双目视觉技术解析

双目视觉技术解析
双目视觉技术解析

双目视觉技术解析

双目视觉的基础原理是基于三角测量原理,我们并排放置两个相机,利用投影光学系统可使两个相机视野在所需求的物距发生重叠,通过每个相机拍摄的图片,我们可以捕捉到不同视角的场景,如下图所示:

CCAS双目视觉模型

在实现3D测量前,首先我们需要确定左边相机图像的表面点在右边相机图像的哪里显示;其次必须知道左右相机图像的关联像素交叉点。这涉及到2种技术:立体匹配和双目标定。

1、双目标定

双目标定是对双目三维测量系统的参数初始化过程,也就是说用已知世界坐标系测算双目系统的参数,可以用下面的关系进行描述:

双目视觉中测量和标定的关系

2、相机矫正

通过上述关系,很容易发现“图像坐标”是每次计算的基础,为了准确的计算该坐标,我们需要相机是“理想模型”,而实际上任何成像系统都有其畸变。相机的畸变模型如下,我们可以通过单相机标定确定相机的畸变系数。

CCAS系统成像畸变模型

3、立体匹配

由于单相机获取的图像只能计算出二维坐标,因为我们使用了2套相机,且2套相机之间的关系也是已知的,那么如果我们能把三维空间中某点在左右相机成像的二维坐标都计算出来,且能知道这是同一个点,这样就可以计算出三维坐标。这里面确认同名点的技术就是立体匹配。立体匹配有很多种算法,其中局部匹配法是最常用的,但是就目前已有算法来说,没有一种算法可以实现100%匹配。一般来说待匹配点越多,匹配准确率越低。

CCAS双目标定结果

4、三维测量

不管使用哪种匹配方式,最终的目的还是把兴趣点的三维坐标计算出来,达到我们三维信息获取的目的。目前比较常见的应用有三类:三维还原、立体导航、空间跟踪。

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(BinocularStereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面CL和CR上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原

视觉检测系统报告

视觉检测系统报告 年春季学期研究生课程考核(阅读报告、研究报告)考核科目:视觉测量系统学所在院(系):电气工程及自动化学院学生所在学科:仪器科学与技术学生姓名:***学 号:10S001***学生类别:工学硕士考核结果: 阅卷人: 视觉测量系统课程报告第一部分视觉测量系统发展现状综述机器视觉自起步发展到现在,已有15年的发展历史。应该说机器视觉作为一种应用系统,其功能特点是随着工业自动化的发展而逐渐完善和发展的。 目前全球整个视觉市场总量大概在60~70亿美元,是按照每年 8、8%的增长速度增长的。而在中国,这个数字目前看来似乎有些庞大,但是随着加工制造业的发展,中国对于机器视觉的需求将承上升趋势。 一、机器视觉的定义及特点简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,且带来最直接的反应就是国内对于机器视觉的需求将越来越多。 二、机器视觉在国内外的应用现状在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%~50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元

BumbleBee2 双目视觉系统技术说明

本文所包含的内容: 讲述了bumblebee 立体视觉的原理 讲述了bumblebee Demo 程序中各项参数的含义及如何调整 讲述了为什么在深度图像和重构的3D 图像中有无效的像素 本文的阅读方法: 红色字体是关键的地方 立体视觉 本文将试着去阐述立体视觉技术。阅读完本文后你将对数据如何在系统中流动和其间所有可调整的参数有一个更深入的了解。这将使你可以量身定做自己的系统来完成特殊的任务。 立体视觉的基本原理 立体视觉的任务是完成空间的测量,这种测量是基于空间上存在偏移的相机所采集到的图像的。立体视觉的处理过程可分为如下三步: 建立从不同观测角度所获得的同一场景图像特征的相关。 计算每幅图像中相同特征的相对位移 根据相机的几何结构,决定特征相对于相机的3D 位置 考虑如下两幅图片。这两幅图片取自一对存在水平偏移的Triclops 相机模型。我们可以在两幅图片中分别定义两个点A 和B 。点left A 对应于点right A ,同样的,点left B 对应于点right B 。 使用一把尺子,如果你测量一个点到图像边缘的水平距离,你会发现左图的这个距离比右图中对应点到图像边缘的水平距离要大。例如,左图中边缘到电话听筒的距离要大于右图中边缘到电话听筒的距离。我们就可以根据这个距离(也被叫做视差)来确定电话听筒到相机模型的距离。 我们把左图和右图中相同特征在各自坐标系中的值的差定义为视差。你会发现在两幅图中,图像上端到所匹配的特征的距离完全相同,这是因为相机是水平排列的,因此只有水平的位移。

于是特征A 的视差被定义成D(A) = x(A left ) – x(A right ),B 的则为D(B) = x(B left ) – x(B right ),其中x(A left )是A left 点的x 轴坐标。 如果你去计算D(A) 和D(B),你会发现 D(A)

视觉检测原理介绍

技术细节 本项目应用了嵌入式中央控制及工业级图像高速传输控制技术,基于CCD/CMOS与DSP/FPGA的图像识别与处理技术,成功建立了光电检测系统。应用模糊控制的精选参数自整定技术,使系统具有对精确检测的自适应调整,实现产品的自动分选功能。 图1 控制系统流程图 光电检测系统主要通过检测被检物的一些特征参数(灰度分布,RGB分值等),从而将缺陷信息从物体中准确地识别出来,通过后续的系统进行下一步操作,主要分为以下几部分 CCD/CMOS图像采集部分 系统图像数据采集处理板中光信号检测元件CCD/CMOS采用进口的适合于高精度检测的动态分析单路输出型、保证实际数据输出速率为320MB/s的面阵CCD/CMOS。像素分别为4000*3000和1600*1200,帧率达到10FPS。使用CCD/CMOS 作为输入图像传感器,从而实现了图像信息从空间域到时间域的变换。为了保证所需的检测精度,需要确定合理的分辨率。根据被检测产品的大小,初步确定系统设计分辨率为像素为0.2mm。将CCD/CMOS接收的光强信号转换成电压幅值,再经过A/D转换后由DSP/ FPGA芯片进行信号采集,即视频信号的量化处理过程,图像采集处理过程如图所示:

图2 图像采集处理过程 数据处理部分 在自动检测中,是利用基于分割的图像匹配算法来进行图像的配对为基础的。图像分割的任务是将图像分解成互不相交的一些区域,每一个区域都满足特定区域的一致性,且是连通的,不同的区域有某种显著的差异性。分割后根据每个区域的特征来进行图像匹配,基于特征的匹配方法一般分为四个步骤:特征检测、建立特征描述、特征匹配、利用匹配的“特征对”求取图像配准模型参数。 算法基本步骤如下: 1)利用图像的色彩、灰度、边缘、纹理等信息对异源图像分别进行分割,提取区域特征; 2)进行搜索匹配,在每一匹配位置将实时图与基准图的分割结果进行融合,得到综合分割结果; 3)利用分割相似度描述或最小新增边缘准则找出正确匹配位置。 设实时图像分割为m个区域,用符号{A1,A2,… Am}表示,其异源基准图像分割为n个区域,用符号{B1,B2,…Bn}表示。分割结果融合方法如下: 在每一个匹配位置,即假设的图像点对应关系成立时,图像点既位于实时图中,又位于其异源基准图像中,则融合后区域点的标识记为:(A1B1,A1B2,…,A2B1,A2B2,…)。标识AiBj表示该点在实时图中位于区域i,在基准图中位于区域j。算法匹配过程如下图所示:

双目视觉成像原理讲解学习

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。

图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目 立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b 。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。由三角几何关系得到: c c 1z x f u = c c 2z )b -x (f u = v 1 c c 21z y f v v ==

双目立体视觉的水下应用

双目立体视觉的水下应用 从图像预处理、相机标定、立体匹配三个方面论述了双目视觉在水下场景的应用,比较了与空气环境中应用的不同,对水下双目视觉发展趋势做了分析。 标签:水下双目视觉;相机标定;立体匹配 Abstract:This paper discusses the application of binocular vision in underwater scene from three aspects of image preprocessing,camera calibration and stereo matching,compares the application of binocular vision with that in air environment,and analyzes the development trend of underwater binocular vision. Keywords:underwater binocular vision;camera calibration;stereo matching 引言 双目立体视觉技术利用视差理论恢复像素的深度信息和三维坐标,通过获取左右两个视角下同时采集的两幅图像恢复三维场景信息,还原真实的三维世界,为导航提供目标的位置信息描述,是被动式视觉测量技术的一种。作为计算机视觉的一个重要分支,双目立体视觉技术模型简洁,运算高效,有着广阔的应用前景。而随着海洋科学技术的发展和人类对海洋资源探索的逐渐深入,双目视觉技术逐渐被应用到海洋探测,在对水下目标的监控、海底地形测绘、海流测量、水下军事设施的探测和侦查等方面都有着广泛的应用。 双目立体视觉系统模拟人眼,通过三角测量原理来获取图像的视差,进而得到目标三维信息,一般由以下几个功能模块组成:图像采集,相机标定,立体匹配,三维重建。常规的双目视觉大多是在单一介质的空气中,而由于水下环境的特殊性,往往存在光的散射,吸收效应等不利因素的干扰,相关技术方法也应随环境作适应性调整。本文从图像处理,相机标定,立体匹配这三个方面在水下场景的应用做了论述,阐明了与单一空气介质环境中的不同,并对水下双目立体视觉技术的发展做了展望。 1 成像模型 双目立体视觉用到的模型一般是线性的针孔模型,该模型是双目立体视觉中成像的基本模型,将相机理想化,并把空间点投影视为中心,投影未考虑镜头畸变和环境等其他因素,所以也叫线性摄像机模型。而水下成像模型则是考虑到折射的影响,对此做相应补偿和修正。 在双目立体视觉系统中,为了研究空间点和像点的投影关系,通常会用到4个坐标系:世界坐标系OW-XWYWXW、相机坐标系O-xyz、图像物理坐标系O-XY和图像像素坐标系Of-uv。

双目视觉原理

Bumblebee 双目测量基本原理 一.双目视觉原理: 双目立体视觉三维测量是基于视差原理。 图 双目立体成像原理 其中基线距B=两摄像机的投影中心连线的距离;相机焦距为f 。 设两摄像机在同一时刻观看空间物体的同一特征点(,,)c c c P x y z ,分别在“左眼”和“右眼”上获取了点P 的图像,它们的图像坐标分别为(,)left left left p X Y =,(,)right right right p X Y =。 现两摄像机的图像在同一个平面上,则特征点P 的图像坐标Y 坐标相同,即 left right Y Y Y ==,则由三角几何关系得到: () c left c c rig h t c c c x X f z x B X f z y Y f z ?=???-=???=? ? (1-1) 则视差为:left right D isparity X X =-。由此可计算出特征点P 在相机坐标系下的三维坐标为: left c c c B X x D isp a rity B Y y D isp a rity B f z D isp a rity ? =???= ?? ?= ?? (1-2) 因此,左相机像面上的任意一点只要能在右相机像面上找到对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全的点对点运算,像面上所有点只要存在相应的匹配点,

就可以参与上述运算,从而获取其对应的三维坐标。 二.立体视觉测量过程 1.图像获取 (1) 单台相机移动获取 (2) 双台相机获取:可有不同位置关系(一直线上、一平面上、立体分布) 2.相机标定:确定空间坐标系中物体点同它在图像平面上像点之间的对应关系。 (1)内部参数:相机内部几何、光学参数 (2)外部参数:相机坐标系与世界坐标系的转换 3.图像预处理和特征提取 预处理:主要包括图像对比度的增强、随机噪声的去除、滤波和图像的增强、伪彩色处理等; 特征提取:常用的匹配特征主要有点状特征、线状特征和区域特征等 4.立体匹配:根据对所选特征的计算,建立特征之间的对应关系,将同一个空间物理点在不同图像中的映像点对应起来。 立体匹配有三个基本的步骤组成:1)从立体图像对中的一幅图像如左图上选择与实际物理结构相应的图像特征;2)在另一幅图像如右图中确定出同一物理结构的对应图像特征;3)确定这两个特征之间的相对位置,得到视差。其中的步骤2是实现匹配的关键。 5.深度确定 通过立体匹配得到视差图像之后,便可以确定深度图像,并恢复场景3-D信息。 三.Triclops库中的数据流程 Triclops库中的数据流程如下图所示。系统首先从相机模型中获得raw格式的图像,最终将其处理成深度图像。在系统中有两个主要的处理模块。第一个处理模块是一个应用了低通滤波、图像校正和边缘检测的预处理模块。第二个处理模块用来做立体匹配、结果确认和亚像素插值。最后的处理结果就是一幅深度图像。 1.预处理(Pre-processing)

机器视觉检测分解

研究背景: 产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[] 传统检测技术 (1)人工目视检测法 (2)频闪检测法 无损检测技术 (1)涡流检测法 (2)红外检测法 (3)漏磁检测法 计算机视觉检测技术 (1)激光扫描检测法 (2)CCD 检测法 采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。 优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。 基于机器视觉的缺陷检测系统优点: 集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测 由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。 机器视觉图像处理技术是视觉检测的核心技术 铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形 问题的提出: 1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。 2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。 国外研究发展现状: 20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。 1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。 1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。 2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经

双目立体视觉技术的实现及其进展

双目立体视觉技术的实现及其进展 摘要:阐述了双目立体视觉技术在国内外应用的最新动态及其优越性。指出双目体视技术的实现分为图像获取、摄像机标定、特片提取、立体匹配和三维重建几个步骤,详细分析了各个步骤的技术特点、存在的问题和解决方案,并对双目体视技术的发展做了展望。 关键词:双目立体视觉计算机视觉立体匹配摄像机标定特征提取 双目立体视觉是计算机视觉的一个重要分支,即由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,通过计算空间点在两幅国像中的视差,获得该点的三维坐标值。80年代美国麻省理工学院人工智能实验室的Marr提出了一种视觉计算理论并应用在双睛匹配上,使两张有视差的平面图产生在深度的立体图形,奠定了双目立体视觉发展理论基础。相比其他类的体视方法,如透镜板三维成像、投影式三维显示、全息照相术等,双目本视直接模拟人类双眼处理景物的方式,可靠简便,在许多领域均极具应用价值,如微操作系统的位姿检测与控制、机器人导航与航测、三维测量学及虚拟现实等。 1 双目体视的技术特点 双目标视技术的实现可分为以下步骤:图像获取、摄像机标定、特征提取、图像匹配和三维重建,下面依次介绍各个步骤的实现方法和技术特点。 1.1 图像获取 双目体视的图像获取是由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,获取立体图像对。其针孔模型如图1。假定摄像机C1与C2的角距和内部参数都相等,两摄像机的光轴互相平行,二维成像平面X1O1Y1和X2O2Y2重合,P1与P2分别是空间点P在C1与C2上的成像点。但一般情况下,针孔模型两个摄像机的内部参数不可能完成相同,摄像机安装时无法看到光轴和成像平面,故实际中难以应用。 上海交大在理论上对会摄式双目体视系统的测量精度与系统结构参数之间的关系作了详尽分析,并通过试验指出,对某一特定点进行三角测量。该点测量误差与两CCD光轴夹角是一复杂的函数关系;若两摄像头光轴夹角一定,则被测坐标与摄像头坐标系之间距离越大,测量得到点距离的误差就越大。在满足测量范围的前提下,应选择两CCD之间夹角在50℃~80℃之间。 1.2 摄像机的标定 对双目体视而言,CCD摄像机、数码相机是利用计算机技术对物理世界进行重建前的基本测量工具,对它们的标定是实现立体视觉基本而又关键的一步。通常先采用单摄像机的标定方法,分别得到两个摄像机的内、外参数;再通过同一世界坐标中的一组定标点来建立两个摄像机之间的位置关系。目前常用的单摄像机标定方法主要有: (1)摄影测量学的传统设备标定法。利用至少17个参数描述摄像机与三维物体空间的结束关系,计算量非常大。 (2)直接线性变换性。涉及的参数少、便于计算。 (3)透视变换短阵法。从透视变换的角度来建立摄像机的成像模型,无需初始值,可进行实时计算。 (4)相机标定的两步法。首先采用透视短阵变换的方法求解线性系统的摄像机参数,再以求得的参数为初始值,考虑畸变因素,利用最优化方法求得非线性解,标定精度较高。 (5)双平面标定法。 在双摄像机标定中,需要精确的外部参数。由于结构配置很难准确,两个摄像机的距离

双目视觉传感器系统

双目视觉传感器系统 视觉检测广泛地应用于工件的完整性、表面平整度的测量:微电子器件(IC芯片、PC板、BGA)等的自动检测;软质、易脆零部件的检测;各种模具三维形状的检测;机器人的视觉导引等。最具有吸引力的是由视觉传感器阵列组成的大型物体(如白车身)空间三维尺寸多传感器视觉检测系统。 双目视觉传感器由两台性能相同的面阵CCD摄像机组成,基于立体视差的原理,可完成视场内的所有特征点的三维测量,尤其是其它类型的视觉传感器所不能完成的测量任务,如圆孔的中心、三棱顶点位置的测量等。因此,双目视觉传感器是多传感器视觉检测系统的主要传感器之一。要实现双目视觉传感器直接测量大型物体关键点的三维测量,就必须知道传感器的内部参数(摄像机的参数)、结构参数(两摄像机间的位置关系)及传感器坐标系与检测系统的整体坐标系的关系(即全局标定)。因此,在实际测量之前,先要对摄像机进行参数标定。一般方法是,传感器被提供给整个系统使用前,就离线完成传感器的内部参数及结构参数的标定,采用一标准二维精密靶标及一维精密导轨,通过移动导轨来确定坐标系的一个坐标,通过摄像机的像面坐标及三个世界坐标的对应关系求得这些参数。 这种方法的缺点是:标定过程中,需要精确调整靶标与导轨的垂直关系,而且需多次准确移动导轨;同时标定过程的环境与实际测量的情形有差异;传感器在安装的过程中,易引起部分参数的变化,需多次的拆卸;摄像机还需进行全局标定。由此可知标定的劳动强度大,精度难以保证。本文提出了一种现场双目传感器的标定方法,只需先确定摄像机的部分不易变化的参数,其它参数在摄像机安装到整个系统后进行标定。该方法大大地减少了上述因素的影响,能得到满意的标定精度。 双目视觉测量探头由2个CCD摄像机和1个半导体激光器组成,如下图所示。

双目立体视觉

双目立体视觉 双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。现说明介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率。 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi 语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论说明 1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差: 图1 双目立体成像原理图图3 一般双目立体视觉系统原理图

双目视觉成像原理

双目视觉成像原理 1、引言 双目立体视觉(Binocular Stereo Vision)就是机器视觉得一种重要形式,它就是基于视差原理并利用成像设备从不同得位置获取被测物体得两幅图像,通过计算图像对应点间得位置偏差,来获取物体三维几何信息得方法。融合两只眼睛获得得图像并观察它们之间得差别,使我们可以获得明显得深度感,建立特征间得对应关系,将同一空间物理点在不同图像中得映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场得在线、非接触产品检测与质量控制。对运动物体(包括动物与人体形体)测量中,由于图像获取就是在瞬间完成得,因此立体视觉方法就是一种更有效得测量方法。双目立体视觉系统就是计算机视觉得关键技术之一,获取空间三维场景得距离信息也就是计算机视觉研究中最基础得内容。 2、双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L与r标注左、右摄像机得相应参数。世界空间中一点A(X,Y,Z)在左右摄像机得成像面C L与C R上得像点分别为al(ul,vl)与ar(ur,vr)。这两个像点就是世界空间中同一个对象点A得像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机得光心Ol与Or得连线,即投影线alOl与arOr,它们得交点即为世界空间中得对象点A(X,Y,Z)。这就就是立体视觉得基本原理。 图1:立体视觉系统 3、双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量就是基于视差原理,图2所示为简单得平视双目立体成像原理图,两摄像机得投影中心得连线得距离,即基线距为b。摄像机坐标系得原点在摄像机镜头得光心处,坐标系如图2所示。事实上摄像机得成像平面在镜头得光心后,图2中将左右成像平面绘制在镜头得光心前f处,这个虚拟得图像平面坐标系O1uv得u轴与v轴与与摄像机坐标系得x轴与y轴方向一致,这样可以简化计算过程。左右图像坐标系得

双目立体视觉技术简介

双目立体视觉技术简介 1. 什么是视觉 视觉是一个古老的研究课题,同时又是人类观察世界、认知世界的重要功能和手段。人类从外界获得的信息约有75%来自视觉系统,用机器模拟人类的视觉功能是人们多年的梦想。视觉神经生理学,视觉心里学,特别是计算机技术、数字图像处理、计算机图形学、人工智能等学科的发展,为利用计算机实现模拟人类的视觉成为可能。在现代工业自动化生产过程中,计算机视觉正成为一种提高生产效率和检验产品质量的关键技术之一,如机器零件的自动检测、智能机器人控制、生产线的自动监控等;在国防和航天等领域,计算机视觉也具有较重要的意义,如运动目标的自动跟踪与识别、自主车导航及空间机器人的视觉控制等。人类视觉过程可以看作是一个从感觉到知觉的复杂过程,从狭义上来说视觉的最终目的是要对场景作出对观察者有意义的解释和描述;从广义上说,是根据周围的环境和观察者的意愿,在解释和描述的基础上做出行为规划或行为决策。计算机视觉研究的目的使计算机具有通过二维图像信息来认知三维环境信息的能力,这种能力不仅使机器能感知三维环境中物体的几何信息(如形状、位置、姿态运动等),而且能进一步对它们进行描述、存储、识别与理解,计算机视觉己经发展起一套独立的计算理论与算法。 2. 什么是计算机双目立体视觉 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图像,如图一。 图一、视差(Disparity)图像 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。 双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 双目立体视觉的开创性工作始于上世纪的60年代中期。美国MIT的Roberts通过从数字图像中提取立方体、楔形体和棱柱体等简单规则多面体的三维结构,并对物体的形状和空间关系

双目立体视觉

计算机双目立体视觉 双目立体视觉技术是仿照人类利用双目线索感知深度信息的方法,实现对三维信息的感知。为解决智能机器人抓取物体、视觉导航、目标跟踪等奠定基础。 双目立体视觉(Binocular Stereo Vision )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点之间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获取的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作为视差(Disparity )图像。 双目立体视觉系统 立体视觉系统由左右两部摄像机组成,如图,世界空间中的一点A(X,Y ,Z)在左右摄像机的成 像面1C 和r C 上的像点分别为)(111,v u a 和) (r r r v u a ,。这两个像点是世界空间中同一个对象点A 的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心1O 和r O 的连线,即投影线11O a 和r r O a ,它们的交点即为世界空间中的对象点A 。这就是立体视觉的基本原理。 双目立体视觉智能视频分析技术 恢复场景的3D 信息是立体视觉研究中最基本的目标,为实现这一目标,一个完整的立体视觉系统通常包含六个模块:图像获取、摄像机标定、特征提取、立体匹配、三维恢复和视频

分析(运动检测、运动跟踪、规则判断、报警处理)。 图像获取(Image Acquisition ) 数字图像的获取是立体视觉的信息来源。常用的立体视觉图像一般为双目图像,有的采用夺目图像。图像的获取方式有很多种,主要有具体运用的场合和目的决定。立体图像的获取不仅要满足应用要求,而且考虑视点差异、光照条件、摄像机的性能和场景特点等方面的影像。 摄像机标定(Camera Calibration ) 图像上每一点的亮度反映了空间物体表面某点反射光的强度,而该点在图像上的位置则与空 间物体表面相应点的几何位置有关。这些位置的相互关系由摄像机成像几何模型来决定。该几何模型的参数称为摄像机参数,这些参数必须由实验与计算来确定,实验与计算的过程称为摄像机定标。 立体视觉系统摄像机标定是指对三维场景中对象点在左右摄像机图像平面上的坐标位置)(111,v u a 和) (r r r v u a ,与其世界空间坐标A (X, Y , Z )之间的映射关系的确立,是实现立体视觉三维模型重构中基本且关键的一步。 特征提取(Feature Acquisition ) 特征提取的目的是获取匹配得以进行的图像特征,图像特征的性质与图像匹配的方法选择有着密切的联系。目前,还没有建立起一种普遍适用的获取图像特征的理论,因此导致了立体视觉研究领域中匹配特征的多样化。像素相位匹配是近二十年才发展起来的一类匹配算法。相位作为匹配基元,本身反映着信号的结构信息,对图像的高频噪声有很好的一直作用,适于并行处理,能获得亚像素级精度的致密视差。但存在相位奇点和相位卷绕的问题,需加入自适应滤波器解决。或者是像素的集合,也可以是它们的抽象表达,如图像的结构、图像的目标和关系结构等。常用的匹配特征主要有点状特征、线装特征和区特征等几种情形。 一般而言,尺度较大的图像特征蕴含较多的图片信息,且特征本身的数目较少,匹配效率高;但特征提取和描述过程存在较大的困难,定位精度也较差。而对于尺度较小的图像特征来说,对其进行表达和描述相对简单,定位的精度高;但由于特征本身数码较多,所包含的图像信息少,在匹配时需要采用较为严格的约束条件和匹配策略,一尽可能的减少匹配歧义和提高匹配效率。总的来说,好的匹配特征应该具有要可区分性、不变性、唯一性以及有效解决匹配歧义的能力。 图像匹配(Image Matching ) 在立体视觉中,图像匹配是指将三维空间中一点A (X, Y , Z )在左右摄像机的成像面1C 和r C 上的像点)(111,v u a 和) (r r r v u a ,对应起来。图像匹配是立体视觉中最重要也是最困难的问题,一直是立体视觉研究的焦点。当空间三维场景经过透视投影(Perspective Projection )变换为二维图像时,同一场景在不同视点的摄像机图像平面上成像会发生不同程度的扭曲和变形,而且场景中的光照条件、被测对象的几何形状和表面特性、噪声干扰和畸变、摄像机特性等诸多因素的影响都被集中体现在单一的图像灰度值中。显然,要包含了如此之多不利因素的图像进行精准的匹配是很不容易的。

基于双目立体视觉的动态体积测量系统.

基于双目立体视觉的动态体积测量系统 王畅1,赵彩霞2,韩毅1 1. 长安大学汽车学院,陕西西安(710064) 2. 长安大学电控学院,陕西西安(710064) E-mail :wangchang0905@https://www.360docs.net/doc/8e11140298.html, 摘要:以双目立体视觉为基础,设计了一种动态体积测量系统。系统主要应用于粉末状药物的流散性分析。系统中采用三台数字式CCD 摄像机对被测物进行图像采集,利用Visual C++.net以及OpenGL 对测量过程中所得到图像进行三维重构,还原物体的三维形状,同时得到在每个测量时刻药堆的体积, 实现了对药堆的连续非接触式测量。 关键词:双目立体视觉;非接触式测量;三维重构 中图分类号:TP29 文献标识码:A 1. 引言 药品生产过程中,药物的流散性直接影响到药品自动压装的生产工艺。本文设计了一种用于动态测量粉末状药物体积的非接触式测量系统,通过药堆体积随时间增长的关系曲线来判断药物的流散性能。系统模拟药品的填装过程,采用一个玻璃漏斗,下面安装一个透明量杯。药品从漏斗下落时,安装在量杯周围的摄像机对量杯底部的药堆进行实时图像采集,通过图像处理及三维重构得到采集过程被测对象的形状和体积。 2. 系统构成

系统的主要测量对象是粉末状药物或者其他粉末状物质,在药物下落过程中,药堆的体积不断增长。系统中的三台数字摄像机从三个不同角度对药堆进行图像采集,对采集到的图像进行三维重构后得到特定时刻序列上的三维形状及体积。图1是系统的组成图。 图1:系统组成图 2.1计算机 系统中采用两台计算机分工协作,一台用于控制系统的工作,另外一台用于图像处理及

三维重构。三维重构对计算机的性能有很高的要求,特别是对CPU 的运算速度和内存大小有很高要求。对三幅图像进行三维重构时运算量非常大,普通计算机运算起来耗时长,以Pentium 4,2.6G 的CPU ,512MB 内存进行运算时需要5分钟左右,同时容易造成死机。为了提高处理速度以及稳定性, 图像处理计算机采用了Intel Corel Q6600四核处理器,主频为 2.4G ,内存大小为4G 。用该计算机对一帧图像进行重构只需5秒左右。 2.2摄像机系统 与普遍应用的图像采集系统不同,本系统中没有采用图像采集卡采集图像。系统中所选用的摄像机是数字式的,三台数字式摄像机输出数字图像,经千兆以太网交换机与计算机的千兆网卡相连。系统中采用德国BASLER scA1000-30gm数字式黑白摄像机。该摄像机采用3/1〞SONY CCD芯片,分辨率为1034×779,采集频率为30帧每秒。摄像机内置了千兆以太网输出端口,使用六类网线进行数据传输时,传输速率能够达到320MB/s,在采集速度为30帧每秒的情况下能够很好的满足系统要求。摄像机镜头采用computar M1214-MP 2/3〞镜头,焦距为12mm ,手动调节光圈。 系统中的三台摄像机在空间以120°对称安装,摄像机俯拍角度为18.4°,镜头离地高度为175mm 。图2是单个摄像机的安装示意图。 图2:摄像机安装示意图

双目视觉测量系统的参数选择和误差分析(精)

双目视觉测量系统结构参数设计及误差分析 摘要:通过对双目视觉测量系统的研究,建立了双目视觉测量系统的误差模型,并分析了系统结构参数对测量结果的影响。在理论上对系统结构参数(两光轴夹角、基线距离等参数与测量精度之间的关系进行了系统、详尽的分析,得出了测量系统的位置误差对距离方向上的精度影响较大;光轴夹角的变化对测量误差影响不大,而距离方向的误差随着基线距离的增加而减小的结沦。本文建立的误差模型对具体的双目视觉测量系统的设计具有指导作用。 关键词:光学测量;双目视觉;误差分析;结构参数。 0 引言 近来,由于传统的测量方法低速低效,不能满足发展迅速的先进工艺制造的需求。因此,高效、智能、高精度的视觉测量方法的研究越来越受到关注。根据国内外研究,视觉测量技术将会在未来军用民用领域得到广泛应用。但是,目前视觉测量技术仍不能避免一些干扰因素,诸如视线噪声、相机性能、透镜畸变、特征提取和计算机视觉结构的影响,测量精度难以满足工业要求。因此,如何提高测量精度是工业视觉测量方法面临的最大问题。 由于图像一点的三维坐标不能反应一个相机拍摄图片的所有信息,而两个相机拍摄一点图片不能用三角函数的方法进行三维计算。因此,常常在视觉系统中加入镜面或结构光来实现双目视觉的功能。双目视觉系统具有柔性结构,易于安装并且价格低廉,被广泛应用。但是,当视觉系统选择不同的结构参数,测量精度会受到很大影响。目前,大多数视觉结构根据仿真实验确定,很少有理论依据。而且大多数视觉系统强调物体识别而不是测量精度。为了提高测量精度和扩展应用范围,对于结构参数的综合分析十分必要。 本文确立了双目测量系统结构参数的数学模型,通过分析结构参数和测量点的特征关系,明确结构参数的误差分布曲线。根据matlab的仿真结果,确定了在误差最小的范围内的最有价值的结构参数分布。 1 双目视觉系统的数学模型 1.1双目视觉系统的三维结构模型 双目视觉系统的结构参数主要包括扩:两个相机的光轴与基线形成的夹角 (α1, α2,基线是两台照相机物镜光学中心的连线(用B表示);两台照相机的焦点(f1 ,f 2和物距。这些参数中一个变化就会引起其他几个参数的变化。

机器视觉检测技术简介及其特点

机器视觉检测技术简介及其特点 中国纸板商城https://www.360docs.net/doc/8e11140298.html,2012年3月2日机器视觉印刷质量检测是一种模拟人工检测方法和判断逻辑,但同时又具有更高检测精度和更好一致性的自动化检测方法。 一、机器视觉检测的特点 1、机器视觉检测技术简介 机器视觉,简而言之就是利用机器代替人工进行目标识别、判断与测量。它是现代光学、电子学、软件工程、信号处理与系统控制技术等多学科的交叉与融合。 光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。主要作用是获取通过采集位置的标签的数字图像,为后续的分析与处理提供素材,相当于人工检测的眼睛。 判断识别:由工业控制计算机及植入的图像处理与分析软件、控制软件构成。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。 自动控制:最终将检测系统的结果变换成具体操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。 除此之外,印刷检测设备还必须有一套稳定的机械传输控制平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机;而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。 2、印刷缺陷检测原理 印刷缺陷检测主要依靠图像比对的方法进行。如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。当他们之间的差异超出事先设定的范围时即判为缺陷。 3、机器视觉检测特点 一套高品质的机器视觉检测系统,必须具备以下几个必备条件: 1)高品质的成像系统 成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别能力的好坏是评价成像系统的最关键指标。通常,成像系统的评价指标主要体现在三个方面: 能否发现存在的缺陷 基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。所以,一个高品质的成像系统首先应该是一个能充分表现被检

相关文档
最新文档