第6章 冲压性能及成形极限
第6章 冲压性能及成形极限

b b0 R b t ln t t0 ln
R 、n 是板料两个特定成形指标; R 平面内易于变形,厚度减薄轻。 1 R R00 R900 R450 7、凸耳参数( 面内异性系数) 2 该值大,拉深件口部严重不平齐,需修边切除。
用杯底破裂时杯口平均直径评价称为ccv分散性颈缩diffusenecking载荷开始随变形增大而减小由于应变硬化这种颈缩在一定尺寸范围内可以转移使材料在这个范围内产生亚稳定的塑性流动故载荷下降比较缓慢
第六章 冲压性能与成形极限
一、冲压性能一般概念
1、冲压成形性能:板料对冲压成形工艺的适应能力。 2、拉伸失稳: 板料在拉应力作用下局部出现颈缩或破裂的现象。 3、压缩失稳: 板料在压应力作用下起皱的现象。 4、成形极限: 板料发生失稳前可以达到大的最大变形程度。 5、总体成形极限:板料失稳前某些特定的总体尺寸可以达到的最大变化程 度,如极限拉深系数、极限翻边系数、极限胀形高度等。 6、局部成形极限:板料失稳前局部尺寸可以达到的最大变化程 度,如局部 极限应变。 7、成形极限图: (Forming Limit Diagrams , 简称FLD ) 。由不同应变路径 下的局部极限应变构成的曲线或条带形区域。它全面反 映了板料在单向或双向拉应力作用下抵抗颈缩或破裂的 能力。
4、总延伸率 t (lt l0 ) / l0 总延伸率大 ,变形程度大,抗破裂性好 d log n 5、应变硬化指数 n n K d log
n 值不仅提高局部应变能力,且使应变均匀。 n 值大增大成形极限 分散性颈缩失稳 1 n 集中性颈缩失稳 1 2n
6、塑性应变比(厚向异性系数)R
五、冲压成形性能试验方法与指标
板料的冲压成形性能与成形极限

§6.1 概述
成形极限图(FLD)就是由不同应变路径下的局部极限 应变构成的曲线或条带形区域,它全面反映了板料在单向和 双向拉应作用下抵抗颈缩或破裂的能力,经常被用来分析解 决成形时的破裂问题。
§6.1 概述
全面地讲,板料的冲压成形性能包括抗破裂性、贴模性 (fitability)和定形性(shape fixability),故影响因素很多, 如材料性能、零件和冲模的几何形状与尺寸、变形条件(变 形速度、压边力、摩擦和温度等)以及冲压设备性能和操作 水平等。
§6.2 现代冲压成形的分类理论
一、各种冲压成形方法的力学特点与分类
正确的板料冲压成形工艺的分类方法,应该能够明确地 反映出每一种类型成形工艺的共性,并在此基础上提供可能 用共同的观点和方法分析、研究和解决每一类成形之艺中的 各种实际问题的条件。在各种冲压成形工艺中毛坯变形区的 应力状态和变形特点是制订工艺过程、设计模具和确定极限 变形参数的主要依据,所以只有能够充分地反映出变形毛坯 的受力与变形特点的分类方法,才可能真正具有实用的意义。
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
冲压成形时,在应力状态满足屈服准则的区域将产生塑 性变形,称为塑性变形区(A区)。不同工序,随着外力作 用方式和毛坯及模具的形状、尺寸的不同,变形区所处的部 位也不相同。应力状态不满足屈服准则的区域,不会产生塑 性变形,称为非变形区。根据变形情况,非变形区又可进一 步分为已变形区(B)、待变形区(C)和不变形区(D)。有时已变 形区和不变形区还起传力的作用,可称其为传力区(B 、C)。 图所示为拉深、翻边、缩口变形过程中毛坯各区的分布。
贴模性(fittability):板料在冲压过程中取得模具形状 的能力。
定形形(shape fixability):零件脱模后保持其在模内 既得形状的能力。
《冲压工艺学》本科教学大纲

《冲压工艺学》教学大纲课程编号:E0331144学时数:48学分数:3适用专业:材料成型及控制工程(本科、模具方向)先修课程:《机械制造基础》、《机械设计基础》、《金属塑性成形原理》、《认识实习》考核方式:平时成绩(实验、作业、课堂提问、考勤)占30%,期末考试占70%。
一、本课程的性质和任务性质:本课程是材料成型及控制工程专业的一门专业课。
通过本课程学习和课程设计,能掌握分析、制定工艺方案和设计冲压模具的方法。
任务:1、初步掌握冲压成形的原理、板料成形规律及其与冲压工艺和模具设计的关系;2、掌握冲压工艺过程的设计方法,具有设计中等复杂程度冲压工艺过程的能力;3、掌握冲压模具的设计方法,具有设计中等复杂程度的冲模及必要的辅助机构的能力;4、具有应用冲压成形基本原理,冲压工艺及冲模设计方法的知识,分析和解决冲压生产中常见的产品质量和模具方面技术问题的能力;5、了解冲压新工艺、新型模具及冲压技术的发展方向。
二、课程内容和要求(一)、理论教学:48学时第一章绪论(2学时)教学内容1、本课程的性质和任务2、冲压加工的地位、种类和发展教学要求1、明确本课程的研究对象和内容,以及学习本课程的目的。
2、了解本课程在培养材料成型专业工程技术人才的地位、任务和作用。
3、了解冲压技术的发展趋势。
第二章冲裁(8学时)教学内容1、冲裁变形机理2、模具间隙3、凸. 凹模刃口尺寸的计算4、冲裁力的计算及降低冲裁力的方法5、排样6、精密冲裁7、其它冲裁法教学要求1、掌握冲裁变形机理和工艺分析方法。
2、掌握冲裁模具设计要点和方法。
3、了解其他冲裁技术。
第三章弯曲(6学时)教学内容1、板料的弯曲现象及其原因2、窄板弯曲和宽板弯曲时的应力应变状态分析3、宽板弯曲时的应力(σθ. σρ. σb)4、弯曲力计算和设备选择5、弯曲件毛坯长度计算6、最小相对弯曲半径rmin/t7、弯曲回弹8、弯曲模工作部分的尺寸计算教学要求1、了解板料的弯曲现象及其原因,能分析板料弯曲时的应力应变状态。
冲压材料及其冲压成型性能冲压模具变形理论基础

冲压材料及其冲压成型性能冲压模具变形理论基础来源:未知模具站责任编辑:模具站发表时间:2010-06-26 00:06-冲压模具变形冲压材料冲压成型性能塑胶模具五金模具锻压模具模具综合核心提示:冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。
1.材料的冲压成形性能材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。
材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形…冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。
1.材料的冲压成形性能材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。
材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形程度和总的极限变形程度大,生产率高,容易得到高质量的冲压件,模具寿命长等。
由此可见,冲压成形性能是一个综合性的概念,它涉及的因素很多,但就其主要内容来看,有两方面:一是成形极限,二是成形质量。
(1)成形极限在冲压成形过程中,材料能达到的最大变形程度称为成形极限。
对于不同的成形工艺,•成形极限是采用不同的极限变形系数来表示的。
•由于大多数冲压成形都是在板厚方向上的应力数值近似为零的平面应力状态下进行的,因此,不难分析:在变形坯料的内部,凡是受到过大拉应力作用的区域,就会使坯料局部严重变薄,甚至拉裂而使冲件报废;凡是受到过大压应力作用的区域,若超过了临界应力就会使坯料丧失稳定而起皱。
因此,从材料方面来看,为了提高成形极限,就必须提高材料的塑性指标和增强抗拉、抗压能力。
•冲压时,当作用于坯料变形区内的拉应力的绝对值最大时,在这个方向上的变形一定是伸长变形,故称这种冲压变形为伸长类变形(如胀形、扩口、内孔翻边等)。
•当作用于坯料变形区内的压应力的绝对值最大时,在这个方向上的变形一定是压缩变形,故称这种冲压变形为压缩类变形(如拉深、缩口等)。
第六章冲压

国内外常用拉伸试验标准的主要技术要求
GB
12.5 (20) 50 (80) 75 3~30 ≤0.5P 屈服后~最大 力前(常用 5%~15%) 屈服后~最大 力前(常用 15%)
DIN
12.5 (20) 50 (80) 75 120 ≤30 ≤0.5P 屈服后~最大 力前(常用 10%~20%) 屈服后~最大 力前(常用 20%)
第六章 板料的冲压成形性能与成形极限
试验在室温下(20±10°C)进行。试验之前,要精确测量试样的 厚度和宽度,并刻划标点和标距长度。用螺旋测微计测量试样厚度时, 当厚度≤0.5mm时,精确到0.005mm;当厚度>0.5mm时,精确到 0.01mm。在标距长度的中部和两端测量三点,取其最小值。 n值的测量计算 根据均匀塑性变形范围内真实应力——真实应变指数式的对数式,运 用最小二乘法计算应变硬化指数n。(见下式) σ=k n (1) 式中:σ 在力F作用下试样的真实应力 N/mm2 n 应变硬化指数 k 强度系数 对公式(1) 两边取对数,lnσ=lnk+nln (2) (2) 式可简化为:Y=Kx+B (3) 根据公式(3)导出计算应变硬化指数的关系式:
JIS
(12.5,20) 25 (50,80) 50 (60,120) 60 10~30 ≤0.8P 产品标准规定或 协商 屈服后~最大力 前(常用15%)
ASTM
12.5 (20) 50 (20,25) 75 ≤11.5 ≤0.5P 屈服后~最大 力前(常用 10%~20%) 屈服后~最大 力前(常用 17%)
第六章 板料的冲压成形性能与成形极限
总体成形极限反映板料失稳前某些特定的总体尺寸可以 达到的最大变化程度,如极限拉深系数、极限胀形高度和极 限翻边系数等均属于总体成形极限,它们常被用作工艺设计 参数。
冲压性能及成形极限

五、冲压成形性能试验方法与指标
1、胀形成形性能试验(杯突试验)(Eriohsen试验)
指标:用破裂时凸包高度IE值评价。IE值越大,胀形成形性能越好。
2、扩孔成形性能试验(KWI扩孔试验)
指标:用破裂时极限扩孔率值评价。
d f d0 d0
100%
d f d f max d f min / 2
最小相对弯曲半径=
rmin / t
5、“拉—胀”复合成形性能试验 (福井杯锥试验)
指标:用杯底破裂时杯口平均直径 评价,称为CCV值。
CCV
1 ( Dmax Dmin ) 2
六、塑性拉伸失稳理论
1、拉深失稳的概念和类型
1)分散性颈缩(Diffuse necking): 载荷开始随变形增大而减小,由 于应变硬化,这种颈缩在一定尺寸范 围内可以转移,使材料在这个范围内 产生亚稳定的塑性流动,故载荷下降 比较缓慢。肉眼观察不到。 2)集中性颈缩(Localized necking): 应变硬化不足以使颈缩转移,应 力增长率远小于承载面积的减小速度, 故载荷随变形程度的增大而急剧下降。 肉眼可以观察到。
3、拉深成形性ቤተ መጻሕፍቲ ባይዱ试验
(1)圆柱形平底凸模冲杯试验(Swift平底冲杯试验)
指标:用拉破时极限拉深比LDR评价。 LDR Dmax / d p (2)TZP试验 Ff Fmax 指标:用拉深潜力T值评价。 T 100% Ff
4、弯曲成形性能试验
指标:用外表面破裂时的最小相对弯曲半径值评价。
二、冲压成形区域划分
四种典型工艺: 拉深 刚性凸模胀形 伸长类翻边 弯曲 复杂零件的成形经 常可视为两个或两 个以上的复合
变形趋向性:拉深、平底凸模胀形、圆孔翻边及扩孔所用模具相同,但毛 坯直径不同,或预制孔直径不同,则拉深和胀形可相互转变, 胀形和扩孔翻边可相互转变,或两种变形复合。
板材成形理论知识要点

第二章 冲裁工艺与模具设计
1冲裁变形分离过程大致可分为3个阶段。 弹性变形阶段, 塑性变形阶段,断裂分离阶段 2冲裁断面可明显地分成4个特征区, 即圆角带、光亮带、断裂带和毛刺 3降低冲裁力的方法:阶梯凸模冲裁, 斜刃口冲裁 4凸模侧面的磨损最大,是因为从凸模上卸料,长 距离摩擦加剧了侧面的磨损. 5确定合理间隙的理论计算法依据主要是:在合理 间隙情况下冲裁时,材料在凸、凹模刃口产生 的裂纹成直线会合.
第四章
拉深工艺与模具设计
1.拉深 是利用模具使平板毛坯变成为开口的空心零件的 冲压加工方法。 2.拉深件各部分的厚度是不一致的。一般是: 底部略为变薄,但基本上等于原毛坯的厚度; 壁部上段增厚,越靠上缘增厚越大; 壁部下段变薄,越靠下部变薄越多; 壁部向底部转角稍上处,则出现严重变薄,甚至断裂。 3.毛坯划分为5个区域: ⑴.平面凸缘区(|σ 1|=|σ 3|,有R=0.61Rt), ⑵. 凸缘圆角区, ⑶.筒壁区, ⑷.底部圆角区, ⑸.筒底部分
2.冲模零件的分类:分成五个类型的零件。
⑴.工作零件 是完成冲压工作的零件 ⑵.定位零件 这些零件的作用是保证送料时有良好的导 向和控制送料的进距. ⑶.卸料、推件零件 这些零件的作用是保证在冲压工序 完毕后将制件和废料排除,以保证下一次冲压工序顺 利进行。 ⑷.导向零件 这些零件的作用是保证上模与下模相对运 动时有精确的导向,使凸模、凹模间有均匀的间隙, 提高冲压件的质量。 ⑸.安装、固定零件 这些零件的作用是使上述四部分 零件联结成“整体”,保证各零件间的相对位置,并 使模具能安装在压力机上。
10.结构废料――由于工件结构形状的需要,如工 件内孔的存在而产生的废料,称为结构废料, 它决定于工件的形状,一般不能改变。 11.工艺废料―― 工件之间和工件与条料边缘之 间存在的搭边,定位需要切去的料边与定位孔, 不可避免的料头和料尾废料,称为工艺废料, 它决定于冲压方式和排样方式。 12.冲裁间隙对产品质量和模具寿命的影响
冲压工艺--板料的冲压成形性能与成形极限

t0
Dp
备注
0.5以下 10.~20 2ri≈0.2Dp 0.5~2.0 30~50 D0≥2.5Dp 2.0以上 50~100
3杯形件拉深试验(Swift试验)
Swift试验是以求极限拉深比LDR作为评定板材拉 深性能的试验方法。 试验所用装置与试验标准分别见图和表。
Swinft试验装置(1-冲头 2-压边圈 3-凹 模 4-试件)
六、板料的冲压成形性能与成形极限
板料基本性能与冲压成形性能的关系 衡量薄板性能的优劣,过去一般以薄板的基本 性能指标来评价,但是随着汽车、家电工业的发展, 对薄板成形性能的要求日益苛刻,从而使成形性指 标的测定越来越受到人们的重视和广泛研究。薄板 成形性(sheet metal formability),根据 BG/T15825.1-1995的定义,就是指金属薄板对 于冲压成形的适应能力。
具有最佳成形性能的材料应具有如下特点: 均匀分布应变; 承受平面内压缩应力而无起皱现象; 可以达到较高应变而无颈缩和断裂; 承受平面内剪切应力而无断裂; 零件由凹模出来后保持其形状 保持表面光洁,阻止表面损伤。
薄板本身固有的基本特性值与其成形性能之间具有一 定的相关性见下表。对于冷轧冲压钢板,往往希望具有 低的屈服强度、低的屈强比、高的n、r值。
坯料受到双向拉应力作用而实现胀形变形。 在胀形中当试件出现裂缝时,冲头的压入深度称为胀形深度或 Erichsen试验深度,简计为IE值。IE值作为评定板材胀形成 形能力的一个材料特性值。实际上,胀形是典型的拉伸类成形 工序,故IE值也是评定拉伸类冲压成形性能的一个材料特性值。 很明显,IE值越大,胀形性能越好。
2) 杯突试验(ERICHSEN TEST) 杯突试验是历史较为悠久、操作简便、在目前仍然广泛采用 的工艺试验方法,主要用来评定薄板材料的深冲性能,一般适 用于厚度等于或小于2mm,必要时也可试验厚度为2~4mm 的板材和带材,1914年是由德国的A.E.Erichsen做了专用的 试验设备,所以也叫Erichsen试验。其试验装置如图。 试验时,先将平板坯料试件放在凹模平面上,用压边圈压住试 件外圈,然后,用球形冲头将试件压入凹模。由于坯料外径比 凹模孔径大很多,所以,其外环不发生切向压缩变形,而与冲 头接触的试件中间部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ห้องสมุดไป่ตู้
3、拉深成形性能试验
(1)圆柱形平底凸模冲杯试验(Swift平底冲杯试验)
指标:用拉破时极限拉深比LDR评价。 LDR Dmax / d p (2)TZP试验 Ff Fmax 指标:用拉深潜力T值评价。 T 100% Ff
4、弯曲成形性能试验
指标:用外表面破裂时的最小相对弯曲半径值评价。
第六章 冲压性能与成形极限
一、冲压性能一般概念
1、冲压成形性能:板料对冲压成形工艺的适应能力。 2、拉伸失稳: 板料在拉应力作用下局部出现颈缩或破裂的现象。 3、压缩失稳: 板料在压应力作用下起皱的现象。 4、成形极限: 板料发生失稳前可以达到大的最大变形程度。 5、总体成形极限:板料失稳前某些特定的总体尺寸可以达到的最大变化程 度,如极限拉深系数、极限翻边系数、极限胀形高度等。 6、局部成形极限:板料失稳前局部尺寸可以达到的最大变化程 度,如局部 极限应变。 7、成形极限图: (Forming Limit Diagrams , 简称FLD ) 。由不同应变路径 下的局部极限应变构成的曲线或条带形区域。它全面反 映了板料在单向或双向拉应力作用下抵抗颈缩或破裂的 能力。
四、板材的基本性能指标及其与冲压成形性能的关系
基本性能:由单向拉深试验获得。 1、屈服极限 s Fs / A0 s 小,材料易屈服、回弹小, 贴模性和定型性好。 2、屈强比
s b 小,塑性变形阶段长,有利 s b
b
Fb A0
于冲压成形。
3、均匀延伸率 u (lu l0 ) / l0 均匀延伸率大 ,均匀变形程度 大,抗拉伸失稳性能好。
冲压成形性能还包括:抗破裂性、贴模性、定形性
介于材料科学与冲压成形技术之间的边缘问题
二、冲压成形区域划分
四种典型工艺: 拉深 刚性凸模胀形 伸长类翻边 弯曲 复杂零件的成形经 常可视为两个或两 个以上的复合
变形趋向性:拉深、平底凸模胀形、圆孔翻边及扩孔所用模具相同,但毛 坯直径不同,或预制孔直径不同,则拉深和胀形可相互转变, 胀形和扩孔翻边可相互转变,或两种变形复合。
三、冲压成形性能划分
破裂的三种方式: 破裂-由于板料所受拉应力超过强度极限引起 1) 的破裂。 2) 破裂-由于板料的伸长变形超过材料的局部延 伸率引起的破裂。 3)弯曲破裂-由于弯曲变形区的外层材料中拉应力 过大引起的破裂。 破裂特点: 拉深破裂出现在传力区,胀形破裂出现在变形区。 因此板料拉深和胀形时对 破裂的抵抗能力不同。
五、冲压成形性能试验方法与指标
1、胀形成形性能试验(杯突试验)(Eriohsen试验)
指标:用破裂时凸包高度IE值评价。IE值越大,胀形成形性能越好。
2、扩孔成形性能试验(KWI扩孔试验)
指标:用破裂时极限扩孔率值评价。
d f d0 d0
100%
d f d f max d f min / 2
R 1 R00 2 R450 R900 4
b b0 R b t ln t t0 ln
R 、n 是板料两个特定成形指标; R 平面内易于变形,厚度减薄轻。 1 R R00 R900 R450 7、凸耳参数( 面内异性系数) 2 该值大,拉深件口部严重不平齐,需修边切除。
最小相对弯曲半径=
rmin / t
5、“拉—胀”复合成形性能试验 (福井杯锥试验)
指标:用杯底破裂时杯口平均直径 评价,称为CCV值。
CCV
1 ( Dmax Dmin ) 2
六、塑性拉伸失稳理论
1、拉深失稳的概念和类型
1)分散性颈缩(Diffuse necking): 载荷开始随变形增大而减小,由 于应变硬化,这种颈缩在一定尺寸范 围内可以转移,使材料在这个范围内 产生亚稳定的塑性流动,故载荷下降 比较缓慢。肉眼观察不到。 2)集中性颈缩(Localized necking): 应变硬化不足以使颈缩转移,应 力增长率远小于承载面积的减小速度, 故载荷随变形程度的增大而急剧下降。 肉眼可以观察到。
4、总延伸率 t (lt l0 ) / l0 总延伸率大 ,变形程度大,抗破裂性好 d log n 5、应变硬化指数 n n K d log
n 值不仅提高局部应变能力,且使应变均匀。 n 值大增大成形极限 分散性颈缩失稳 1 n 集中性颈缩失稳 1 2n
6、塑性应变比(厚向异性系数)R