AB)tr(BA)=; 4. 1 tr(P AP)tr(A)-=; 5. H H tr(x Ax)tr(Axx ),x =为向量; 6. n n k k i i i 1 i 1 tr(A),tr(A )===λ=λ∑∑; 从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0; 8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥?λ≥λ); 9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。 若干基本不等式 对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式 [x,y]2≤[x,x]﹒[y,y] 得 定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)

矩阵的秩与矩阵的运算

《高等代数与解析几何》概念复习 第一章向量代数 (向量(vector)),(向量的长度(模)),(零向量(zero vector)),(负向量),(向量的加法(addition)),(三角形法则),(平行四边形法则),(多边形法则),(减法),(向量的标量乘积(scalar multiplication)),(向量的线性运算),线性组合(linear combination),线性表示,线性相关(linearly dependent),线性无关(linearly independent),(原点(origin)),(位置向量(position vector)),(线性流形(linear manifold)),(线性子空间(linear subspace));基(basis),仿射坐标(affine coordinates),仿射标架(affine frame),仿射坐标系(affine coordinate system),(坐标轴(coordinate axis)),(坐标平面),(卦限(octant)),(右手系),(左手系),(定比分点);(线性方程组(system of linear equations)),(齐次线性方程组(system of homogeneous linear equations)),(行列式(determinant));n维向量,向量的分量(component),向量的相等,和向量,零向量,负向量,标量乘积,n维向量空间(vector space),自然基,(行向量(row vector)),(列向量(column vector));单位向量(unit vector),直角坐标系(rectangular coordinate system),直角坐标(rectangular coordinates),射影(projection),向量在某方向上的分量,(正交分解),(向量的夹角),内积(inner product),标量积(scalar product),(数量积),(方向的方向角),(方向的方向余弦);外积(exterior product),向量积(cross product),(二重外积);混合积(mixed product,scalar triple product) 第二章行列式 (映射(mapping)),(象(image)),(一个原象(preimage)),(定义域(domain)),(值域(range)),(变换(transformation)),(单射(injection)),(象集),(满射(surjection)),(一一映射,双射(bijection)),(原象),(映射的复合,映射的乘积),(恒同映射,恒同变换(identity mapping)),(逆映射(inverse mapping));(置换(permutation)),(n阶对称群(symmetric group)),(对换(transposition)),(逆序对),(逆序数),(置换的符号(sign)),(偶置换(even permutation)),(奇置换(odd permutation));行列式(determinant),矩阵(matrix),矩阵的元(entry),(方阵(square matrix)),(零矩阵(zero matrix)),(对角元),(上三角形矩阵(upper triangular matrix)),(下三角形矩阵(lower triangular matrix)),(对角矩阵(diagonal matrix)),(单位矩阵(identity matrix)),转置矩阵(transpose matrix),初等行变换(elementary row transformation),初等列变换(elementary column transformation);(反称矩阵(skew-symmetric matrix));子矩阵(submatrix),子式(minor),余子式(cofactor),代数余子式(algebraic cofactor),(范德蒙德行列式(Vandermonde determinant));(未知量),(方程的系数(coefficient)),(常数项(constant)),(线性方程组的解(solution)),(系数矩阵),(增广矩阵(augmented matrix)),(零解);子式的余子式,子式的代数余子式

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤?? ?? ? ? ?----=11 145641321A 182423=C C 43334=C C 10122--=D 1 1564321 3-=D n m ?k n k m c c () n m ij a A ?=0,r D ≠()(). T R A R A =0,A ≠0. A ≠?? ? ?? ??=000007204321B 0 2021≠????? ??=010*********A ????? ??=001021B ????? ??=10 010011 C 1 250 3400 0D ?? ? = ? ?? ?2 123508153000720 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2 R D =()3 R E =

高考数学《矩阵与行列式》专题复习

高考数学《矩阵与行列式》专题复习 1.矩阵:n m ?个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表 ?? ?? ? ? ? ??=mn n m n n a a a a a a a a a A 2122212 11211叫做矩阵。记作n m A ?,n m ?叫做矩阵的维数。 矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。 2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。 ?? ?=+=+222 1 11c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行; ②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。 变换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。 4.矩阵运算:加法、减法及乘法 (1)矩阵的和(差):记作:A+B (A-B ). 运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C ) (2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:α A.

运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==; (3)矩阵的乘积:设A 是k m ?阶矩阵,B 是n k ?阶矩阵,设C 为n m ?矩阵。如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m ×n =A m ×k B k ×n . 运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠. 5.二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数 且不全为零,21,c c 是常数项) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ???--=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 21a a 2 1b b 表示算式1221b a b a -,即 21a a 2 1b b 1221b a b a -=. 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。 记= D 21a a 2 1b b ,= x D 21c c 2 1b b ,= y D 21a a 2 1c c ,则: ①当= D 21a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ? ==D D y D D x y x . ②当D =0时,0x y D D ==方程组(*)无穷组解; ③当D =0时,0≠x D 或0≠y D ,方程组(*)无解。 系数行列式11 22 a b D a b =也为二元一次方程组解的判别式。

对矩阵的秩的有关理解及其在线性代数中的应用

对矩阵的秩的有关理解及其在线性代数中的应用 摘 要:本文叙述了矩阵秩的几个等价定义,并且给出了几个相关秩的解法.通过例子来验证和探讨了矩阵秩在线性代数中的应用,这些知识对我们理解矩阵的本质,灵活运用矩阵的秩去分析相关问题有一定的意义和作用. 关键词:矩阵的秩;秩的解法;秩的应用 On the Rank of Matrix relating to the understanding Extremely in the Application of Linear Algebra Abstract : This article describes several equivalent definitions of matrix rank, and gives the solution of some rank. Through example to verify that the discussion and application of matrix in linear algebra, this knowledge to our understanding of the nature of the matrix, flexible use of matrix rank to have a certain meaning and analysis of related problems. Key words : rank of matrix; rank method; the application of rank 0 前言 矩阵的理论是线性代数的理论基础。而在矩阵的理论中,矩阵的秩是一个基本的理论概念,也是矩阵最重要的数量特征之一,他在初等变换下是一个不变量.它是反应矩阵固有特性的一个重要概念.矩阵作为线性代数的重要工具,已渗透到各章内容之中,并成为行列式、线性代数方程组、线性空间、欧氏空间和二次型的纽带,它把线性代数各章节贯串成为一个整体.而矩阵的秩几乎贯穿矩阵理论的始终,是矩阵一个重要的、本质的属性,在求方阵的逆、判断线性方程组是否有解以及有多少个解、判断向量组的线性相关性、求矩阵的特征值等方面,矩阵的秩都有着广泛的应用. 1 矩阵秩的概念 首先给出矩阵秩的几个等价定义 定义1 设s ,矩阵中不为0子式的最高阶数,即A 有r 阶子式不为0,任何1r +阶子式(如果存在的话)全为0,称r 为矩阵A 的秩。记做()R A r =. 从本质上说,矩阵的秩就是矩阵中不等于0的姿势的最高阶数。这个不为0的子

第一章行列式与矩阵的计算的练习(含答案)

行列式及矩阵的计算(课堂练习) 一、填空 1.已知三阶方阵A 的行列式为3,则 2A -= -24 2. 设12,01A -?? = ???1()32x g x x -= -+,则()g A =0800-?? ??? 3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若 3,A B =则=,,,,6αβγ βγα+= 4.行列式1 1 111 1 11 ---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=k A 1021k ?? ??? 。(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=, 1232,,,n αααβ=,则12312,,,2αααββ-=16m n + 解:1 1231232 ,,,2,,,D αααβαααβ= +- 14412312322,,,(1),,,16m n αααβαααβ=+-=+ 7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分 别为3,-2,1,1,则行列式D =-3 . 解:D =1×3+3×(-2)+(-2)×1+2×1=-3 二、判断题 1.设A 、B 均为n 阶方阵,则A B A B =. ( × ) 2.设A 、B 均为n 阶方阵,则AB A B =. (√ )

三、行列式计算 (1)4 3 3 3 34333 3433 3 3 4 =n D 解:n D n c c c c c c +++13121 43313343133341333313 ++++n n n n 1 1312r r r r r r n --- 1 01000 0103 3313 +n =13+n (2)11111231 149118271 D --=-- 解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2- 1)=-240 五、a 为何值时,线性方程组:??? ??-=++=++=++a ax x x x ax x x x x a 322321 321321有唯一解? 解:2 )1)(2(11111 1det -+==a a a a a A ,2-≠a 且1≠a 时,有唯一解.

相关文档
最新文档