第2章 光谱分析法概论

合集下载

第二章-光谱分析法概论

第二章-光谱分析法概论
E hν hc hcν λ
E单位:电子伏(eV)或焦耳(J) h -普朗克常数,h=6.626×10-34 J·s-1; C为光速。
例:波长为200nm的电磁波,其能量是多少电子伏特(eV)? 解:
电磁波谱
13
二、电磁辐射与物质相互作用
电磁辐射与物质的相互作用是复杂的物理现象。 涉及能量变化:吸收、发射; 不涉及能量变化:反射、散射、折射、衍射。
第二章 光谱分析法概论
1
本章主要内容:
一、电磁辐射及其与物质的相互作用 二、光学分析法的分类 三、光谱分析仪器
概述
光学分析法是基于电磁辐射与物质相互作用后,电磁辐 射发生某些变化或被作用物质的某些性质发生改变而产 生各种信号,利用这些信号对物质的性质、组成及结构 进行分析的一种方法。
光学分析法的原理主要包含三个过程: (1)能源提供能量; (2)能量与被测物质相互作用; (3)产生被检测的信号。
3
第一节 电磁辐射及其与物质的相互作用
4
电磁辐射的性质:波粒二象性
1.波动性
电磁辐射的传播以及反射、折射、散射、衍射及 干涉等现象表现出电磁辐射具有波的性质。
图2-1 电磁波的传播
6
波动性参数描述
(1)周期 T 相邻两个波峰或波谷通过某一固定点所需要的时间间隔称为周期。单 位:s(秒)。
(2)频率ν 单位时间内电磁波振动的次数称为频率。单位:Hz或周/秒。 ν =1/T
范围的谱带。
2.组成:
单色器
入射狭缝 色散元件 准直镜
棱镜 光栅
分光系统
出射狭缝
滤光器
47
(1)狭缝 狭缝为光的进出口, 狭缝宽窄直接影响分 光质量。狭缝过宽, 单色光不纯,将使吸 光度变大;过窄,则 通光量变小,灵敏度 降低。因此狭缝宽度 要适当。

光谱分析法.docx

光谱分析法.docx

第 2 章光谱分析法光谱分析法是以分子和原子的光谱学为基础建立起的分析方法。

光谱学是研究物质对电磁辐射的吸收或发射现象的科学。

光谱分析法是药物分析的重要方法,具有准确度高、精密度好、选择性好和分析快速的特点。

它包括分光光度法、荧光光度法、红外光谱法、核磁共振法、原子吸收法、质谱等。

光谱分析法在药物分析中的应用较多,发展迅速,受到了药物分析工作者的关注。

随着各种新的反应体系层出不穷,尤其是联用技术的发展,使得分析的范围更加广泛,分析样品逐渐从简单的药剂扩大到复杂的生物样品,为药物分析提供了更加广阔的发展空间。

2. 1基础知识2.1.1 光的本质光是一种电磁辐射或称电磁波,它具有波动性和粒子性( 或波粒二象性 ) 。

电磁波和物质间相互作用及能量转换关系可以用下式表示:E=hc/λ( 2-1)式中, E 为电磁波能量 (焦耳,J),h 为普朗克常数 (6.63× 10-36J·s),c 为光速 (3× 1010c m/s),λ为电磁波波长 (nm, 1cm= 107nm),每厘米 (cm) 长度内所含波长的数目,即波长的倒数(1 /λ)定义为波数 (σ)。

(2-1)式表明电磁波的波长与其能量呈反比。

人眼能产生颜色感觉的光区称为可见光区,其波长范围为 400 ~ 760 nm,它是由红、橙、黄、绿、青、蓝、紫七色按一定比例混合而成的白光。

由于受人的视觉分辨能力的限制,人们所看见的各种颜色,如黄色、红色等,实际上是可见光区中含一定波长范围的各种色光,即各种色光也是一种复合光。

各种有色光之间并无严格的界限,例如绿色与黄色之间有各种不同色调的黄绿色。

实验证明,七种颜色的光能混合为白光,两种特定的单色光按一定强度比例亦可混合成为白光,我们称这两种光互为补色。

各种光的互补如图 2 -1 所示。

图2 -1 中处于直线关系者互为补色。

如黄光与蓝光;绿光与紫光互为补色光。

图2-1各种光的互补2.1.2吸收和发射现象1.吸收现象当电磁辐射与物质作用时,将物质粒子 ( 原子、离子和分子 ) 吸收或发射光子的过程称为能级跃迁。

分析化学二-第二章 光谱分析导论ppt实用资料

分析化学二-第二章  光谱分析导论ppt实用资料

五 电磁辐射与物质的相互作用
电磁辐射的基本性质
(2) 分子的吸收 E分子=E电子+E振动+E转动 E电子> E振动> E转动
振动 能级
辐射能
第一电子激 h=E 发态(E1) 吸收光
转动
电子基态
能级
(E0)
基态分子
电子 能级 间的 跃迁
激发态 分子
0 .5
0 .4
光 0 .3
强 度0 .2
转动能级 0.1
反射:入射光与物质 碰撞而按反射定律改 变传播方向的现象
电磁辐射的基本性质
五 电磁辐射与物质的相互作用——折射和反射
折射率 (n) :光在真空中的传播速度与其在介质中的传播速度的比
n=c/v
相对折射率 (n2,1):光从介质1进入介质2时,其入射角i与折射角r的正弦比
n2,1
s ini v1 s inr v2
§2-1 电磁辐射的基本性质
一、电磁辐射
所谓电磁辐射是指一种以极大的速度通过空间转播 能量的电磁波
光就是一种电磁波
二、电磁辐射的基本性质 ———波粒二象性
➢ 波动性指电磁波以正弦波的形式向前传播,可以叠加, 并具有折射、衍射、干涉等波的现象。
波 的 叠y 加
频率相同的正 弦波叠加得相 同频率的合成 t 正弦波
应用: 浊度分析法、比浊法
瑞利散射(Rayleigh):(属于弹性碰撞)
分子散射: 定义:光与粒子碰撞时没有发生能量交换的分子散射
性质:散射= 入射,散射强度I ∝ 1/4,强度弱
粒子直径 应用: 共振瑞利散射光谱法 小于入射 光波长时 拉曼散射(Raman) : (属于非弹性碰撞)
所产生的

仪器分析第2章光谱分析法导论讲解课件

仪器分析第2章光谱分析法导论讲解课件

太阳光谱
折射和反射
• 当光线从介质 1 射到介质 2 的界面上,一部 分在介质 1 中改变其传播方向(反射),另 一部分在介质 2 中改变其传播方向(折射)。
• 反射光和折射光的能量分配是由介质的性质和 入射角的大小来决定的。
• 对于垂直于界面的光束,反射光部分可由下式 计算:
Ir I0
(n2 n1)2 (n2 n1)2
• 原子或分子的最低能态称为基态,较高能态 称为激发态。
光学分析法
非光谱法 光谱法
非光谱法
• 折射法:基于测量物质折射率的方法。 • 旋光法:利用光学活性物质的旋光性质进行
定量测定或纯度检验。 • 比浊法:测量光线通过胶体溶液或悬浮液后
的散射光强度来进行定量分析。 • 衍射法:基于光的衍射现象而建立的方法
分子发射
吸收辐射而被激发的原子和分子处在 高能态的寿命很短,它们一般要通过不同 的弛豫过程返回到基态
非辐射弛豫 辐射弛豫
非辐射弛豫
以非发光的形式释放能量的过程,此时 激发态分子与其他分子发生碰撞而将部分激 发能转变成动能并释放出少量的热量。结果 使体系的温度有微小的升高。
非辐射弛豫包括振动弛豫、内转移、外 转移和系间窜越等。
• 这些粒子只具有少数几个可能的能态。 • 激发作用是通过一个或几个电子跃迁到较高能
级实现的。
如 Na 蒸汽
589.30 nm 589.60 nm 3s→3p
285 nm
3s→5p
紫外和可见光区的能量足以引起外层电子或
价电子的跃迁。
分子吸收
分子的总能量E分子可以用下式表示: E分子= E电子+ E振动 + E转动
• 核磁共振波谱法(NMR) • 电子自旋共振波谱法(ESR)

光谱分析法概论(共76张PPT)全

光谱分析法概论(共76张PPT)全
(1) 简并:振动形式不同,但振动频率相同,产生简并。
(2) 红外非活性振动:振动过程中分子偶极矩不发生变化。
(或说偶极矩变化为0),正负电荷重心重合 r = 0 因为µ= q·r = 0 ,Δµ= 0;红外线是个交替磁场,若
Δµ= 0,则不产生吸收。
(3) 仪器分辨率太弱。 (4) 峰太弱。
☆产生红外光谱两个必要条件:
苯环和发色团相连,使E2和B带均长移, ε大 E2,K 带合并,有的就称为K带
基本原理和基本概念
苯的乙醇溶液
基本原理和基本概念 (四)影响因素 溶剂效应 ① n→π* 极性 短移 π→π* 极性 长移 ②影响吸收强度
③影响精细结构:苯在乙醇中(极性) 精细结构消失
基本原理和基本概念
基本原理和基本概念
3080-3030 cm-1 re 平衡位置原子间距离 差频峰: ν1-ν2 亚甲基的伸缩振动形式示意图
即:不对称分子,Δµ大
质谱法
确定分子的原子组成、相对分子质量、分子
式和分子结构。经常与UV、IR及NMR等配合 运用。
光学分析仪器的基本组成
紫外光谱 Ultraviolet absorption spectra
3. n→π* :含有杂原子的不饱和基团,近紫外区, ε很小 例如:-C=O: ,-C≡N:
4. n→σ* :远紫外区,含有杂原子的饱和基团, 例如:-OH,-NH2,-X,-S
σ→σ*> n→σ*≥π→π*> n→π*
基本原理和基本概念
(二)紫外光谱中常用术语
生色团 — 结构中有π→π*或 n→π*的基团,
50 ~ 500 µm 远红外(far-infrared)
红外光区的划分与跃迁类型
注意波数和波长的换算关系

第二章光谱分析法导论

第二章光谱分析法导论
② 内转换:当S2的较低振动能级与S1的较高振动能 级的能量相当时,分子有可能从S2的振动能级以无辐 射方式过渡到S1的能量相等的振动能级上。内转换发 生的时间约为10-12s。内转换过程同样也发生在激发三 重态的电子能级间。
③ 荧光发射:处于第一激发单重态S1的最低振动能 级时,分子返回基态的过程比振动弛豫和内转换过程 慢得多。分子可能通过发射光子跃迁回到基态S0的各 个振动能级上。
A+B
C* +D
C*
C+ hv
通过测量物质的发射光谱的波长和强度来进行定 性和定量分析的方法称为发射光谱分析法。
发射光谱分析法包括:
⑴ γ射线光谱法 ⑵ x射线荧光光谱法 ⑶ 原子发射光谱法 ⑷ 原子荧光光谱法 ⑸ 分子荧光法 ⑹ 分子磷光法 ⑺ 化学发光法
2 .吸收光谱:入射的电磁波和物质的原子或分子相
物质可以通过不同的激发过程来获得能量变为激
发态:
1.电致激发: 通过被电场加速的电子轰击而激发。
2.热致激发: 通过热运动的粒子的碰撞而激发。
3.光致激发: 通过吸收了一次光子而激发。
光致激发发射的二次光称荧光或磷光.延迟时间
很短(10-5~10-8s)为荧光;延迟时间较长(10-4~10s)为
磷光。 ⒋ 化学发光: 通过放热的化学反应可以产生。
51019 1.6021019 3.1(eV)
2.2 光与物质的相互作用
一、 辐射的性质
电磁波与物质相互作用的结果,可以产生发射、吸 收和散射三种类型光谱。
1. 发射光谱: 物质从能量较高的激发态M*跃迁到能
量较低的状态M,多余的能量以光的形式发射出来。
M*→M+ hv
第一共振线:从第一激发态回到基态。常用作分析线。)

第2章 光谱分析导论

第2章 光谱分析导论

三、电磁波谱
不同的波谱方法对应不同的量子跃迁: 由电磁辐射提供能量致使量子从低能级向高
能级的跃迁过程,称为吸收; 由高能级向低能级跃迁并发射电磁辐射的过 程,称为发射; 由低能级吸收电磁辐射向高能级跃迁,再由 高能级跃迁回低能级并发射相同频率电磁辐 射,同时存在弛豫现象的过程,为共振。
将电磁波按其波长次序排列成谱,称为电磁波谱
光谱类型 波长范围 波数范围 --1106-5104 量子跃迁类 型 核 内层电子
0.005-1.4A -射线发射光谱 X-吸收、发射、荧 0.1-100A 光、衍射光谱 真空紫外吸收光谱 10-180 nm
外层键合电 子 UV-Vis 吸收、发射 180-780 nm 5104-1.3104 外层键合电 及荧光光谱 子 0.78-300 红外吸收 1.3104-33 分子振动-转 m 拉曼散射光谱 动 0.75-3.75 mm 13-27 微波吸收 分子转动 3 cm 0.33 电子自旋共振光谱 磁场中电子 自旋 0.6-10 m 1.710-2-1103 磁场中核自 核磁共振 旋





4.紫外-可见吸收光谱法 利用分子吸收紫外-可见光,产生分子外层电子能级跃迁所 形成的吸收光谱,进行物质的定量测定,测定基础是 Lambert-Beer定律。 测定对象为含有共轭双键的有机化合物 5.分子荧光、磷光光谱法 荧光:分子吸收电磁辐射后激发至激发单重态,通过非辐射 弛豫达到第一激发单重态的最低振动能级,跃迁返回到基态 的过程。 磷光:分子吸收电磁辐射后激发至激发单重态,通过非辐射 弛豫达到第一激发三重态的最低振动能级,跃迁返回到基态 的过程。 通常用于物质的高灵敏定量分析 应用范围较紫外-可见吸收光谱窄
6.化学发光分析法 通过化学反应提供激发能,使该化学反应的

2015级成人高等教育中医学院本科班

2015级成人高等教育中医学院本科班

2015级成人高等教育中医学院本科班《仪器分析》复习题第一章绪论1、仪器分析的特点。

2、仪器分析方法的类型。

第二章光谱分析法概论一、名词解释电磁波谱原子吸收光谱光谱法二、简答题1.简述光学分析法的三个过程。

2.光的波粒二相性基本参数(1)光的波动性波动性参数:关系式λ=c/ν,v=104/λ=104ν/cλ(波长);v (频率);C (光速);ν=1/λ(波数——波长的倒数)。

单色光——指只含一种频率或波长的光。

复合光——指多种频率或波长的光。

散射光(杂散光)——指定波长外的光。

(2)光的微粒性微粒性参数:E=hν=h c/λh=6.626×10-34J·s (普朗克常数,Planck);c=3×1010cm·s-13.光谱区中紫外、可见、红外对应的波长范围?(1)紫外:200-400nm;(2)可见光:400-800nm;(3)近红外:0.8-2.5μm;(4)中红外:2.5-50μm;(5)远红外:50--1000μm。

4.光谱法的仪器由哪几部分组成?它们的作用是什么?5.按能量递增和波长递增的顺序分别排列下列电磁辐射区:红外光区、无线电波区、可见光区、紫外光区、X射线区、微波区。

三、计算题1.计算(1) 2500cm-1波数的波长(nm)(2) Na 588-995nm相应的能量(eV)(3) 670. 7nm Li线的频率(Hz)2.计算下列各种跃迁所需的能量范围(eV)及相应的波长范围(1)原子内层电子跃迁(2)原子外层电子跃迁(3)分子的电子跃迁(4)分子振动能级跃迁(5)分子转动能级跃迁3.阐述为什么原子光谱为线光谱,分子光谱为带光谱。

如果说原子光谱谱线强度分布也是峰状的,对吗?为什么?第三章紫外-可见分光光度法1、名词解释透光率吸光系数(摩尔吸光系数、百分吸光系数)发色团和助色团吸收曲线标准曲线末端吸收试剂空白2.物质对光的吸收程度可用哪几种符号表示,各代表什么含义?3.什么是朗伯-比尔定律?其物理意义是什么?4.简述导致偏离朗伯-比尔定律的原因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 光谱分析法概论根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法,统称为光学分析法。

光是电磁辐射(又称电磁波),是一种不需要任何物质作为传播媒介就可以以巨大速度通过空间的光子流(量子流),具有波粒二象性(波动性与微粒性)。

光的波动性体现在反射、折射、干涉、衍射以及偏振等现象。

波长λ 、波数σ 和频率υ相互关系为:λν/c = 和c //1νλσ==,c =2.997925×1010cm/s 。

光的微粒性体现在吸收、发射、热辐射、光电效应、光压现象以及光化学作用等方面,用每个光子具有的能量E 作为表征。

光子的能量与频率成正比,与波长成反比,关系为: σλνhc hc h E ===/从γ 射线一直至无线电波都是电磁辐射,光是电磁辐射的一部分,若把电磁辐射按照波长或频率的顺序排列起来,就可得到电磁波谱(electromagnetic spectrum )。

波长在360~800nm 范围的光称为可见光,具有同一波长、同一能量的光称为单色光,由不同波长的光组合成的称为复合光。

复合光在与物质相互作用时,表现为其中某些波长的光被物质所吸收,另一些波长的光透过物质或被物质所反射,透过物质的光(或反射光)能被人眼观察到的即为物质所呈现的颜色。

不同波长的光具有不同的颜色,物质的颜色由透射光(或发射光)的波长所决定。

当物质与辐射能相互作用时,其内部的电子、质子等粒子发生能级跃迁,对所产生的辐射能强度随波长(或相应单位)变化作图,所得到的谱图称为光谱(也称波谱)。

利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法或光谱法。

以测量气态原子或离子外层或内层电子能级跃迁所产生的原子光谱为基础的成分分析方法为原子光谱法,由分子中电子能级(n )、振动能级(v )和转动能级(J )的变化而产生的光谱为基础的定性、定量和物质结构分析方法为分子光谱法。

有紫外-可见分光光度法(UV-Vis ),红外吸收光谱法(IR ),分子荧光光谱法(MFS )和分子磷光光谱法(MPS )等。

物质吸收相应的辐射能而产生的光谱为吸收光谱。

利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。

物质受激,跃迁到激发态M*后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱为发射光谱。

物质发射的光谱有三种:线状光谱、带状光谱和连续光谱。

利用测量物质的发射光谱的波长和强度进行定性、定量的方法称为发射光谱法。

用于研究吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度计,一般包括五个基本单元:光源、单色器、样品池、检测器和读出器。

单色器的主要作用是将来自光源的连续光谱(复合光)分解并分离出所需要的单色光(即仅含特定波长的光)或有一定宽度的谱带,由入射狭缝和出射狭缝、准直镜、聚焦镜以及色散元件(如棱镜或光栅)等组成,分色散型和干涉型。

当一束波长为λ 的平行单色光(强度为I 0)通过任何均匀、非散射的固体、液体或气体介质时,光的强度由I 0减弱为I t ,定义I t 与I 0的比值为透光率(transmittance ,0t I I T =),其百分数为百分透光率(Percentage transmittance ,100%0t ⨯=I I T )。

透光率的负对数称为吸光度(absorbance ,t 0lglg I I T A =-=),表示入射光被吸收的程度。

吸光度具有加和性,即当溶液中有多个吸光物质时,其吸光度为各吸光物质的吸光度之和,A =A 1+A 2+A 3+……。

光吸收定律:当一束平行的单色光通过均匀溶液时,溶液的吸光度与液层厚度和吸光物质的浓度的乘积成正比关系,即:abc A =,称为Lambert-Beer 定律,简称L-B 定律。

吸收系数a 为吸光物质在单位浓度、单位液层厚度时的吸光度。

不同物质对同一波长的单色光,有不同的吸收系数,吸收系数愈大,表明该物质在该波长下的吸光能力愈强,灵敏度愈高。

吸收系数随浓度c 所取单位不同而不同。

(1)摩尔吸收系数 是指当物质浓度以摩尔浓度(mol/L )表示时的吸收系数,以ε表示,单位为L/(mol •cm),物质的摩尔吸收系数一般不超过105数量级,通常大于104为强吸收,小于103为弱吸收,介于两者之间的为中强吸收。

(2) 百分吸收系数是指当浓度以百分质量分数(g/100mL )表示时的吸收系数,常以%11cmE 表示,单位为100mL /(g•cm),百分吸收系数特别适用于摩尔质量未知的待测组分。

(3)两种吸收系数表示方式之间的关系: %11cm 10E M =ε 在实际工作中,A −c 曲线常会出现偏离直线的情况,偏离Beer 定律的因素主要有化学因素与光学因素。

化学因素有解离、缔合、溶剂化或生成配合物等。

光学因素:(1)非单色光 (2)杂散光 (3)反射光和散射光 (4)非平行光浓度或吸光度测量的相对误差,取决于透光率T 和透光率测量误差ΔT 的大小。

透光率T 在20%~65%或吸光度A 在0.2~0.7之间时,浓度测量的相对误差较小,是测量的适宜范围。

其中,透光率T =36.8%(或吸光度A =0.434)时,浓度测量的相对误差最小。

二、重点和难点本章重点:光谱分析法分类;光吸收定律;光度法误差。

本章难点:光吸收定律。

思考题与习题1.光谱分析法有哪些类型?答:当物质与辐射能相互作用时,其内部的电子、质子等粒子发生能级跃迁,对所产生的辐射能强度随波长(或相应单位)变化作图,所得到的谱图称为光谱(也称波谱)。

利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法或光谱法。

光谱法种类很多,吸收光谱法、发射光谱法和散射光谱法是三种基本类型,应用甚广,是现代分析化学的重要组成部分。

2.吸收光谱法和发射光谱法有哪些异同?答:吸收光谱是指物质吸收相应的辐射能而产生的光谱。

其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量,ΔE=hv时,将产生吸收光谱。

利用物质的吸收光谱进行定性、定量及结构分析的方法称为吸收光谱法。

发射光谱是指构成物质的原子、离子或分子受到辐射能(光致激发)、热能(热致激发)、电能(电致激发)或化学能的激发,跃迁到激发态M*后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。

物质发射的光谱有三种:线状光谱、带状光谱和连续光谱。

利用测量物质的发射光谱的波长和强度进行定性、定量的方法称为发射光谱法。

都需要提供能量符合ΔE=hv,均使物质能量发生变化,均可利用测量物质光谱的波长和强度进行定性、定量分析。

异在产生光谱的过程,光谱类型,吸收光谱法可作结构分析。

3.什么是分子光谱法?什么是原子光谱法?答:由分子中电子能级(n)、振动能级(v)和转动能级(J)的变化而产生的光谱为基础的定性、定量和物质结构分析方法为分子光谱法。

有紫外-可见分光光度法(UV-Vis),红外吸收光谱法(IR),分子荧光光谱法(MFS)和分子磷光光谱法(MPS)等。

以测量气态原子或离子外层或内层电子能级跃迁所产生的原子光谱为基础的成分分析方法为原子光谱法,常见有原子发射光谱法(AES)、原子吸收光谱法(AAS)、原子荧光光谱法(AFS)以及X射线荧光光谱法(XFS)等。

4.列出以发射为原理的光谱分析法,并将其分类。

答:(1)γ射线光谱法是(2)X射线荧光分析法(3)原子发射光谱分析法(4)原子荧光分析法(5)分子荧光分析法(6)分子磷光分析法(7)化学发光分析法5.简述下列术语的含义:电磁波谱、发射光谱、吸收光谱、荧光光谱答:电磁波谱是把电磁辐射按照波长或频率的顺序排列所得。

发射光谱是指构成物质的原子、离子或分子受到辐射能(光致激发)、热能(热致激发)、电能(电致激发)或化学能的激发,跃迁到激发态M*后,由激发态回到基态时以辐射的方式释放能量,而产生的光谱。

吸收光谱是指物质吸收相应的辐射能而产生的光谱。

其产生的必要条件是所提供的辐射能量恰好满足该吸收物质两能级间跃迁所需的能量,ΔE=hv时,将产生吸收光谱。

荧光光谱指某些物质分子吸收辐射而成为激发态分子,然后回到基态的过程中发射出比入射波长更长的荧光,而产生的光谱。

6.Lambert-Beer定律的物理意义、数学表达式及适用条件。

答:当一束平行的单色光通过均匀溶液时,溶液的吸光度与液层厚度和吸光物质的浓度的乘A=;适用积成正比关系,称为Lambert-Beer定律,简称L-B定律。

数学表达式为:abc条件:平行的单色光,稀溶液。

7.吸收系数的物理意义及表示形式。

答:吸收系数a为吸光物质在单位浓度、单位液层厚度时的吸光度。

随浓度c所取单位不同吸收系数有摩尔吸收系数ε和百分吸收系数%11cm E 两种表示形式。

8.影响Beer 定律的因素及透光率测量误差。

答:影响Beer 定律的因素主要有化学因素与光学因素。

化学因素有解离、缔合、溶剂化或生成配合物等。

光学因素:(1)非单色光 (2)杂散光 (3)反射光和散射光 (4)非平行光浓度或吸光度测量的相对误差,取决于透光率T 和透光率测量误差ΔT 的大小。

透光率T 在20%~65%或吸光度A 在0.2~0.7之间时,浓度测量的相对误差较小,是测量的适宜范围。

其中,透光率T =36.8%(或吸光度A =0.434)时,浓度测量的相对误差最小。

9.试述选择最大吸收波长作为测量波长的依据。

答:Beer 定律只适用于入射光为单色光,但事实上真正的单色光是难以得到的。

实际工作中,光源发射出连续光谱,利用单色器将所需要的波长从连续光谱中分离出来,其波长宽度取决于单色器的狭缝宽度和分辨率。

由于制作技术的限制,同时为了保证光的强度,狭缝需要保持一定的宽度,因此分离出来的光实际上同时包含了所需波长的光和附近波长的光,即实际应用于测量的光为具有一定波长范围的复合光。

吸光物质对不同波长的光的吸收能力不同,从而导致对Beer 定律的偏离。

在无法获得严格的单色光的现实情况下,设法减小入射光谱带范围内吸收系数的差异可减小由非单色光引起的偏离,选择被测物质的最大吸收波长作为入射光波长,能够较好的满足这一要求,同时可提高方法的灵敏度。

10.将下列各百分透光率(T%)换算成吸光度(A )(1)36% (2)7.6% (3)66% (4)56% (5)0.06%答:A=—lgT(1)0.44 (2)1.12 (3)0.18 (4)0.25 (5)3.2211.1.0×10-4mol/L 的重铬酸钾(M =294.2)硫酸溶液,比色皿1cm ,在350nm 波长处测得吸光度为0.313,计算其百分透光率、摩尔吸光系数和百分吸光系数。

解: T %=10—A *100=10—0.313*100=48.6abc A = ε= A / bc =0.313/1*1.0×10-4=3130%11cm 10E M =ε %11cm E =3130*10/294.2=106.4。

相关文档
最新文档