第三章_平面任意力系..
3第三章平面任意力系

固定端(插入端)约束
说明: ①认为Fi 这群力在同一平面内; ② 将Fi向A点简化得一力和一力偶; ③FA方向不定可用正交分力FAx, Fay 表示; ④ FAy, FAx, MA为固定端约束反力;
⑤ FAx, FAy限制物体平动, MA为限
制转动。
11
MO
§3-2 平面一般力系的简化结果 合力矩定理 y 简化结果:主矢 F ' R ,主矩 M O 。
∴ 力的直线方程为:
MO
x
FR '
x
O
x
670.1 x 232.9 y 2355 0
2355 当 y 0, x 3.5 m 670 .1
18
FR
§3-3 平面一般力系的平衡条件与平衡方程
F' 0 R MO 0
为力平衡,没有移动效应。 为力偶平衡,没有转动效应。
P
45
0
M A (F i ) 0 :
FC sin45 AC P AB 0
B
FAy
FAx
y
A
C
FAx 20.01kN ,
FAy 10.0kN
FC
x
FC 28.3kN
或: M C ( F i ) 0 : FAy AC P CB 0
22
o
例:求横梁A、B处的约束力。已知 M Pa, q, 解:1)AB杆 q M B A 2)受力分析
主矩MO 方向:方向规定 +
Fiy tg 方向: tg FRx Fix
1
FRy
1
大小: M O M O ( Fi ) , (与简化中心有关),(因主矩等于各力对简化中心取矩 的代数和)
工程力学-平面任意力系

R' ( X )2 (Y )2 0
LO mO (Fi ) 0
①一般式 (一矩式)
X 0
平面力系中各力在直角坐标系oxy中
Y 0
各坐标轴上投影的代数和及对任意
点的力矩的代数和均为0。
mO (Fi ) 0
②二矩式
∑X=0 或∑Y=0
mA(Fi ) 0
mB (Fi ) 0
AB O
工程中的桁架结构
桁架的优点:轻,充分发挥材料性能。
桁架的特点:①直杆,不计自重,均为二力杆;②杆端铰接;
力
学 中 的 桁 架 模
基 本 三 角 形
型
③外力作用在节点上。
力
学
中 的 桁 架
简 化 计 算 模
模型
型
力
学
中 的 桁 架
简 化 计 算 模
节点
杆件
模型
型
一、节点法 [例3-3] 已知:如图 P=10kN,求各杆内力?
第三章 平面任意力系
平面任意力系(General coplanar force systems):各力的作用 线在同一平面内,既不汇交为一点又不相互平行的力系叫∼。
[例]
研究方法:把未知力系(平面任意力系)变成已知 力系(平面汇交力系和平面力偶系)
第三章 平面一般力系
§3–1 力向一点平移 §3–2 平面力系的简化 §3–3 平面力系的平衡条件 §3–4 刚体系统的平衡问题 §3–5 考虑有摩擦时物体的平衡问题
§3-2 平面力系的简化
一、平面力系向作用面内一点简化
O: 简化中心
主矢(Principal vector) R Fi
大小: R' R'x2 R'y2 ( X )2 (Y )2
第三章平面任意力系

平面任意力系
主矢、主矩
固端约束力
简化
分解主矢
=
=
≠
=
第三章平面任意力系
§3-1 平面任意力系的简化
三、平面任意力系的简化结果分析
通过分析,平面任意力系的简化得到主矢和主矩。
主矢 FR Fi 主矩 MO MO (Fi )
=
当主矢和主矩为零或非零时,其结果如何?
第三章平面任意力系
§3-1 平面任意力系的简化 三、平面任意力系的简化结果分析
Pz
A
M P d cos
P
2
例3-1 已知:力P、轮A的直径d,将
图示力P分解后,向轴线平移。
M
解:1)建立坐标系
x
B
2)将力P分解成Pz和Py分量
Pz Pcos
Py Psin
M
3)将Pz向轴线平移
B
力线向一点平移时所得附加力
偶等于原力对平移点之矩。
力偶M’与M 平衡。
第三章平面任意力系
§3-1 平面任意力系的简化
M O2x2F2yy2F2x
y1
Mo (Fi ) (xiFiy yiFix )
所以得: M O R R x iF iy y iF ix 第三章平面任意力系
(b)
§3-1 平面任意力系的简化 五、平面任意力系的平衡
如果主矢、主矩均为零,原力系平衡。
主矢 主矩
FR 0
MO Mo (Fi ) 0
(3-5)
第三章平面任意力系
§3-1 平面任意力系的简化
例3-2 已知:P1 450kN, P2 200kN, F1 300kN,
F2 70kN; 求:
主矢 FR Fi 主矩 MO MO (Fi )
3平面任意力系

A、B、C 三点不共线。 三点不共线。
运用平衡条件求解未知力的步骤为: 运用平衡条件求解未知力的步骤为: 1、合理确定研究对象并画该研究对象的受 力图; 力图; 2、由平衡条件建立平衡方程; 由平衡条件建立平衡方程; 3、由平衡方程求解未知力。 由平衡方程求解未知力。 实际计算时,通常规定与坐标轴正向一 实际计算时, 致的力为正。即水平力向右为正, 致的力为正。即水平力向右为正,垂直力向 上为正。 上为正。
合力矩定理 平面任意力系的合力对作用面内任一点的 矩,等于这个力系中的各个力对同一点的矩的 代数和。 代数和。
mo (F) = ∑mo (F ) i
y
mo (F) = mo (Fx ) + mo (Fy )
mo (Fx ) = −yFx
y
O
Fy
A x
B
F
F x
x
mo (Fy ) = xF y
在长方形平板的O 例题 3-1 在长方形平板的 、A、B、C 点上分别作 用着有四个力: 用着有四个力:F1=1kN,F2=2kN,F3=F4=3kN(如 , , ( 图),试求以上四个力构成的力系对点 的简化结果, ),试求以上四个力构成的力系对点O 的简化结果, 试求以上四个力构成的力系对点 以及该力系的最后的合成结果。 以及该力系的最后的合成结果。
§3–2 平面任意力系的平衡方程及其应用
伸臂式起重机如图所示,匀质伸臂AB 重 例题 3-2 伸臂式起重机如图所示,匀质伸臂 P=2200N,吊车 、E 连同吊起重物各重 ,吊车D QD=QE=4000N。有关尺寸为:l = 4.3m,a = 1.5m,b 。有关尺寸为: , , = 0.9m,c = 0.15m, α=25°。试求铰链 对臂 , ° 试求铰链A 对臂AB 的水 平和垂直反力,以及拉索BF 的拉力。 的拉力。 平和垂直反力,以及拉索 y
工程力学教学课件 第3章 平面任意力系

A
MA
FAx
A
简 化
2021/7/22
FAy
11
一、简化结果分析
3.2
平
面 任
F1
A1
F2
O A n A2
M O FR'
O
意
Fn
力
系 的 简 化
1 . F R ' 0 ,M o 0
2 . F R ' 0 ,M O 0
结 果
3 . F R ' 0 ,M O 0 4 . F R ' 0 ,M O 0
的 简 化
此时主矩与简化中心的位置无关。
3、主矢不等于零,主矩等于零 (F R ' 0 ,M O 0 )
结 果
此时平面力系简化为一合力,作用在简化
中心,其大小和方向等于原力系的主矢,即
FRF
2021/7/22
13
一、简化结果分析
3.2 4、主矢和主矩均不等于零 (F R ' 0 ,M O 0 )
平
此时还可进一步简化为一合力。
面
任
FR'
FR'
FR
FR
意 力
O M O O
O
d
O
O
O
d
系 的 简 化
FR'' M O m O ( F R ) F R d F R 'd 于是
d M
F
由主矩的定义知:M O m O (F i)
O ' R
结 所以:
m O (F R ) m O (F i)
果 结论:平面任意力系的合力对作用面内任一点之矩
杆所受的力。
A
45
工程力学-材料力学-第03章 平面任意力系(邱清水)

3.1
(2 M O F M 2 F2 cos 60 2 F3 3F4 sin 30 2.5 kN m
由于主矢和主矩都不为零,故最后合成结果是一个合力 FR,合力到O点的距离为
d M O FR 0.421 m
A B C
附加条件:A,B,C 三点不共线直
为什么要附加条件?
3.2 平面任意力系的平衡条件和平衡方程
平面平行力系的平衡方程:
如果选Oxy坐标系的y轴与各力平
行,则不论力系是否平衡,各力在x轴
上的投影恒等于零。 于是,平面平行力系的平衡的数 目只有两个 即
F 0 M F 0
y O
或
M F 0 M F 0
A B
3.2 平面任意力系的平衡条件和平衡方程
3.平面任意力系平衡方程的应用
力系平衡方程主要用于求解单个物体或物体系统平衡时 的未知约束力,也可用于求解物体的平衡位置和确定主动 力之间的关系。 应用平衡方程解题的大致步骤如下: 1)选取研究对象,画出受力分析图; 2)选取坐标系,列出平衡方程; 3)求解方程组。
2
FRy arctan FRx
F F F arctan F
2
2
2
x
y
y
x
3.1 平面任意力系的简化.主矢与主矩 3.固定端(或插入端)约束
图(a)为固定端约束在计算时所用的简图。物体在固嵌部分所 受力是比较复杂的(图(b)),但当物体所受主动力为一平面 力系时,这些约束力亦为平面力系,可将它们向A点简化得一 力和一力偶(图(c))。这个力可用两个未知正交分力来代替。 因此,在平面力系情形下,固定端A处的约束作用可简化为两 F 个约束力 F Ax , Ay和一个约束力偶 M A (图(d))。
第三章 平面任意力系和平面平行力系

X ) 0
m A ( Fi ) 0 mB ( Fi ) 0 mC ( Fi ) 0
③三矩式 条件:A、B、C 不在同一直线上
Y 0
mO ( Fi ) 0
①一矩式
mB ( Fi ) 0
②二矩式 条件:x 轴不⊥AB 连线
向一点简化
汇交力系+力偶系 (已知力系)
力 , R'(主矢) , (作用在简化中心) 力偶 ,MO (主矩) , (作用在该平面上)
5
主矢R ' F1 F2 F3 Fi
主矩 M O m1 m2 m3 mO ( F1 ) mO ( F2 ) mO ( Fi )
1
第三章
平面任意力系与平面平行力系
§3–1 平面任意力系向一点的简化
§3–2 平面任意力系的平衡问题
§3–3 平面平行力系
2
引言
平面任意力系:各力的作用线在同一平面内,既不汇交为一 点又不相互平行的力系,叫平面任意力系。 [例 ]
力系向一点简化:把未知力系(平面任意力系)变成已 知力系(平面汇交力系和平面力偶系)
3
§3-1 平面任意力系向一点简化
一、力的平移定理
作用在刚体上点A的力 F,可以平行移到任一点B,但必须
同时附加一个力偶。这个力偶的矩,等于原来的力 F 对新作
用点B的矩。 [证 ] 力 F 力系 F , F , F
力F 力偶(F,F )
4
二、平面任意力系的简化
一般力系(任意力系) (未知力系) 汇交力系 力偶系
出平衡重的最大值Wmax=375 kN 。实际工作时不允许处于
极限状态,需使其安全工作,平衡重应在这两者之间,即 Wmin<W<Wmax。
理论力学平面任意力系

解: 取齿轮I及重物C ,画受力图.
M B 0 Pr F R 0 F 10 P1
由 Fr taan 200 3.64 P1
t
X 0 FBx Fr 0 FBx 3,64P1
Y 0 FBy P P2 F 0 FBy 32P1
[例1]
静定(未知数三个)
静不定(未知数四个)
[例2]
物体系统(物系): ——由若干个物体经过 约束所构成旳系统。
超静定拱
[P62 思索题 3-10]
超静定梁
超静定桁架
3-3 物体系旳平衡•静定与超静定问题
二、物体系统旳平衡问题
外力:外界物体作用于系统上旳力。 内力:系统内部各物体之间旳相互作用力。
R
主矢
FR 0 FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最终成果
阐明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心旳位置无关
平衡
与简化中心旳位置无关
3-2 平面任意力系旳平衡条件与平衡方程
一、平面任意力系平衡旳充要条件为:
力系旳主矢
FR
'和对于任一点旳主矩
独立方程旳数目
平面力偶系
mi 0
1
平面平行力系 Y 0, mo (F ) 0
2
平面汇交力系
X 0
2
Y 0
平面任意力系
X 0
Y
0
3
mO (F i ) 0
3-3 物体系旳平衡•静定与超静定问题
独立方程数目≥未知数数目时,是静定问题 (可求解) 独立方程数目<未知数数目时,是超静定问题(静不定问题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由直角三角形OAB 可知,B 点离0点的距离为:a- COSPt第三章平面任意力系[习题3-1] x 轴与y 轴斜交成a 角,如图3-23所示。
设一力系在xy 平面内,对y轴和x 轴上的A 、B 两点有送M jA =0,送M jB = 0 ,且送F iy =0, 2 F i^ 0。
已知0A = a ,求B 点在x 轴上的位置。
解:因为M A =2 M iA =0,但S F ix H 0 ,即卩F^Q ,根据平面力系简化结果的 讨论(2)可知,力系向A 点简化的结果是:F R 是原力系的合力,合力F R 的作 用线通过简化中心A 。
又因为M B =S M iB=0,但送F ix^O ,即卩F R HQ ,根据平面力系简化结果的讨论(2)可知,力系向B 点简化的结果是:F R是原力系的合力,合力F R的 作用线通过简化中心B 0一个力系的主矢量是一个常数,与简化中心的位置无关。
因此,合力F R 的作用线同时能过A 、B 两点。
又因为F Ry =5: F iy =0,所以合力F R 与y 轴垂直。
即AB 与y 垂直。
图 3-23500[习题3-2]如图3-24所示,一平面力系(在oxy 平面内)中的各力在X 轴上投影之代数和等于零,对A 、B 两点的主矩分别为 M A =12kN .m, M B =15kN ”m,A 、B 两 点的坐标分别为(2, 3)、(4, 8),试求该力系的合力(坐标值的单位为m )。
解:由公式(3-5)可知: MO2 =M O1 中 M O2(F R ) M B =M A +M B (F R ) F RM B =M A +M B (F RX )+ M B (F Ry ) 依题意F RX =0,故有: k*---- C(-6,3)a =8mM B =M A +M B (F Ry ) 15 =12+F Ry>q 4-2) 2F Ry =3F Ry =1.5(kN) F R =F Ry =1.5kNF R 1.5故C 点的水平坐标为:X = -6m 。
F RAM B厂、F R .M A !'F A (2,3)I题3-24图[习题3--3]某厂房排架的柱子,承受吊车传来的力 F P = 250kN,屋顶传来的力F Q = 30kN ,试将该两力向底面中心O150150F Q |H ^ n “B(4,8)F P简化。
图中长度单位是mm 。
200题3-25图解:主矢量:F R =F p + F Q =250+30 =280(kN) ( J ),作用在 O 点。
主矩:M O =-F p X0.15 + F Q X0.15 =(-250 + 30) x 0.15 = _33(kN -m) [习题3--4]已知挡土墙自重W = 400kN , 土压力 F =320kN ,水压力F p =176kN ,如图3-26所示。
求 这些力向底面中心0简化的结果;如能简化为一合力, 试求出合力作用线的位置。
图中长度单位为 m 。
(1)求主矢量 F RX = F p -F COS400 =176 -320cos400=-69.134(kN) F Ry—Fsi n4 0° = V00-320si n4 0° =-605.692(kN) F R =』F R X 2 + F Ry 2 = J(-69.134)2 +(-605.692)2 =609.625(kN) F R 与水平面之间的夹角: a = arctan^ =arcta n 凹5692=83029'18" F R X -69.134 (2)求主矩M O =400咒0.8 -176X2 +320cos400咒3sin 600 -320sin40°x (3 — 3cos600) = 296.321(kN -m) (3)把主矢量与主矩合成一个力 d 壬 ^96^ 609.625 O F R =0.486(m)0.486 ~ 605.692 69.134 0.0555(m)[习题3--5]某桥墩顶部受到两边桥梁传来的铅垂力 F i = 1940kN, F 2 = 800kN及制动力F T = 193kN 。
桥墩自重 W = 5280kN ,风力F P = 140kN 。
各力作用线 位置如图所示。
求将这些力向基底截面中心 0简化的结果;如能简化为一合力, 试求出合力作用线的位置。
(1) 求主矢量F RX = -F p - F T = —140 -193 = —333(kN )F Ry = -W — F j - F 2 = —5280 -1940 -800 = -8020(kN ) F R = J F RX 2 +F Ry 2 = J (-333)2 +(d020)2 F R 与水平面之间的夹角:a = arcta n 电=arcta n"8020=87037,21"FR X一333(2) 求主矩M O =140X10.7 +193X21.25—800X0.4+1940X0.4 =6055.25(kN -m)(3) 把主矢量与主矩合成一个力d =呱=6055.25 =0.75)8026.91IM.朽= 8026.91(kN)nOF R[习题3--6]图示一平面力系,已知F i = 200N, 使力系的合力通过0点,问水平力之值应为若干3F RX = F - h cosQ = F -200X - = F -12O54F Ry = -F2 - F 1 sin 0 = —100 -200X - =—260(kN)5主矢量:F R = J (F -12O)2 +(-26O)2 M^FJ =200X 3X 2+200X 4X 2 =560(kN m)5 5M O (F 2)=—100X2 = —200(kN 师) M O (F) = —1.5F 主矩:M 0 =560 -200 -1.5F -300 =60 -1.5F 要使合力通过0点,必使:M 0 =60-1.5F =0,即卩 F =40kN [习题3--7]在刚架的A 、B 两点分别作用F I 、F 2两力,已知F I = F 2 = lO kN 。
F RX =卩2-戸 COS600 =10 —10X 0.5 =5(kN)F Ry = -F I sin6O 0= -10X 0.866 = -8.66(kN) 主矢量:F R = J 52+(-8.66)2=10(kN)F_ 8 66方向「希如F X 希如于一 6O O(\) M C(F 1^ -lOsin 600x =-8.66X(设 BC = x )M C (F 2)=10天2 =20(kN -m)F 2= 1OO N ,M= 300N ・m 。
以过C 点的一个力F 代替F I 、F 2,求F 的大小、方向及B 、C 间的距离。
I口主矩:M c = —8.66x +20 要使F 通过C 点,且与F I ,F 2两力等效,必使:M e =—8.66x +20 =0,即 x=2.309(m) 当 x=2.309(m)时,F =F^10(kN)方向与 x 轴正向成 600((\).[习题3--8]外伸梁AC 受集中力F p 及力偶(F , F ')的作用。
已知F p = 2 kN,力偶矩M = 1.5kN ・m ,求支座A 、B 的反力。
2 M A (F i ) =0R B 咒4-M —Fsin45° 咒 6 = 0R B =(M +F sin450x6)/4 =(1.5 + 2咒0.7071 x 6)/4 = 2.49(kN) 送 F ix=0R AX + F cos450= 0 R AX = —2COS 450 = —1.41(kN)2 F iy =0R Ay +R B -Fsin450= 0R Ay = —R B +Fsi n4 5° = —2.5 + 2X 0.7071 = —1.08(N)R AX AB 45、J R B mB. C 2m(2) 以AC 为研究对象,画出其受力图如图所示。
因为AC 平衡,所以(1) R Ay解:图(a)(1)以刚架ABCD为研究对象,画出其受力图如图所示。
(2)因为AC平衡,所以① 2 M A(F i)=02R B +2.5+7.5—8 =0R B =1(kN)②乞F ix =03R AX十3=0[习题3-9]求图示刚架支座A、B的反力, 已知:图(a)中,M = 2.5kN-m,F = 5kN;图(b)中,q = lkN/m, F = 3 kN。
「G・■■ ■Q—土 ==—-A-42.5m3= 5 X — =3(kN)5③ 2 F iy =04R Ay+ R B -F X—=054R Ay = —R B +F X—=—1+5x 0.8 = 3(kN) 解:图(b)(1)以刚架ABCD为研究对象,画出其受力图如图所示。
2mF —3mJAir R Ay R AX4m R B[习题3-10]弧形闸门自重W = 150kN,水压力F p = 3000kN,铰A 处摩擦力偶的矩M = 60kN ・m 。
求开始启门时的拉力 F T 及铰A 的反力。
解: 开始打开闸门时,B 与地面脱开,N B =0。
因为此时闸门平衡,所以①2: M A(F i) =0(2)因为AC 平衡,所以Z M A (F i ) =0RBX4-Fx3-q>c4 咒 2=0 4R B -3X3-1X4X2 =0 R B =(9 +8)/4 =4.25(kN)S F ix =0R AX +F =0R AX = —F = -3(kN )2 F iy =0R Ay +R B -q%4 =0RAy = —R B +q X 4 = —4.25 +1^4 = -0.25(kN)M +W X4 -F p X0.1 —F T咒6 =060 +150^4 -3000% 0.1 -F T X 6 = 060 +600 —300 -F T咒6 =010 +100 -50 —F T =0F T =60(kN)②无F ix =0R AX十 F p cos30 — 0R AX = —3000 X 0.866 = —2598( kN) ③送F jy = 0R Ay +F T+F P sin300-W =0R Ay =—F T -F P sin300+W =-60-3000X0.5 + 150 = —1410(kN)[习题3—11]图为一矩形进水闸门的计算简图。
设闸门宽(垂直于纸面)lm. AB=2m,重W= 15kN,上端用铰A支承。
若水面与A齐平后无水,求开启闸门时绳的张力F T。
解:AC =ABsi n300 =2 咒0.5 =1(m)BC =ABcos300 =2X0.866 =1.732(m) 开启闸门时,N B =0,此时,因为AB平衡,所以Z M A(F i) =0—F T x i +[[〈w X 1.73)x1.731 1.73 +W x 0.5 = 02 31 2—F T x1 +—X9.8X1.73X1.73X —X 1.73+ 15X0.5=0T 2 3-F T X16.914 +7.5 =0F T =24.414(kN)[习题3—12]拱形桁架的一端A为铰支座,另一端B为辊轴支座,其支承面与水平面成倾角30°。