LED参数简单测量

LED参数简单测量
LED参数简单测量

LED参数简单测量在网上经常看到有朋友询问如何测量LED参数,而且主要都是想了解LED的应用参数值,笔者作为一个经常同LED打交道的工程人员,在网上搜索无果之下,决定自行制作一篇与朋友们共享

什么是LED?LED是 Light Emitting Diode(发光二极管)的缩写

其他原理方面的东西网上很多的介绍,就不一一介绍了,现就朋友们关心的应用参数进行简单说明

1按封装分:直插和贴片型的。

2按形状分:一般市场上的LED有圆形,方形,异形(相对圆方两种)几种。

3按颜色分:一般市场上的LED有白色,红色,黄色,蓝色,粉色,绿色,蓝色,紫色等。

4按光谱分:一般市场上的LED按光谱可分为可见光与不可见光两种,可见光即红绿蓝黄白粉紫等颜色,不可见光即

红外光主要用在遥控器及一些特殊控制中。

5按功能分:一般市场上的LED可分为普通型和带IC型,普通型即接电就亮,带IC型目前主要有七彩闪灯,单色

闪灯。

我们主要讨论LED的一些应用参数:

1Vf正向压降值(参考单位V)

目前基本上LED制造厂的手册中都会有说明,如果在没有手册的情况下如何测量Vf值呢?一般LED制造厂在测试参数中使用的都是20mA的典型值,所以我们可以在这个基础上粗略测试出Vf值,即在LED上加电,中间串联一个电流表,当电流表指示20mA时用电压表测试此时的LED压降即为Vf值。

2Iv亮度值(参考单位mcd)

理论上来说此值越高越好,也就是说亮度越高越好,但亮度高单价也会相应高,市面上有分普亮、高亮、超亮之分,但由于目前每家LED制造厂定义不尽相同,所以无法给出具体参数,见谅。

3使用电流确定(参考单位mA)

一旦确定了Vf值与电源电压,此时要确定使用方法是并联还是串联,就可以依此进行电流确定(讨论的是简单应用,非那种使用IC进行恒流的应用!),用电源电压减去LED 的Vf值,再除去20mA即可得出电阻值了。当然如果你想LED亮一些的话也是可以的,只要LED不超过厂商参数就可以了,就市面上普通三毫米LED而言一般最大40mA已经是极限差数了。千万不要以为电流超过了似乎也没有什么影响,还是可以亮啊,但如果你使用时间长了的话就会严重影响LED的寿命。

目前产品用途多样化,因LED的节电及无频闪,所以越来越多的灯具使用LED,套用一句朋友的话:LED是潮流,不是趋势!

可充电式LED台灯越来越受到大家喜爱了。有兴趣的朋友去

https://www.360docs.net/doc/8d8507564.html,/shop/xshop/wui_page-cat-35 205105-45676847-vdrE3MyotcY=.htm?checkedRange=true 看看吧!

LED主要参数与特性

来源:中国LED显示屏网

LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件

的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光

强指向特性、时间特性以及热学特性。

1、LED电学特性

1.1I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V

特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触

电阻,反之为高接触电阻。

如左图:

(1)正向死区:(图oa或oa′段)a点对于V0为开启电压,当

V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R

很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为

1.2V,GaP为1.8V,GaN为

2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系

IF=IS(eqVF/KT–1)-------------------------IS为反向饱和

电流。

V>0时,V>VF的正向工作区IF随VF指数上升IF=ISeqVF/KT

(3)反向死区:V<0时pn结加反偏压

V=-VR时,反向漏电流IR(V=-5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区V<-VR,VR称为反向击穿电压;VR电压对应IR 为反向漏电流。当反向偏压一直增加使V<-VR时,则出现IR突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向

击穿电压VR也不同。

1.2C-V特性

鉴于LED的芯片有9×9mil(250×250um),10×10mil,

11×11mil(280×280um),12×12mil(300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。由1MHZ交流信号用C-V

特性测试仪测得。

1.3最大允许功耗PFm

当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IF

LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示

为P=KT(Tj–Ta)。

1.4响应时间

响应时间表征某一显示器跟踪外部信息变化的快慢。现有几种显示LCD(液晶显示)约10-3~10-5S,CRT、PDP、LED都达到10-6~10-7S

(us级)。

①响应时间从使用角度来看,就是LED点亮与熄灭所延迟的时

间,即图中tr、tf。

图中t0值很小,可忽略。

②响应时间主要取决于载流子寿命、器件的结电容及电路阻抗。 LED的点亮时间——上升时间tr是指接通电源使发光亮度达到正

常的10%开始,一直到发光亮度达到正常值的90%所经历的时间。

LED熄灭时间——下降时间tf是指正常发光减弱至原来的10%所

经历的时间。

不同材料制得的LED响应时间各不相同;如GaAs、GaAsP、GaAlAs 其响应时间<10-9S,GaP为10-7S。因此它们可用在10~100MHZ高频

系统。

2LED光学特性

发光二极管有红外(非可见)与可见光两个系列,前者可用辐射

度,后者可用光度学来量度其光学特性。

2.1发光法向光强及其角分布Iθ

2.1.1发光强度(法向光强)是表征发光器件发光强弱的重要性

能。LED大量应用要求是圆柱、圆球封装,由于凸透镜的作用,故都

具有很强指向性:位于法向方向光强最大,其与水平面交角为90°。

当偏离正法向不同θ角度,光强也随之变化。发光强度随着不同封装

形状而强度依赖角方向。

什么是LED?

What is a LED?

LED Light Emitting Diode(发光二极管)的缩写。广泛见于日常生活中,如家用电器的指示灯,汽车

后防雾灯等。LED的最显著特点是使用寿命长,光电转换效能高。

什么是LED?

在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。

LED的发光颜色和发光效率与制作LED的材料和工艺有关,目前广泛使用的有红、绿、蓝三种。由于LED工作电压低(仅1.5-3V),能主动发光且有一定亮度,亮度又能用电压(或电流)调节,本身又耐冲击、抗振动、寿命长(10万小时),所以在大型的显示设备中,目前尚无其他的显示方式与LED显示方式匹敌。

把红色和绿色的LED放在一起作为一个像素制作的显示屏叫双基色屏或伪彩色屏;把红、绿、蓝三种LED

管放在一起作为一个像素的显示屏叫三基色屏或全彩屏。制作室内LED屏的像素尺寸一般是2-10毫米,常常采用把几种能产生不同基色的LED管芯封装成一体,室外LED屏的像素尺寸多为12-26毫米,每个像素由若干个各种单色LED组成,常见的成品称像素筒或像素模块。

LED显示屏如果想要显示图象,则需要构成像素的每个LED的发光亮度都必须能调节,其调节的精

细程度就是显示屏的灰度等级。灰度等级越高,显示的图像就越细腻,色彩也越丰富,相应的显示控

制系统也越复杂。在当前的技术水平下,256级灰度的图像,颜色过渡已十分柔和,图像还原效果比较

令人满意。

资料显示,LED光源比白炽灯节电87%、比荧光灯节电50%,而寿命比白炽灯长20~30倍、比荧光灯长10倍。LED光源因具有节能、环保、长寿命、安全、响应快、体积小、色彩丰富、可控等系列独特优点,

被认为是节电降能耗的最佳实现途径。

LED发光二极管技术参数常识

LED发光二极管技术参数常识 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度E g有关,即λ≈1240/Eg (mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm 红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性

发光二极管光谱参数测试方法的研究

发光二极管光谱参数测试方法的研究X 金尚忠1,2,王东辉1,周 文2,张在宣1 (1.中国计量学院信息工程学院,浙江杭州310034; 2.浙江大学信息工程学院,浙江杭州310027) 摘要:影响发光二极管(L ED)颜色的光谱参数有:峰值波长、带宽、主波长和质心波长。峰值波长和带宽反映了L ED发光的物理特性,主波长反映了L ED发光的目视感觉,质心波长是L ED的几何对称波长。 用分光光度法和CCD器件测量L ED的光谱参数,精度达1nm。用质心波长来估算主波长,误差小于 3nm。 关键词:发光二极管(L ED);峰值波长;主波长;质心波长;色品坐标 中图分类号:T P216;T N312+.8 文献标识码:A 文章编号:1005-0086(2002)08-0825-03 Research on Measurement of Spectrum Parameters in LED JIN Shang-zhong1,2,WANG Do ng-hui1,ZHOU Wen2,ZHAN G Zai-x uan2 (1.Institute of I nfo rm atio n Eng ineer ing,China Instit ute of M etr olog y,Hangzhou310034,China; 2.In- stitute o f Infor matio n Eng ineer ing,Zhejia ng U niv ersity,Hang zho u310027,China) Abstract:Peak w av eleng th,bandw ith,domain wav eleng th,and centro id w avelength ar e facto rs affect ing on lig ht color of LED.P eak wav eleng th and bandwith stand for the physical pro per ty of lig ht o f L ED, domain w av elengt h co rr espo nds to feel of eyes,centr oid w av elengt h is g eometr ic sym metry w avelength of L ED.T hey wer e measured using concave disper sio n sy st em and CCD.T heir accur acies are1nm.Do- main w avelength w as estimated by centr oid w aveleng th,its err or is less t ha n3nm. Key words:L ED;P eak wav eleng th;Do main w avelength;Cent ro id wav eleng th;Colo r coo rdinate 1 引 言 发光二极管(LED)由于其光强高、功耗低、寿命长、可靠性高、易驱动和易与IC相衔接等特点,已被广泛用于交通、广告和仪器仪表的显示中。LED的颜色是影响显示效果的关键因素,决定LED颜色的则是它的波长特性。由于LED的相对光谱功率分布是一种窄带的准单色光光谱,因此测量它的波长就尤为重要。 2 测量原理 LED在可见光区域内发光的相对光谱功率分布为P(K)。图1所示为绿色LED的P(K)曲线,量大值所对应的波长K P称为它的峰值波长。它的颜色可用色坐标(x,y)来表示。按CIE规定[1],LED的三刺激值X、Y和Z为 X=k∫780380P(K)x-(K)d K Y=k∫780380P(K)y-(K)d K Z=k∫780380P(K)z-(K)d K (1) 式中,x-(K)、y-(K)和z-(K)为1931CIE-X YZ标准色度观察者光谱三刺激值;k称为调整系数 k=100/∫780380P(K)y-(K)d K( 2) 图1 LED的相对光谱功率分布 Fig.1 Relative spectrum energy distribution of LED 光电子?激光 第13卷 第8期 2002年8月 Jo urnal of O pt oelect ro nics?L aser Vo l.13 N o.8 A ug.2002 X收稿日期:2002-01-21 修订日期:2002-02-06

LED投光灯规格书技术参数

LED 投光灯规格书 客户代码: 品名: LED 150W投光灯 规格: L425 * W325 * H190 mm 送样日期: 2014年6月30日 本厂型号: HTG06150 档案号: 送样数量: 承认书份数: 1份 一.产品材质: 高纯度铝制反射器,灯壳及散热体;高强度钢化玻璃罩;大功率LED 光源;搭配高效率恒流电源. 二.适用场所: 主要用于户外投光照明、建筑物外墙、港口码头等,户外广告。厂区、体育馆、停车场、广场、码头、工地、广告牌、桥梁、江河堤岸、园林、景观、庭院、草坪、池塘以及其他夜景亮化、照明的场所。 三、特点: 1.采用集成大功率LED(50W)作为光源。运用独特的多颗芯片集成式单模组光源设计,选用进口高亮度半 导体晶片。 2.散热器与灯壳一体化设计,LED 直接与外壳紧密相接,通过外壳散热翼与空气对流散热,充分保证了LED 灯的使用寿命。 3.灯壳采用铝合金压铸成型,可以有效的散热和防水、防尘。灯具表面进行了耐紫外线抗腐蚀处理,整体 灯具达到P65 标准。 4.采用单体椭圆反射腔配合球状弧面来设计,针对性地将LED 发出的光控制在需要的范围内,提高了灯具 出光效果的均匀性和光能的利用率,更能凸显LED泛光灯节能优点。与传统的纳灯相比,可节电70%以上. 5.无不良眩光、无频闪。消除了普通灯不良眩光引起的刺眼、视觉疲劳与视线干扰。 6.启动无延时,通电即亮,无需等待,消除了传统灯具长时间的启动过程。 7.绿色环保无污染,不含铅、汞等污染元素,对环境没有任何污染。

四、投光灯技术参数 五、使用说明 1.产品使用工作电压:AC 85V~265V 50/60Hz。勿超出工作电压范围。 2.贮存环境温度-50℃~+50℃.工作环境温度:-40℃~+50C℃,最佳工作环境温度为-0℃~+30℃。 3.由于灯具有玻璃配件,在搬运,贮存的时候请注意轻拿轻放,勿重压。

发光二极管特性参数(精)

发光二极管特性参数 IF 值通常为 20mA 被设为一个测试条件和常亮时的一个标准电流,设定不同的值用以测试 二极管的各项性能参数,具体见特性曲线图。 IF 特性: 1. 以正常的寿命讨论,通常标准 IF 值设为 20 - 30mA ,瞬间( 20ms )可增至 100mA。 2. IF 增大时 LAMP 的颜色、亮度、 VF 特性及工作温度均会受到影响,它是正常工作时的一个先决条件, IF 值增大:寿命缩短、 VF 值增大、波长偏低、温度上升、亮度增大、 角度不变,与相关参数间的关系见曲线图; 1.VR ( LAMP 的反向崩溃电压) 由于 LAMP 是二极管具有单向导电特性,反向通电时反向电流为 0 ,而反向电压高到一定程度时会把二极管击穿,刚好能把二极管击穿的电压称为反向崩溃电压,可以用 “ VR ”来表示。 VR 特性: 1. VR 是衡量 P/N 结反向耐压特性,当然 VR 赿高赿好; 2. VR 值较低在电路中使用时经常会有反向脉冲电流经过,容易击穿变坏; 3. VR 又通常被设定一定的安全值来测试反向电流( IF 值),一般设为 5V ; 4. 红、黄、黄绿等四元晶片反向电压可做到 20 - 40V ,蓝、纯绿、紫色等晶片反向 电压只能做到 5V 以上。 2.IR (反向加电压时流过的电流) 二极管的反向电流为 0 ,但加上反向电压时如果用较精密的电流表测量还是有很小的电流,只不过它不会影响电源或电路所以经常忽略不记,认为是 0 。 IR 特性: 1. IR 是反映二极管的反向特性, IR 值太大说明 P/N 结特性不好,快被击穿; IR 值 太小或为 0 说明二极管的反向很好; 2. 通常 IR 值较大时 VR 值相对会小, IR 值较小时 VR 值相对会大; 3. IR 的大小与晶片本身和封装制程均有关系,制程主要体现在银胶过多或侧面沾胶, 双线材料焊线时焊偏,静电亦会造成反向击穿,使 IR 增大。

发光二极管参数的测量

发光二极管参数的测量 一发光二极管的结构和基本原理 1发光二极管的结构 发发光二极管(light emission diode LED )图 1 显示了 LED 的结构截面图。要使 LED 光, 有源层的半导体材料必须是直接带隙材料,越过带隙的电子和空穴能够直接复合发射出光子。为 了使器件有好的光和载流子限制,大多采用双异质结( DH )结构。 P 电极(+) P 型隔离层 光 有源层 N 型隔离层 N型衬底 N电极 (-) 图 1 边发射 LED 结构截面 2 LED 的基本工作原理 LED是一种直接注入电流的发光器件,是半导体晶体内部受激电子从高能级回复到低能 级时,发射出光子的结果,这就是通常所说的自发发射跃迁。当LED 的 PN 结加上正向偏压,注入的少数载流子和多数载流子(电子和空穴)复合而发光。值得注意的是,对于大量 处于高能级的粒子各自分别自发发射一列一列角频率为ν=E g/h 的光波,但各列光波之间 没有固定的相位关系,可以有不同的偏振方向,并且每个粒子所发射的光沿所有可能的方向传 播,这个过程称为自发发射。其发射波长可用下式来表示: λ( μm)= 1.2396/E g(eV) 二发光二极管的特性及测试方法 1 LED的光谱特性及测试方法 由于 LED 没有光学谐振腔选择波长,所以它的光谱是以自发发射为主的光谱,图 2 显示出了 LED 的典型光谱曲线。发光光谱曲线上发光强度最大时所对应的波长称为发光峰值 波长,光谱曲线上两个半光强点所对应的波长差称为谱线宽度(简称线宽),其典型值在30-40nm 之间。峰值波长和谱线宽度的测试方法如图 3 所示,当被测器件的正向工作电流达 到规定值时,旋转单色仪波鼓,使指示器达到最大值,读出波长峰值,此即为该器件的发光

发光二极管的类型、主要参数

.普通单色发光二极管普通单色发光二极管具有体积小、工作电压低、工作电流小、发光均匀稳定、响应速度快、寿命长等优点,可用各种直流、交流、脉冲等电源驱动点亮.它属于电流控制型半导体器件,使用时需串接合适地限流电阻. 普通单色发光二极管地发光颜色与发光地波长有关,而发光地波长又取决于制造发光二极管所用地半导体材料.红色发光二极管地波长一般为,琥珀色发光二极管地波长一般为,橙色发光二极管地波长一般为左右,黄色发光二极管地波长一般为左右,绿色发光二极管地波长一般为. 常用地国产普通单色发光二极管有(厂标型号)系列、(部标型号)系列和系列.常用地进口普通单色发光二极管有系列和系列等. .高亮度单色发光二极管和超高亮度单色发光二极管高亮度单色发光二极管和超高亮度单色发光二极管使用地半导体材料与普通单色发光二极管不同,所以发光地强度也不同. 通常,高亮度单色发光二极管使用砷铝化镓()等材料,超高亮度单色发光二极管使用磷铟砷化镓()等材料,而普通单色发光二极管使用磷化镓()或磷砷化镓()等材料.. .变色发光二极管变色发光二极管是能变换发光颜色地发光二极管.变色发光二极管发光颜色种类可分为双色发光二极管、三色发光二极管和多色(有红、蓝、绿、白四种颜色)发光二极管. 变色发光二极管按引脚数量可分为二端变色发光二极管、三端变色发光二极管、四端变色发光二极管和六端变色发光二极管. 常用地双色发光二极管有系列和系列,常用地三色发光二极管有、、等型号,见表. .闪烁发光二极管闪烁发光二极管()是一种由集成电路和发光二极管组成地特殊发光器件,可用于报警指示及欠压、超压指示. 闪烁发光二极管在使用时,无须外接其它元件,只要在其引脚两端加上适当地直流工作电压()即可闪烁发光. 表是几种常用闪烁发光二极管地主要参数. .电压控制型发光二极管普通发光二极管属于电流控制型器件,在使用时需串接适当阻值地限流电阻.电压控制型发光二极管()是将发光二极管和限流电阻集成制作为一体,使用时可直接并接在电源两端. 电压控制型发光二极管地发光颜色有红、黄、绿等,工作电压有、、、、、共种规格. 表为系列电压控制型发光二极管地主要参数. .红外发光二极管红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去地发光器件,主要应用于各种光控及遥控发射电路中. 红外发光二极管地结构、原理与普通发光二极管相近,只是使用地半导体材料不同.红外发光二极管通常使用砷化镓()、砷铝化镓()等材料,采用全透明或浅蓝色、黑色地树脂封装. 常用地红外发光二极管有系列、系列、系列、系列、系列和系列等 ·发光亮度 亮度是发光性能又一重要参数,具有很强方向性.其正法线方向地亮度,指定某方向上发光体表面亮度等于发光体表面上单位投射面积在单位立体角内所辐射地光通量,单位为或. 若光源表面是理想漫反射面,亮度与方向无关为常数.晴朗地蓝天和荧光灯地表面亮度约为(尼特),从地面看太阳表面亮度约为×. 亮度与外加电流密度有关,一般地,(电流密度)增加也近似增大.另外,亮度还与环境温度有关,环境温度升高,η(复合效率)下降,减小.当环境温度不变,电流增大足以引起结结温升高,温升后,亮度呈饱和状态. 文档来自于网络搜索 ·寿命

LED性能参数及测试方法

LED选修课总结 LED性能参数及测试方法 院(系)名称 专业班级 学号 学生姓名 指导教师 2011年11月24日

摘要 发光二极管(英语:Light-Emitting Diode,简称LED)是一种能发光的半导体电子元件。这种电子元件早在1962年出现,早期只能发出低光度的红光,之后发展出其他单色光的版本,时至今日能发出的光已遍及可见光、红外线及紫外线,光度也提高到相当的光度。而用途也由初时作为指示灯、显示板等;随着白光发光二极管的出现而续渐发展至被用作照明。 LED只能往一个方向导通(通电),叫作正向偏置(正向偏压),当电流流过时,电子与电洞在其内重合而发出单色光,这叫电致发光效应,而光线的波长、颜色跟其所采用的半导体物料种类与故意渗入的元素杂质有关。具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点。但当LED的发光强度达至足以用于室内照明的话,其效率会下降到比萤光灯更差(比萤光灯耗电),成本也高至极不合理水平,这是当前LED照明未能普及的重要原因。(September,2011)白光LED的发光效率,在近几年来已经有明显的提升,同时,在每千流明的购入价格,也因为投入市场的厂商相互竞争的影响,而明显下降。因此,LED照明虽然尚未达到全面普及的程度,但是在光电转换效率及有效照度对用电量的比值上,均已经超过萤光灯,甚至有机会挑战低压钠灯(Low Pressure Sodium light)。 关键词:正向偏置、电致发光 ·

目录 Ⅰ检测性能参数的方法 (1) ⅡLED的重要特性及测试 (2) 1电特性测试方法 (2) 2光特性测试 (3) 3光谱参数 (5) 4热学特性 (6) 5可靠性 (6) 总结 (7) 参考文献 (8)

发光二极管参数

二极管参数 普通发光二极管的正向饱和压降为1.6V~2.1V,正向工作电流为5~20mA LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)正向工作电流If:它是指发光二极管正常发光时的正向电流值。在实际使用中应根据需要选择IF在0.6·IFm以下。 (2)正向工作电压VF:参数表中给出的工作电压是在给定的正向电流下得到的。一般是在IF=20mA时测得的。发光二极管正向工作电压VF在1.4~3V。在外界温度升高时,VF将下降。 (3)V-I特性:发光二极管的电压与电流的关系 在正向电压正小于某一值(叫阈值)时,电流极小,不发光。当电压超过某一值后,正向电流随电压迅速增加,发光。由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。正向的发光管反向漏电流IR<10μA 以下。 LED的分类 1.按发光管发光颜色分 按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。 根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。 2.按发光管出光面特征分 按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm 及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1 (3/4);把φ4.4mm的记作T-1(1/4)。 由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类: (1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明

发光二极管参数

由于发光二极管具有最大正向电流IFm、最大反向电压VRm的限制,使用时,应保证不超过此值。为安全起见,实际电流IF应在0.6IFm以下;应让可能出现的反向电压VR<0。6VRm。 ------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------- 超亮发光二极管有三种颜色,然而三种发光二极管的压降都不相同。 其中红色的压降为2.0--2.2V 黄色的压降为1.8—2.0V 绿色的压降为3.0—3.2V。 正常发光时的额定电流均为20mA。 ------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------- 白色发光二极管的发光原理与其它发光二极管的发光原理稍有一点不同。目前有两种发光模式能使发光二极管发出白色光。一种是采用二波长 蓝色光+黄色光 发光模式的白色发光二极管,结构如图1所示,其基础部分是一颗蓝色发光二极管,在蓝色发光二极管芯片的外面覆盖一层荧光体层,当蓝色发光二极管芯片发射出来的蓝色光,有一部分在透过荧光体时被荧光体吸收,变成了黄光,黄光又与透过荧光体的蓝光混合后就发出白色光。例如有的白色发光二极管发出的光是纯白的,而有的发出的光是白偏蓝的。 另一种是采用三波长 蓝色光+绿色光+红色光 发光模式的全彩色发光二极管,结构如图2所示。将红、绿、蓝三颗发光二极管封装在同一个管壳中,三种原色的光混合也可以产生出白光,但是由于制作全彩色发光二极管的成本要相对较高,所以一般不会用全彩色发光二极管来制作照明灯,全彩色发光二极管主要是用来制造全彩色显示屏,用全彩色发光二极管制作照明灯会大大增加产品的成本。 白色发光二极管的正向电压降与其他发光二极管的正向电压降不同。 白色发光二极管的正向电压降约为3.5V左右,需要正向工作电流≥15mA左右时,才能使其正常发光

LED发光二极管检测方法

1.发光二极管的特点 发光二极管LED(Light-Emitting Diode)是能将电信号转换成光信号的结型电致发光半导体器件。其主要特点是: (1)在低电压(~)、小电流(5~30mA)的条件下工作,即可获得足够高的亮度。 (2)发光响应速度快(10-7~10-9 s),高频特性好,能显示脉冲信息。 (3)单色性好,常见颜色有红、绿、黄、橙等。 (4)体积小。发光面形状分圆形、长方形、异形(三角形等)。其中圆形管子的外径有φ1、φ2、φ3、φ4、φ5、φ8、φ10、φ12、φ15、φ20(mm)等规格,直径1 mm的属于超微型LED。 (5)防震动及抗冲击穿性能好,功耗低,寿命长。由于LED的PN结工作在正向导通状态,本射功耗低,只要加必要的限流措施,即可长期使用,寿命在10万小时以上,甚至可达100万小时。 (6)使用灵活,根据需要可制成数码管、字符管、电平显示器、点阵显示器、固体发光板、LED平极型电视屏等。 (7)容易与数字集成电路匹配。 2.发光二极管的原理 发光二极管内部是具有发光特性的PN结。当PN结导通时,依靠少数载流子的注入以及随后的复合而辐射发光。普通发光二极管的外形、符号及伏安特性如图1所示。LED正向伏安特性曲线比较陡,在正向导通之前几乎有电流。当电压超过开启电压时,电流就急剧上升。因此,LED属于电流控制型半导体器件,其发光亮度L(单位cd/m2,读作坎[德拉]每平方米)与正向电流IF近似成正双,有公式L =K IFm

式中,K为比例系数,在小电流范围内(IF=1~10mA),m=~。当IF>10mA时,m=1,式()简化成 L =K IF 即亮度与正向电流成正比。以磷砷化镓黄色LED为例,相对发光强度与正向电流的关系如图2所示。LED的正向电压则与正向电流以及管芯的半导体材料有关。使用时应根据所要求的显示亮度来选取合适的IF值(一般选10mA左右,对于高亮度LED可选1~2mA),既保证亮度适中,也不会损坏 LED。若电流过大,就会烧毁LED的PN结。此外,LED的使用寿命将缩短。 由于发光二极管的功耗低、体积小,色彩鲜艳、响应速度快、寿命长,所以常用作收录机、收音机和电子仪器的电平指示器、调谐指示器、电源指示器等。发光二极管在正向导通时有一定稳压作用,还可作直流稳压器中的稳压二极管,提供基准电压,兼作电源指示灯。目前市场上还有一种带反射腔及固定装置的发光二要管(例如BT104-B2、BT102-F),很容易固定在仪器面板上。 LED的输出光谱决定其发光颜色及光辐射纯度,也反映出半导体材料的特性。常见管芯材料有磷化镓(GaP)、砷化镓(GaAsP)、磷砷化镓(GaAlAs)、砷铝化镓(GaN)氮化镓可发蓝光。 3.使用注意事项 (1)管子极性不得接反,一般讲引线较长的为正极,引线较短的是负极。 (2)使用中各项参数不得超过规定极限值。正向电流IF不允许超过极限工作电流IFM值,并且随着环境温度的升高,必须作降额使用。长期使用温度不宜超过75℃。 (3)焊接时间应尽量短,焊点不能在管脚根部。焊接时应使用镊子夹住管脚根部散热,宜用中性助焊剂(松香)或选用松香焊锡丝。 (4)严禁用有机溶液浸泡或清洗。 (5)LED的驱动电路必须加限流电阻,一般可取一百欧至几百欧,视电源电压而定。

发光二极管主要参数与特性(精)

发光二极管主要参数与特性 LED 是利用化合物材料制成 pn 结的光电器件。它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED 电学特性 1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa 或oa ′段)a 点对于V 0 为开启电压,当V <Va ,外加电 场尚克服 不少因载 流子扩散 而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同,GaAs 为1V ,红色GaAsP 为1.2V ,GaP 为1.8V ,GaN 为2.5V 。 (2)正向工作区:电流I F 与外加电压呈指数关系 I F = I S (e qV F /KT –1) -------------------------I S 为反向饱和电流 。 V >0时,V >V F 的正向工作区I F 随V F 指数上升 I F = I S e qV F /KT (3)反向死区 :V <0时pn 结加反偏压 V= - V R 时,反向漏电流I R (V= -5V )时,GaP 为0V ,GaN 为10uA 。 (4)反向击穿区 V <- V R ,V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。当反向偏压一直增加使V <- V R 时,则出现I R 突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。 1.2 C-V 特性 鉴于LED 的芯片有9×9mil (250×250um),10×10mil ,11×11mil (280×280um),12×12mil (300×300um),故pn 结面积大小不一,使其结电容(零偏压) C ≈n+pf 左右。 C-V 特性呈二次函数关系(如图2)。由1MH Z 交流信号用C-V 特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED 的电流为I F 、

LED显示屏关键技术指标

LED显示屏关键技术指标 LED显示屏关键技术指标: 像素失控率 像素失控率是指显示屏的最小成像单元(像素)工作不正常(失控)所占的比例。而像素失控有两种模式:一是盲点,也就是瞎点,在需要亮的时候它不亮,称之为瞎点;二是常亮点,在需要不亮的时候它反而一直在亮着,称之为常亮点。一般地,像素的组成有2R1G1B (2颗红灯、1颗绿灯和1颗蓝灯,下述同理)、1R1G1B、2R1G、3R6G等等,而失控一般不会是同一个像素里的红、绿、蓝灯同时全部失控,但只要其中一颗灯失控,我们即认为此像素失控。为简单起见,我们按LED显示屏的各基色(即红、绿、蓝)分别进行失控像素的统计和计算,取其中的最大值作为显示屏的像素失控率。 失控的像素数占全屏像素总数之比,我们称之为“整屏像素失控率”。另外,为避免失控像素集中于某一个区域,我们提出“区域像素失控率”,也就是在100×100像素区域内,失控的像素数与区域像素总数(即10000)之比。此指标对《LED显示屏通用规范》SJ/T11141-2003中“失控的像素是呈离散分布”要求进行了量化,方便直观。 目前国内的LED显示屏在出厂前均会进行老化(烤机),对失控像素的LED灯都会维修更换,“整屏像素失控率”控制在1/104之内、“区域像素失控率”控制在3/104之内是没问题的,甚至有的个别厂家的企业标准要求出厂前不允许出现失控像素,但这势必会增加生产厂家的制造维修成本和延长出货时间。在不同的应用场合下,像素失控率的实际要求可以有较大的差别,一般来说,LED显示屏用于视频播放,指标要求控制在1/104之内是可以接受,也是可以达到的;若用于简单的字符信息发布,指标要求控制在12/104之内是合理的灰度等级 灰度也就是所谓的色阶或灰阶,是指亮度的明暗程度。对于数字化的显示技术而言,灰度是显示色彩数的决定因素。一般而言灰度越高,显示的色彩越丰富,画面也越细腻,更易表现丰富的细节。 灰度等级主要取决于系统的A/D转换位数。当然系统的视频处理芯片、存储器以及传输系统都要提供相应位数的支持才行。目前国内LED显示屏主要采用8位处理系统,也即256(28)级灰度。简单理解就是从黑到白共有256种亮度变化。采用RGB三原色即可构成256×256×256=16777216种颜色。即通常所说的16兆色。国际品牌显示屏主要采用10位处理系统,即1024级灰度,RGB三原色可构成10.7亿色。 灰度虽然是决定色彩数的决定因素,但并不是说无限制越大越好。因为首先人眼的分辨率是有限的,再者系统处理位数的提高会牵涉到系统视频处理、存储、传输、扫描等各个环节的变化,成本剧增,性价比反而下降。一般来说民用或商用级产品可以采用8位系统,广播级产品可以采用10位系统。 亮度鉴别等级 亮度鉴别等级是指人眼能够分辨的图像从最黑到最白之间的亮度等级。前面提到显示屏的灰度等级有的很高,可以达到256级甚至1024级。但是由于人眼对亮度的敏感性有限,并不能完全识别这些灰度等级。也就是说可能很多相邻等级的灰度人眼看上去是一样的。而且眼睛分辨能力每人各不相同。对于显示屏,人眼识别的等级自然是越多越好,因为显示的图像毕竟是给人看的。人眼能分辨的亮度等级越多,意味着显示屏的色空间越大,显示丰富色彩的潜力也就越大。亮度鉴别等级可以用专用的软件来测试,一般显示屏能够达20级以上就算是比较好的等级了。 灰度非线性变换

LED测试参数

LED光电性能测试上网时间:2009-06-25 来源:中国LED网中心议题: LED的测试方法 LED测试标准的制定 解决方案: 测试LED的电特性、光特性、开关特性、颜色特性、热学特性、可靠性 半导体发光二极管(LED)已经被广泛应用于指示灯、信号灯、仪表显示、手机背光、车载光源等场合,尤其是白光LED技术的发展,LED在照明领域的应用也越来越广泛。但是过去对于LED的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内LED产业的发展受到严重影响。因此,半导体发光二极管测试方法国家标准应运而生。 LED测试方法 基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。 1、电特性 LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。通过LED 电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。 LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。 2、光特性 类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。 (1)光通量和光效 有两种方法可以用于光通量的测试,积分球法和变角光度计法。变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。 图 2 积分球法测LED光通量 此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。 图3 辅助灯

LED室内显示屏主要技术指标参数

LED室内显示屏主要技术指标参数(参考) 项目分类 PH4 (双 色) PH4.7 5(双 色) P7.62 (双 色) PH5 (贴 片全 彩) PH6 (贴 片全 彩 P7.62 (亚 标贴 全彩 P7.62 (贴 片全 彩 PH8 (亚 标贴 全彩) PH8 (贴 片全 彩) PH10 (贴 片全 彩 PH10 (贴 片全 彩 PH10 (亚 标贴 全彩 PH12 (贴 片全 彩) PH14 (贴 片虚 拟全 彩) P20 (贴 片虚 拟全 彩) P20 (贴 片虚 拟全 彩) P20 (贴 片虚 拟全 彩) P40 (全 彩) P41.2 5(全 彩) 单元模组LED封 装形 式 ¢3.0 模块 ¢ 3.75 模块 ¢5.0 模块 表贴 三并 一 表贴 三并 一 方灯 表贴 三并 一 方灯 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 表贴 三并 一 F5灯F5灯 物理 点间 距 4mm 4.75m m 7.62m m 5mm 6mm 7.62m m 7.62m m 8mm 8mm 10mm 10mm 10mm 12mm 14mm 20mm 20mm 20mm 40mm 41.25 mm 模块 尺寸 32mm ×32m m 38mm ×38m m 61mm ×61m m / / / / / / / / / / / / / / / / 物理 密度 62500 点/㎡ 44321 点/㎡ 17222 点/㎡ 40000 点/㎡ 27777 点/㎡ 17222 点/㎡ 17222 点/㎡ 15625 点㎡ 15625 点㎡ 10000 点/㎡ 10000 点㎡ 10000 点/㎡ 6944 点 / ㎡ 5102 点/㎡ 2500 点/㎡ 2500 点/㎡ 2500 点/㎡ 625点 /㎡ 576点 /㎡发光 点颜 色组 合 1R1Y1 G 1R1Y1 G 1R1Y1 G 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 1R1PG 1B 2R1PG 1B 2R1PG 1B 2R1PG 1B 2R1PG 1B 单元 板尺 寸 256mm *128m m 304mm *152m m 488mm *244m m 160mm *80mm 192mm *96mm 244mm *122m m 244mm *122m mm 256mm *128m m 256mm *128m m 320mm *160m m 320mm *160m m 320mm *160m m 192mm *192m m 224mm *224m m 320mm *160m m 320mm *160m m 320mm *160m m 320mm *320m m 333mm *333m m 单元 箱尺 寸 无无无无 768mm *576m m 732mm *488m m 732mm *488m m 768mm *512m m 768mm *512m m 640mm *480m m 640mm *480m m 640mm *480m m / / 1280m m*960 mm 1280m m*960 mm 1280m m*960 mm / / 物理 分辨 率 64*32 64*32 64*32 32*16 32*16 32*16 32*16 32*16 32*16 32*16 32*16 32*16 16*16 16*16 16*8 16*8 16*8 8*8 8*8 主要技 最佳 视距 ≥4m≥5m≥6m≥4m≥6m≥6m≥6m≥8m≥8m≥10m≥10m≥10m≥12m≥15m≥18m≥18m≥18m≥18m≥18m 100°100°100°100°100°100°100°100°100°100°100°100°100°100°100°100°

LED发光二极管参数

led发光二极管参数 简介: LED是发光二极管( Light Emitting Diode, LED)的简称,也被称作发光二极管,这种半导体组件一般是作为指示灯、显示板,它不但能够高效率地直三丰光电接将电能转化为光能,而且拥有最长达数万小时~10 万小时的使用寿命,同时具备不若传统灯泡易碎,并能省电等优点。 发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。 它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。 发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算: R=(E-UF)/IF 式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。发光二极管的两根引线中较长的一根为正极,应按电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。 与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管,每个数码管可显示0~9十个数目字。 LED(发光二极管)是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs 为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流IF与外加电压呈指数关系 IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。 V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压

各类二极管的检测精品文档11页

(一)普通二极管淘一站的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估 测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再

将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V(BR)”键,测试表即可指示出二极管的反向击穿电压值。 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。 (二)稳压二极管的检测 1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的 负极。 若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。

LED主要参数及特性(精)

LED主要参数与特性 LED是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。(2)正向工作区:电流IF与外加电压呈指数关系 IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。V>0时,V>VF的正向工作区IF 随VF指数上升 IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区 V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf 左右。 C-V特性呈二次函数关系(如图2)。由1MHZ交流信号用C-V特性测试仪测得。

相关文档
最新文档