CAPM
capm中分离定理的基本原理

capm中分离定理的基本原理CAPM(Capital Asset Pricing Model,资本资产定价模型)中的分离定理基于马科维茨的资本组合理论(Modern Portfolio Theory,现代投资组合理论)和Harry Markowitz的财务经济学贡献。
CAPM通过分离定理表达了投资组合中风险和无风险资产的优化配置。
分离定理的基本原理包括以下关键概念:1. 有效前沿(Efficient Frontier):在CAPM中,有效前沿是指所有可能的风险-回报组合中,能够实现最大收益(给定风险水平下)或最小风险(给定收益水平下)的投资组合集合。
2. 无差异曲线(Indifference Curve):无差异曲线表示了投资者在风险和收益之间的权衡。
投资者在无差异曲线上的任何点上都是无差异的,即他们对于该点上的风险和回报水平持有相同的偏好。
3. 资本市场线(Capital Market Line,CML): CML表示所有有效组合中具有最高效率的投资组合。
这条线是无风险资产(风险为零)和风险资产(整个市场投资组合)的组合线。
4. 分离定理:分离定理表达了一个关键的理念,即投资者可以通过在无风险资产和风险资产之间进行选择,实现他们在风险和回报之间的最佳权衡。
具体而言,分离定理指出,投资者可以将他们的投资决策分为两步:•选择风险系数相同的资本市场线上的一个点,该点对应于投资者的风险偏好。
•在无风险资产和选定的资本市场线上的点之间,根据他们的风险偏好选择最佳组合。
5. 均衡投资组合:在CAPM框架中,分离定理的应用使得投资者的最佳投资组合与其个人风险偏好和市场整体的风险-回报关系相关。
投资者可以通过选择均衡投资组合,将其个人风险与市场风险整合起来。
总体而言,CAPM中的分离定理提供了一种理论基础,帮助投资者理解如何在无风险资产和风险资产之间做出最优的资产配置决策。
投资学中的资本资产定价模型(CAPM)风险与预期收益的关系

投资学中的资本资产定价模型(CAPM)风险与预期收益的关系资本资产定价模型(Capital Asset Pricing Model, CAPM)是投资学中广泛应用的理论模型,它用于评估资产的预期收益与风险之间的关系。
该模型的核心思想是通过系统性风险,即贝塔系数,来解释预期收益率,从而提供了一种衡量投资风险的方法。
本文将探讨CAPM模型中风险与预期收益之间的关系。
一、CAPM模型基本原理CAPM模型是由美国学者威廉·夏普、约翰·莱特纳和杰克·特雷纳提出的。
该模型建立在一系列假设的基础上,包括投资者风险厌恶程度相同、无风险利率存在、市场资产组合是风险资产的惟一有效组合等。
根据这些假设,CAPM模型得出了风险与预期收益之间的线性关系,即预期收益率等于无风险利率加上风险溢价,而风险溢价等于资产的贝塔系数乘以市场风险溢价。
二、风险与预期收益的关系在CAPM模型中,风险通过资产的贝塔系数来度量。
贝塔系数是一个衡量资产价格与市场整体波动性之间关系的指标,它代表了资产相对于市场的敏感性。
贝塔系数大于1表示资产的价格波动幅度大于市场,小于1表示资产的价格波动幅度小于市场,等于1表示资产的价格波动与市场相同。
根据CAPM模型,贝塔系数越高,意味着资产的风险越高,预期收益也越高。
这是因为高风险资产需要提供更高的预期收益率来吸引投资者。
三、市场风险溢价CAPM模型中的市场风险溢价是指投资者愿意支付的超过无风险利率的溢价。
市场风险溢价表示了投资者对承担市场整体风险的回报要求。
根据CAPM模型,市场风险溢价等于市场整体风险与无风险利率之差,即市场风险溢价=市场预期收益率-无风险利率。
四、CAPM模型的应用与局限性CAPM模型在投资组合的风险评估、资产定价等方面具有广泛的应用。
通过使用CAPM模型,投资者能够评估特定资产的预期收益与风险,并与市场整体表现进行比较,以作出投资决策。
然而,CAPM模型也存在一定的局限性。
资产定价理论CAPMPPT课件

02 CAPM模型的理论基础
资本资产定价模型的基本假设
市场有效性
市场上的所有信息都会被所有投 资者所获取,且投资者会根据这
些信息做出理性的投资决策。
投资者风险厌恶
投资者对风险持厌恶态度,更 倾向于投资风险较低的资产。
投资者同质预期
投资者对未来市场的预期是一 致的。
资产无限可分
资产可以无限分割,即投资者 可以购买任意数量的资产。
应用
CAPM模型广泛应用于投资组合管理、资本预算和风 险管理等领域。
CAPM模型的未来研究方向
01
改进模型
扩展模型
02
03
实证研究
研究如何改进CAPM模型,使其 更准确地预测资产价格和收益率。
探索如何将CAPM模型与其他金 融理论结合,以更全面地解释金 融市场现象。
进一步验证CAPM模型的有效性 和适用性,通过大量实证数据来 支持或质疑该模型。
基于多因素模型的CAPM改进
01 02 03
多因素模型的发展
传统的CAPM模型假设资产收益率只受市场风险的影响, 但现实中影响资产收益率的因素有很多,因此多因素模型 被引入到CAPM的改进中。多因素模型认为资产收益率受 到多种因素的影响,如市场风险、利率风险、通货膨胀风 险等。
扩展CAPM模型
基于多因素模型的CAPM改进主要是将传统的CAPM模型 扩展为多因素模型。这些改进包括引入更多的风险因子、 建立因子载荷矩阵等,以更全面地反映资产的风险和预期 收益之间的关系。
03 CAPM模型的实证研究
CAPM模型在实证研究中的应用
评估资产风险和回报关系
01
通过实证研究,使用CAPM模型分析资产的风险和回报关系,
以检验资本资产定价的有效性。
资本资产定价理论CAPM

假设1:在一期时间模型里,投资者以期望回报率 和标准差作为评价证券组合好坏的标准。
假设2:所有的投资者都是非满足的。 假设3:所有的投资者都是风险厌恶者。 假设4:每种证券都是无限可分的,即投资者可以
购买到他想要的一份证券的任何一部分。
假设5:无税收和交易成本。 假设6:投资者可以以无风险利率无限制的借和贷。
5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Wednesday, May 26, 2021May 21Wednesday, May 26, 20215/26/2021
理性投资者的 资产组合:
CME(Lr的p )表达rf式变E为(r:pP) rf p
二、市场组合
含义:CML代表了所有无风险资产和有效率风 险资产组合经过再组合后的有效率资产组合的 集合,投资者如果具有相同的预期,他们的 CML将是同一条直线,要选择的风险资产组合 也是共同的p*,且这一资产组合一定是所谓的 包括市场中所有风险资产的市场组合,其中每 种风险资产在这个资产组合中的比例=该资产 的市值占所有资产市值的比例。
CAPM要解决的是在市场均衡状态下,某项风 险资产的预期收益与其所承担的风险之间的关 系,这种关系可以利用CML和市场组合M推 导出来,结果形成了证券市场线。
市场证券组合的标准差等于,它和所有证券 协方差的加权和再开平方,这里的权等于各
个证券在市场证券组合中所占的比例。
1
N N
2
M
iM jM ij
为评估可行投资提供了一个基准收益率; 帮助我们对没上市证券的回报率作出预测。
capm证书报考条件要求

capm证书报考条件要求CAPM(Certificated Associate in Project Management)考试,也叫CAPM认证,即项目管理专业助理师资格认证。
它是针对项目管理从业人员的一项资质认证,需要具备基础的项目管理知识,能在项目中应用项目管理工具继推出PMP资格认证考试以后,美国项目管理协会又特别推出CAPM资格认证,此认证专为项目团队成员及入门的项目管理人员设计,同时也适用于在校大学生或本科毕业生。
CAPM资格认证致力于将年轻人引领进项目管理专业并有所发展,并为他们创造更多的就业机会。
一、报考条件1、高中以上学历(含高中,包括在校大学生);2、1500个小时的项目管理经验或23小时的项目管理学习经历。
二、考试形式和时间等考试形式:纸笔考试考试时间:3个小时指定教材:第四版项目管理知识体系指南(PMBOK Guide)为唯一教材,2013年开始使用第五版。
试题组成:由150道选择题组成,其中有15道是预备题,预备题不影响考生成绩,随机分布在整套试题中。
考试成绩:考生收到的一份含成绩的分析报告,反映考生对各知识点的掌握情况通过标准:135道计分题中答对88道试题证书有效期:5年。
继续参加项目管理培训35小时以上,可申请PMP资格认证考试。
三、考试费用初考:2500元重考:1850元可以加入PMI会员,139美元,包括10美元注册费。
会员初考:1850会员重考:1250注:在校大学生可注册学生会员,年费42美元,包括10美元注册费。
四、报考流程CAPM报考流程与时间跟PMP一致。
五、报名登陆外专局网站查询自己所在城市考点信息,联系考点咨询报名事宜。
六、结语由于CAPM对于项目管理经验的要求不是必须的,只要对于项目管理有热情、有兴趣的人均可报名参考,给广大考生带来福音。
注:以上信息来自于外专局项目管理网站。
capm银行企业风险调整系数

CAPM(Capital Asset Pricing Model,资本资产定价模型)是用来估计资产预期收益的一种方法,也是金融领域中一种常用的风险管理工具。
在CAPM模型中,银行和企业的风险调整系数是一个重要的概念。
1. CAPM模型简介CAPM模型是由沃尔夫勒姆·夏普(William Sharpe)于1964年提出的,该模型被广泛应用于金融领域,被用来计算各类资产的预期收益率。
CAPM模型基于风险无效率市场假说,认为资本市场上的投资者是理性的,并且追求的是风险与收益的最优化组合。
该模型被广泛应用于股票、债券、房地产等各种资产类别的定价,也被用于研究和计算银行和企业的风险调整系数。
2. 银行和企业的风险银行和企业的风险主要分为市场风险、信用风险、操作风险等多种类型。
在CAPM模型中,风险主要体现在资产的系统性风险上,即与整个市场相关的风险。
对于银行和企业来说,市场风险是其面临的最大风险之一,因此风险调整系数的计算对于它们的风险管理至关重要。
3. 风险调整系数的计算CAPM模型通过计算资产的风险调整收益率来评估资产的表现,风险调整收益率反映了资产在承担一定风险的情况下所能获得的收益。
在计算银行和企业的风险调整系数时,需要考虑到其资产组合的风险敞口,市场波动率以及市场基准收益率等因素。
一般来说,风险调整系数可以通过以下公式来计算:\[ \beta = \frac{Cov(R_i, R_m)}{Var(R_m)} \]其中,\(\beta\)代表资产的风险调整系数,\(Cov(R_i, R_m)\)代表资产收益与市场收益的协方差,\(Var(R_m)\)代表市场收益的方差。
4. 风险调整系数的意义风险调整系数在银行和企业的投资决策中具有重要的意义。
风险调整系数能够帮助银行和企业衡量其资产组合的系统性风险,从而更好地进行资产配置和风险管理。
风险调整系数还可以作为银行和企业的绩效评价指标,通过比较资产的实际收益与其风险调整收益率,评估银行和企业的投资绩效。
capm名词解释
capm名词解释
CAPM,全称为“Capital Asset Pricing Model”,是一种用于评估资产定价的数学模型。
该模型的主要思想是将资产分为资本和资产,并计算资本的收益率。
CAPM模型由irving byrd和erskinekine brown于1942年提出,是评估股票、债券和其他资产定价的主要工具之一。
CAPM模型的核心思想是将资产定价与资本收益率联系起来。
在CAPM模型中,资本收益率是指资本的投资回报率。
因此,CAPM模型认为,资产价格应该等于其预期未来现金流的折现值,即资产价格的定价公式为:
P = C * e^(r * T)
其中,P表示资产价格,C表示资本成本,r表示资本收益率,T表示资产持有期的年数。
CAPM模型的假设条件包括:
1. 市场无风险利率(或风险平价假设):市场利率是市场参与者共同决定的,并且市场利率与资产价格成正比。
2. 资产是现金流等价物:在CAPM模型中,资产是现金流等价物,即资产的价格应该等于其未来的现金流折现值。
3. 市场参与者具有理性:市场参与者都是理性的,他们会根据自己的风险偏好和收益预期来决定是否购买资产。
4. 资产持有期不同但风险相同:在CAPM模型中,不同资产持有期的投资风险是相同的,因此不同持有期的资产价格应该相等。
CAPM模型的应用范围非常广泛,包括股票市场、债券市场、房地产等领域。
投资学中的资产定价模型CAPMAPT等解析
投资学中的资产定价模型CAPMAPT等解析现代投资学理论中,资产定价模型(Asset Pricing Model,简称APM)是研究资本资产定价问题的重要方法之一。
CAPM(Capital Asset Pricing Model)和APT(Arbitrage Pricing Theory)是两种常见的资产定价模型,它们分别从不同的角度解析了资本资产的定价问题。
一、CAPM(Capital Asset Pricing Model)CAPM是由美国经济学家莫顿·米勒、威廉·肖普顿和哈里·马金哲等人在上世纪50年代末60年代初提出的。
CAPM的核心思想是通过分析资产的风险与预期收益之间的关系,进而确定资产的定价。
CAPM假设市场是完全竞争的,投资者的行为是理性的,不存在任何的税收与交易费用;投资者共同面对相同的风险和信息;市场上的资产都是可以自由买卖的。
基于以上假设,CAPM建立了资本资产的定价公式:E[Ri] = Rf + βi(E[Rm] - Rf)其中,E[Ri]表示资产i的预期收益率,Rf表示无风险资产的收益率,βi表示资产i的系统性风险,E[Rm]表示市场组合的预期收益率。
通过这一公式,我们可以计算出资产i的预期收益率。
当βi=1时,资产的预期收益率等于市场组合的预期收益率;当βi>1时,资产的预期收益率高于市场组合的预期收益率;当βi<1时,资产的预期收益率低于市场组合的预期收益率。
虽然CAPM在实际应用中存在一定的局限性,但它为投资者提供了一个相对简单的方法来评估资产的风险与收益,并可以作为投资组合的基准。
二、APT(Arbitrage Pricing Theory)与CAPM相比,APT的理论基础更为宽泛。
APT认为,资产的定价不仅仅取决于市场风险因素,还受到其他一些因素的影响。
APT通过分析多个因素对资产收益率的影响,构建出一个多因素的模型,用于解释资本资产的定价。
对CAPM模型的详细总结
对CAPM模型的详细总结CAPM(Capital Asset Pricing Model,资本资产定价模型)是金融领域中一种重要的定价模型,用于预测投资组合的回报率。
CAPM模型起源于20世纪60年代末,由贝塔(François Modigiliani)和(Richard A. Roll)等人提出,并在20世纪90年代被世界范围内广泛应用。
CAPM模型的基本理念是,资产的预期回报率应该与其承担风险的程度相关。
此模型描述了资产回报率与市场回报率之间的线性关系。
它假设投资组合的风险分为系统性风险和非系统性风险,其中系统性风险无法通过分散投资来消除。
CAPM模型认为,投资组合的预期回报率应该等于无风险回报率与资产贝塔乘积再加上一个风险溢价。
以下是CAPM模型的主要假设和相关公式:1.假设市场是完全有效的:这意味着市场上所有相关信息都是公开的,并且投资者都是理性的,能够充分利用这些信息。
3.风险是通过资产贝塔度量的:CAPM模型认为,资产的风险可以通过其与市场风险的相关性(资产贝塔)来度量。
贝塔系数表示资产相对于整个市场风险的波动性。
4.无风险利率是已知的:CAPM模型假设投资者可以获得无风险利率(通常使用国债收益率)。
根据以上假设,可以得出CAPM的公式:E(R_i)=R_f+β_i(E(R_m)-R_f),其中E(R_i)表示资产i的预期回报率,R_f表示无风险回报率,β_i表示资产i的贝塔系数,E(R_m)表示市场的预期回报率。
CAPM模型的优点包括:1.简单易懂:CAPM模型简化了投资决策的复杂性,将资产定价问题简化为一个简单的公式。
2.定量量化风险溢价:该模型通过贝塔系数量化了风险溢价,使投资者能够更好地比较不同资产的风险与回报。
CAPM模型的局限性包括:2.无法解释非系统性风险:CAPM模型将风险分为系统性和非系统性风险,但只能解释系统性风险,无法解释非系统性风险。
而非系统性风险可以通过分散投资来规避。
capm理论
capm理论
CAPM理论,也称作资本资产定价模型,是投资学中最基本的定价模型。
它最初由William Sharpe在1964年提出,并受到了越来越多的投资者和金融界的推崇。
CAPM理论的核心是将投资者的组合风险分析与资产定价的有效市场假设相结合。
CAPM理论假定,所有投资者都有相同的风险容忍能力和投资视野,并且他们对获得相同程度的投资回报愿意付出相同的风险。
因此,可以根据该理论推断出,各资产组合的回报应该与其承受的风险成正比。
CAPM理论也提供了一种基于风险的定价模型,即投资者应根据其风险偏好计算出一个期望回报,该期望回报应该大于或等于一个市场报酬率。
这个市场报酬率被称为期望市场报酬率,它代表了证券市场平均报酬率。
CAPM理论考虑了投资者的风险偏好,因此它不仅可以帮助投资者选择最佳的资产组合,还可以帮助投资者估算资产的价值,从而使投资者能够以最优的价格购买资产,从而获得最大的投资回报。
可以说,CAPM理论为投资者提供了一种可靠的定价模型,给投资者提供了有效的投资策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资本资产定价模型(重定向自夏普的资本资产定价模型)资本资产定价模型(Capital Asset Pricing Model,CAPM)目录[隐藏]∙ 1 CAPM模型的提出∙ 2 资本资产定价模型公式∙ 3 资本资产定价模型的假设∙ 4 资本资产定价模型的优缺点∙ 5 Beta系数∙ 6 资本资产定价模型之性质∙7 CAPM 的意义∙8 资本资产订价模式模型之应用——证券定价∙9 资本资产定价模型之限制∙10 相关条目[编辑]CAPM模型的提出CAPM是诺贝尔经济学奖获得者威廉·夏普(William Sharpe) 于1970年在他的著作《投资组合理论与资本市场》中提出的。
他指出在这个模型中,个人投资者面临着两种风险:系统性风险(Systematic Risk):指市场中无法通过分散投资来消除的风险。
比如说:利率、经济衰退、战争,这些都属于不可通过分散投资来消除的风险。
非系统性风险(Unsystematic Risk):也被称做为特殊风险(Unique risk 或Idiosyncratic risk),这是属于个别股票的自有风险,投资者可以通过变更股票投资组合来消除的。
从技术的角度来说,非系统性风险的回报是股票收益的组成部分,但它所带来的风险是不随市场的变化而变化的。
现代投资组合理论(Modern portfolio theory)指出特殊风险是可以通过分散投资(Diversification)来消除的。
即使投资组合中包含了所有市场的股票,系统风险亦不会因分散投资而消除,在计算投资回报率的时候,系统风险是投资者最难以计算的。
资本资产定价模型的目的是在协助投资人决定资本资产的价格,即在市场均衡时,证券要求报酬率与证券的市场风险(系统性风险)间的线性关系。
市场风险系数是用β值来衡量.资本资产(资本资产)指股票,债券等有价证券。
CAPM所考虑的是不可分散的风险(市场风险)对证券要求报酬率之影响,其已假定投资人可作完全多角化的投资来分散可分散的风险(公司特有风险),故此时只有无法分散的风险,才是投资人所关心的风险,因此也只有这些风险,可以获得风险贴水。
[编辑]资本资产定价模型公式夏普发现单个股票或者股票组合的预期回报率(Expected Return)的公式如下:其中,rf(Risk free rate),是无风险回报率,纯粹的货币时间价值;βa是证券的Beta系数,是市场期望回报率(Expected Market Return),是股票市场溢价(Equity Market Premium).CAPM公式中的右边第一个是无风险收益率,比较典型的无风险回报率是10年期的美国政府债券。
如果股票投资者需要承受额外的风险,那么他将需要在无风险回报率的基础上多获得相应的溢价。
那么,股票市场溢价(equity market premium)就等于市场期望回报率减去无风险回报率。
证券风险溢价就是股票市场溢价和一个β系数的乘积。
[编辑]资本资产定价模型的假设CAPM是建立在马科威茨模型基础上的,马科威茨模型的假设自然包含在其中:1、投资者希望财富越多愈好,效用是财富的函数,财富又是投资收益率的函数,因此可以认为效用为收益率的函数。
2、投资者能事先知道投资收益率的概率分布为正态分布。
3、投资风险用投资收益率的方差或标准差标识。
4、影响投资决策的主要因素为期望收益率和风险两项。
5、投资者都遵守主宰原则(Dominance rule),即同一风险水平下,选择收益率较高的证券;同一收益率水平下,选择风险较低的证券。
CAPM的附加假设条件:6、可以在无风险折现率R的水平下无限制地借入或贷出资金。
7、所有投资者对证券收益率概率分布的看法一致,因此市场上的效率边界只有一条。
8、所有投资者具有相同的投资期限,而且只有一期。
9、所有的证券投资可以无限制的细分,在任何一个投资组合里可以含有非整数股份。
10、买卖证券时没有税负及交易成本。
11、所有投资者可以及时免费获得充分的市场信息。
12、不存在通货膨胀,且折现率不变。
13、投资者具有相同预期,即他们对预期收益率、标准差和证券之间的协方差具有相同的预期值。
上述假设表明:第一,投资者是理性的,而且严格按照马科威茨模型的规则进行多样化的投资,并将从有效边界的某处选择投资组合;第二,资本市场是完全有效的市场,没有任何磨擦阻碍投资。
[编辑]资本资产定价模型的优缺点优点CAPM最大的优点在于简单、明确。
它把任何一种风险证券的价格都划分为三个因素:无风险收益率、风险的价格和风险的计算单位,并把这三个因素有机结合在一起。
CAPM的另一优点在于它的实用性。
它使投资者可以根据绝对风险而不是总风险来对各种竞争报价的金融资产作出评价和选择。
这种方法已经被金融市场上的投资者广为采纳,用来解决投资决策中的一般性问题。
局限性当然,CAPM也不是尽善尽美的,它本身存在着一定的局限性。
表现在:首先,CAPM的假设前提是难以实现的。
比如,在本节开头,我们将CAPM的假设归纳为六个方面。
假设之一是市场处于完善的竞争状态。
但是,实际操作中完全竞争的市场是很难实现的,“做市”时有发生。
假设之二是投资者的投资期限相同且不考虑投资计划期之后的情况。
但是,市场上的投资者数目众多,他们的资产持有期间不可能完全相同,而且现在进行长期投资的投资者越来越多,所以假设二也就变得不那么现实了。
假设之三是投资者可以不受限制地以固定的无风险利率借贷,这一点也是很难办到的。
假设之四是市场无摩擦。
但实际上,市场存在交易成本、税收和信息不对称等等问题。
假设之五、六是理性人假设和一致预期假设。
显然,这两个假设也只是一种理想状态。
其次,CAPM中的β值难以确定。
某些证券由于缺乏历史数据,其β值不易估计。
此外,由于经济的不断发展变化,各种证券的β值也会产生相应的变化,因此,依靠历史数据估算出的β值对未来的指导作用也要打折扣。
总之,由于CAPM的上述局限性,金融市场学家仍在不断探求比CAPM更为准确的资本市场理论。
目前,已经出现了另外一些颇具特色的资本市场理论(如套利定价模型),但尚无一种理论可与CAPM相匹敌。
[编辑]Beta系数按照CAPM的规定,Beta系数是用以度量一项资产系统风险的指针,是用来衡量一种证券或一个投资组合相对总体市场的波动性(volatility)的一种风险评估工具。
也就是说,如果一个股票的价格和市场的价格波动性是一致的,那么这个股票的Beta值就是1。
如果一个股票的Beta 是1.5,就意味着当市场上升10%时,该股票价格则上升15%;而市场下降10%时,股票的价格亦会下降15%。
Beta是通过统计分析同一时期市场每天的收益情况以及单个股票每天的价格收益来计算出的。
1972年,经济学家费歇尔·布莱克(Fischer Black)、迈伦·斯科尔斯(Myron Scholes)等在他们发表的论文《资本资产定价模型:实例研究》中,通过研究1931年到1965年纽约证券交易所股票价格的变动,证实了股票投资组合的收益率和它们的Beta间存在着线形关系。
当Beta值处于较高位置时,投资者便会因为股份的风险高,而会相应提升股票的预期回报率。
举个例子,如果一个股票的Beta值是2.0,无风险回报率是3%,市场回报率(Market Return)是7%,那么市场溢价(Equity Market Premium) 就是4%(7%-3%),股票风险溢价(Risk Premium)为8% (2X4%,用Beta值乘市场溢价),那么股票的预期回报率则为11%(8%+3%,即股票的风险溢价加上无风险回报率)。
以上的例子说明,一个风险投资者需要得到的溢价可以通过CAPM计算出来。
换句话说,我们可通过CAPM来知道当前股票的价格是否与其回报相吻合。
[编辑]资本资产定价模型之性质1.任何风险性资产的预期报酬率=无风险利率+资产风险溢酬。
2.资产风险溢酬=风险的价格×风险的数量3.风险的价格= E(Rm) − R f(SML的斜率)。
4.风险的数量= β5.证券市场线(SML)的斜率等于市场风险贴水,当投资人的风险规避程度愈高,则SML的斜率愈大,证券的风险溢酬就愈大,证券的要求报酬率也愈高。
6.当证券的系统性风险(用β来衡量)相同,则两者之要求报酬率亦相同,证券之单一价格法则。
[编辑]CAPM 的意义CAPM给出了一个非常简单的结论:只有一种原因会使投资者得到更高回报,那就是投资高风险的股票。
不容怀疑,这个模型在现代金融理论里占据着主导地位,但是这个模型真的实用么?在CAPM里,最难以计算的就是Beta的值。
当法玛(Eugene Fama)和肯尼斯·弗兰奇(Kenneth French) 研究1963年到1990年期间纽约证交所,美国证交所,以及纳斯达克市场(NASDAQ)里的股票回报时发现:在这长时期里Beta值并不能充分解释股票的表现。
单个股票的Beta和回报率之间的线性关系在短时间内也不存在。
他们的发现似乎表明了CAPM并不能有效地运用于现实的股票市场内!事实上,有很多研究也表示对CAPM正确性的质疑,但是这个模型在投资界仍然被广泛的利用。
虽然用Beta预测单个股票的变动是困难,但是投资者仍然相信Beta值比较大的股票组合会比市场价格波动性大,不论市场价格是上升还是下降;而Beta值较小的股票组合的变化则会比市场的波动小。
对于投资者尤其是基金经理来说,这点是很重要的。
因为在市场价格下降的时候,他们可以投资于Beta值较低的股票。
而当市场上升的时候,他们则可投资Beta值大于1的股票上。
对于小投资者的我们来说,我们实没有必要花时间去计算个别股票与大市的Beta值,因为据笔者了解,现时有不少财经网站均有附上个别股票的Beta值,只要读者细心留意,但定可以发现得到。
[编辑]资本资产订价模式模型之应用——证券定价1.应用资本资产订价理论探讨风险与报酬之模式,亦可发展出有关证券均衡价格的模式,供作市场交易价格之参考。
2.所谓证券的均衡价格即指对投机者而言,股价不存在任何投机获利的可能,证券均衡价格为投资证券的预期报酬率,等于效率投资组合上无法有效分散的等量风险,如无风险利率为5%,风险溢酬为8%,股票β系数值为0.8,则依证券市场线所算该股股价应满足预期报酬率11.4%,即持有证券的均衡预期报酬率为:E(Ri) = R F+ βi[E(R m) − R f]3.实际上,投资人所获得的报酬率为股票价格上涨(下跌)的资本利得(或损失),加上股票所发放的现金股利或股票股利,即实际报酬率为:4.在市场均衡时,预期均衡报酬率应等于持有股票的预期报酬率5.若股票的市场交易价格低于此均衡价格,投机性买进将有利润,市场上的超额需求将持续存在直到股价上升至均衡价位;反之若股票的交易价格高于均衡价格,投机者将卖出直到股价下跌达于均衡水准。