实验三贪心算法应用

合集下载

实验3贪心算法(定稿)

实验3贪心算法(定稿)

实验3贪心算法(定稿)第一篇:实验3 贪心算法(定稿)《算法设计与分析》实验报告实验3贪心算法姓名学号班级实验日期实验地点一、实验目的1、掌握贪心算法的设计思想。

2、理解最小生成树的相关概念。

二、实验环境1、硬件环境 CPU:酷睿i5 内存:4GB 硬盘:1T2、软件环境操作系统:Windows10 编程环境:jdk 编程语言:Java三、实验内容:在Prim算法与Kruskal算法中任选一种求解最小生成树问题。

1、你选择的是:Prim算法2、数据结构(1)图的数据结构——图结构是研究数据元素之间的多对多的关系。

在这种结构中,任意两个元素之间可能存在关系,即结点之间的关系可以是任意的,图中任意元素之间都可能相关。

图形结构——多个对多个,如(2)树的数据结构——树结构是研究数据元素之间的一对多的关系。

在这种结构中,每个元素对下(层)可以有0个或多个元素相联系,对上(层)只有唯一的一个元素相关,数据元素之间有明显的层次关系。

树形结构——一个对多个,如3、算法伪代码 Prim(G,E,W)输入:连通图G 输出:G的最小生成树T 1.S←{1};T=∅ 2.While V-S ≠∅ do3.从V-S中选择j使得j到S中顶点的边e的权最小;T←T∪{e}4.S←S∪{j}3、算法分析时间复杂度:O(n)空间复杂度:O(n^2)4、关键代码(含注释)package Prim;import java.util.*;publicclass Main { staticintMAXCOST=Integer.MAX_VALUE;staticint Prim(intgraph[][], intn){ /* lowcost[i]记录以i为终点的边的最小权值,当lowcost[i]=0时表示终点i加入生成树 */ intlowcost[]=newint[n+1];/* mst[i]记录对应lowcost[i]的起点,当mst[i]=0时表示起点i加入生成树 */ intmst[]=newint[n+1];intmin, minid, sum = 0;/* 默认选择1号节点加入生成树,从2号节点开始初始化*/ for(inti = 2;i<= n;i++){/* 标记1号节点加入生成树 */ mst[1] = 0;/* n个节点至少需要n-1条边构成最小生成树 */ for(inti = 2;i<= n;i++){/* 找满足条件的最小权值边的节点minid */ for(intj = 2;j<= n;j++){/* 输出生成树边的信息:起点,终点,权值 */System.out.printf(“%c1, minid + 'A''A' + 1;intj = chy-'A' + 1;graph[i][j] = cost;graph[j][i] = cost;for(intj = 1;j<= n;j++){ } graph[i][j] = MAXCOST;} } System.out.println(”Total:"+cost);} }5、实验结果(1)输入(2)输出最小生成树的权值为:生成过程:(a)(b)(d)(e)(c)四、实验总结(心得体会、需要注意的问题等)这次实验,使我受益匪浅。

贪心算法解活动安排实验报告

贪心算法解活动安排实验报告

实验3 贪心算法解活动安排问题一、实验要求1.要求按贪心法求解问题;2.要求读文本文件输入活动安排时间区间数据;3.要求显示结果。

二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++6.0三、源程序#include "stdafx.h"#include<stdio.h>#include<stdlib.h>#include<algorithm>#define N 50#define TURE 1#define FALSE 0int s[N];/*开始时间*/int f[N];/*结束时间*/int A[N];/*用A存储所有的*/int Partition(int *b,int *a,int p,int r);void QuickSort(int *b,int *a,int p,int r);void GreedySelector(int n,int *s,int *f,int *A);int main(){int n=0,i;while(n<=0||n>50){printf("\n");printf("请输入活动的个数,n=");scanf("%d",&n);if(n<=0) printf("请输入大于零的数!");else if(n>50) printf("请输入小于50的数!");}printf("\n请分别输入开始时间s[i]和结束时间f[i]:\n\n");for(i=1;i<=n;i++){printf("s[%d]=",i,i);scanf("%d",&s[i]);printf("f[%d]=",i,i);scanf("%d",&f[i]);printf("\n");}QuickSort(s,f,1,n); //按结束时间非减序排列printf("按结束时间非减序排列如下:\n"); /*输出排序结果*/ printf("\n 序号\t开始时间结束时间\n");printf("-------------------------\n");for(i=1;i<=n;i++)printf(" %d\t %d\t %d\n",i,s[i],f[i]);printf("-------------------------\n");GreedySelector(n,s,f,A);//贪心算法实现活动安排printf("安排的活动序号依次为:");for(i=1;i<=n;i++){if(A[i])printf("\n%d %d-->%d",i,s[i],f[i]);}printf("\n");system("pause");return 0;}//快速排序void QuickSort(int *b,int *a,int p,int r){int q;if(p<r)q=Partition(b,a,p,r);QuickSort(b,a,p,q-1);/*对左半段排序*/ QuickSort(b,a,q+1,r);/*对右半段排序*/ }}//产生中间数int Partition(int *b,int *a,int p,int r){int k,m,y,i=p,j=r+1;int x=a[p];y=b[p];while(1){while(a[++i]<x);while(a[--j]>x);if(i>=j)break;else{k=a[i];a[i]=a[j];a[j]=k;m=b[i];b[i]=b[j];b[j]=m;}a[p]=a[j];b[p]=b[j];a[j]=x;b[j]=y;return j;}//贪心算法实现活动安排void GreedySelector(int n,int *s,int *f,int *A){//用集合A来存储所选择的活动A[1]=TURE; //默认从第一次活动开始执行int j=1; //j记录最近一次加入到A中的活动for(int i=2;i<=n;i++){//f[j]为当前集合A中所有活动的最大结束时间//活动i的开始时间不早于最近加入到集合A中的j的时间f[j]if(s[i]>=f[j]){A[i]=TURE; //当A[i]=TURE时,活动i在集合A中j=i;}else A[i]=FALSE; }}四、运行结果五、实验小结贪心算法总是做出在当前看来最好的选择,也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。

贪心算法 实验报告

贪心算法 实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。

贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。

本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。

一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。

这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。

贪心算法的优点是简单高效,但也存在一定的局限性。

二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。

问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。

具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。

2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。

3. 重复步骤2,直到待支付金额为0。

实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。

首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。

此时,剩余待支付金额为36-50=-14元。

接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。

此时,剩余待支付金额为-14-10=-24元。

继续选择10元硬币,剩余待支付金额为-24-10=-34元。

再次选择10元硬币,剩余待支付金额为-34-10=-44元。

最后,选择5元硬币,剩余待支付金额为-44-5=-49元。

由于待支付金额已经为负数,我们无法继续选择硬币。

此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。

实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。

贪心算法在优化问题中的运用

贪心算法在优化问题中的运用

贪心算法在优化问题中的运用贪心算法(Greedy Algorithm)是一种常用的算法思想,它在解决一些优化问题时具有很高的效率和实用性。

贪心算法的核心思想是每一步都选择当前状态下最优的解决方案,以期望最终能够得到全局最优解。

在实际应用中,贪心算法常常被用来解决一些最优化问题,如最短路径问题、背包问题、任务调度等。

本文将介绍贪心算法在优化问题中的运用,并通过具体案例来说明其应用场景和解决方法。

一、贪心算法的基本原理贪心算法是一种在每一步选择当前状态下最优解决方案的算法思想。

它与动态规划不同,贪心算法并不会保存之前的计算结果,而是根据当前状态做出最优选择。

贪心算法的优势在于简单、高效,适用于一些特定类型的问题。

贪心算法的基本原理可以总结为以下几点:1. 每一步都选择当前状态下的最优解决方案;2. 不考虑未来的结果,只关注当前状态的最优选择;3. 最终期望通过每一步的最优选择达到全局最优解。

二、贪心算法在优化问题中的应用1. 最短路径问题最短路径问题是图论中的经典问题,贪心算法可以用来解决一些简单的最短路径问题。

例如,在无权图中,从起点到终点的最短路径可以通过贪心算法来求解,每次选择距离最近的节点作为下一步的目标节点,直到到达终点为止。

2. 背包问题背包问题是一个经典的优化问题,贪心算法可以用来解决一些特定类型的背包问题。

例如,在分数背包问题中,每种物品可以取任意比例,贪心算法可以按照单位价值最高的顺序选择物品放入背包,直到背包装满为止。

3. 任务调度问题任务调度问题是一个常见的优化问题,贪心算法可以用来解决一些简单的任务调度问题。

例如,在单处理器任务调度中,每个任务有一个开始时间和结束时间,贪心算法可以按照结束时间的先后顺序对任务进行调度,以最大化处理器的利用率。

三、案例分析:活动选择问题活动选择问题是一个经典的优化问题,通过贪心算法可以高效地解决。

问题描述如下:假设有n个活动,每个活动都有一个开始时间和结束时间,活动之间不能交叉进行,问如何安排活动才能使参加的活动数量最多。

贪心算法原理及应用

贪心算法原理及应用

贪心算法原理及应用随着人工智能技术的不断发展,算法的种类也越来越多,其中贪心算法作为一种最基础的算法,也在不断优化和升级。

本文将简要介绍贪心算法原理及其应用,探讨贪心算法的优劣和适用场景。

一、贪心算法原理贪心算法是一种常见的优化算法,它的基本思想是:在每一步选择中都采取当前状态下最优的选择,从而希望最终得到全局最优的解。

贪心算法在每一步选择中都依赖于以前的选择结果,但不依赖于将来的选择结果。

这种贪心选择性质是该算法能达到最终全局最优解的保证。

然而,即使每个局部最优的选择都是正确的,但最终的全局最优解并不一定会得到,因此贪心算法不一定能得到全局最优解,但是在实际问题中,贪心算法通常可以得到非常接近最优解的结果。

二、贪心算法应用1.最小生成树最小生成树是图论中的一个经典算法问题,它可以用贪心算法来解决。

在给定一个带权无向图时,我们需要找到一棵生成树,使得生成树所有边的权值之和最小。

Prim算法和Kruskal算法都是基于这一思想建立的。

2.背包问题背包问题是一种经典的动态规划问题,也可以用贪心算法来解决。

在背包问题中,我们需要找到一种最佳的方案,使得放入背包的物品的总价值最大。

3.活动安排在一组活动中,每个活动都有一个开始时间和结束时间。

如何安排这些活动,使得可以安排的最多?可以用贪心算法进行解决。

三、贪心算法的优劣1.优点优点是:简单,易于实现;对于一些问题可以快速得到答案。

2.缺点缺点是:贪心算法不能保证得到全局最优解,只能得到最终结果接近最优解的结果。

在一些问题中会出现无解的情况。

此外,贪心算法需要根据实际问题进行调整,否则可能会得到错误的答案。

3.适用场景对于一些特殊的问题,贪心算法通常可以得到非常好的效果。

例如上文提到的最小生成树、背包问题和活动安排等等。

在这些问题中,贪心算法可以得到接近最优解的结果。

但是,在一些问题中,贪心算法的结果会偏离真实结果。

四、结语贪心算法是一种简单而实用的算法,它在很多实际问题中都有广泛的应用。

贪心算法设计与应用

贪心算法设计与应用

实验报告课程算法设计与分析实验实验名称贪心算法设计与应用第 1 页一、实验目的理解贪心算法的基本原理,掌握贪心算法设计的基本方法及其应用;二、实验内容(一)Huffman编码和译码问题:1.问题描述给定n个字符在文件中的出现频率,利用Huffman树进行Huffman编码和译码。

设计一个程序实现:1.输入含n(n<=10)个字符的字符集S以及S中各个字符在文件中的出现频率,建立相应的Huffman树,求出S中各个字符的Huffman编码。

2.输入一个由S中的字符组成的序列L,求L的Huffman 编码。

3. 输入一个二进制位串B,对B进行Huffman译码,输出对应的字符序列;若不能译码,则输出无解信息。

提示:对应10 个字符的Huffman树的节点个数<211。

2.测试数据Inputn=5字符集合S={a, b, c, d, e},对应的频率分别为a: 20b: 7c: 10d: 4e: 18字符序列L=ebcca二进制位串B=01100111010010OutputS中各个字符的Huffman编码:(设Huffman树中左孩子的权<=右孩子的权)a: 11b: 010c: 00d: 011e: 10L的Huffman 编码:10010000011B对应的字符序列: dcaeeb若输入的B=01111101001,则无解(二) 加油问题(Problem Set 1702):1.问题描述一个旅行家想驾驶汽车从城市A到城市B(设出发时油箱是空的)。

给定两个城市之间的距离dis、汽车油箱的容量c、每升汽油能行驶的距离d、沿途油站数n、油站i离出发点的距离d[i]以及该站每升汽油的价格p[i],i=1,2,…,n。

设d[1]=0<d[2]<…<d[n]。

要花最少的油费从城市A到城市B,在每个加油站应加多少油,最少花费为多少?2.具体要求Input输入的第一行是一个正整数k,表示测试例个数。

中原工学院贪心算法的应用

中原工学院贪心算法的应用

实验三贪心算法的应用一、实验目的1.掌握贪心算法的基本概念和两个基本要素2.熟练掌握贪心算法解决问题的基本步骤。

3.学会利用贪心算法解决实际问题。

二、实验内容1.问题描述:题目三:程序存储问题设有n个程序{1,2,3,…,n}要存放在长度为L的磁带上。

程序i存放在磁带,1≤i≤n。

要求确定这n个程序在磁带上的一个存储方案,使得能上的长度是li够在磁带上存储尽可能多的程序。

输入数据中,第一行是2个正整数,分别表示程序文件个数和磁带长度L。

接下来的1行中,有n个正整数,表示程序存放在磁带上的长度。

输出为最多可以存储的程序个数。

输入数据示例6 502 3 13 8 80 20输出数据5题目四:汽车加油问题一辆汽车加满油后,可行使n千米。

旅途中有若干个加油站。

若要使沿途加油次数最少,设计一个有效算法,对于给定的n和k个加油站位置,指出应在哪些加油站停靠加油才能使加油次数最少。

输入数据中,第一行有2个正整数,分别表示汽车加满油后可行驶n千米,且旅途中有k个加油站。

接下来的1行中,有k+1个整数,表示第k个加油站与第k-1个加油站之间的距离。

第0个加油站表示出发地,汽车已加满油。

第k+1个加油站表示目的地。

输出为最少的加油次数,如果无法到达目的地,则输出“No Solution”。

实验提示:把两加油站的距离放在数组中,a[1..k]表示从起始位置开始跑,经过k个加油站,a[i]表示第i-1个加油站到第i个加油站的距离。

汽车在运行的过程中如果能跑到下一个站则不加油,否则要加油。

输入数据示例7 71 2 3 4 5 1 6 6输出数据42.算法设计:题目三:程序存储问题n为程序个数,L为磁带的长度,定义数组len[n]存储n个程序的长度;调用库函数sort(len,len+n)对程序的长度从小到大排序;函数Calculate()计算磁带最多可存储的程序数,采用while循环依次对排序后的程序长度进行累加,用count计算程序个数,用sum计算程序累加长度(初始count=0,sum=0):sum=sum+len[i];若sum<=L,count加1,否则count为所求;count=n时循环结束;若while循环结束时仍有sum<=L,则n为所求。

算法实验报告贪心

算法实验报告贪心

一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。

贪心算法并不保证能获得最优解,但往往能获得较好的近似解。

在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。

本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。

二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。

三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。

2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。

3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三贪心算法的应用
一、实验目的
1.掌握贪心算法的基本思想、技巧和方法。

2.熟练贪心算法的基本要素:贪心选择性和最优子结构。

3.学会利用贪心算法解决实际问题。

二、实验内容
1.问题描述:
题目一:编程实现下述活动的最佳安排
joblist = [['a', 8, 10], ['b', 1, 5], ['c', 4, 8], ['d', 1, 3], ['e', 6, 9], ['f', 2, 4], ['g', 4, 7], ['h', 1, 5], ['i', 6, 12]]
题目二:编程实现用dijkstra算法解决单源最短路径问题
graph = {'s': {'a': 4, 'c': 11, 'b':6},
'a': {'b': 3},
'c': {'d': 2},
'b': {'c': 5, 'e': 4},
'e': {'c': 7, 'd': 3},
'd': {}}
2.要求:
1)完成程序代码的编写
2)独立完成实验及实验报告
三、实验步骤
1.理解算法思想和问题要求;
2.编程实现题目要求;
3.上机输入和调试自己所编的程序;
4.验证分析实验结果;
5.整理出实验报告。

四、程序及运行结果
题目一
题目二
五、心得体会。

相关文档
最新文档