深井超深井钻井技术1

合集下载

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术
深井超深井、复杂结构井垂直钻井技术是石油勘探开发领域的重要技术之一。

它们的出现极大改善了油气勘探开发的效率和经济效益。

深井超深井钻井技术是指在地表以上一定的深度处,往下打井到一定深度或者目标层位的技术,一般来说,井深超过5000米即可被称为深井,而超过7000米则被称为超深井。

深井超深井钻井技术‘已经得到了广泛的应用。

而且随着技术的不断进步,钻井深度也不断提高。

它能够在原本难以开采天然气与石油的深水网底、沙漠等极端环境下进行勘探开发,具有能源资源的利用效果显著、社会经济效益极高等特点。

复杂结构井垂直钻井技术是指地质复杂,井身难度大,钻头易损坏等状况下的垂直钻井技术。

当地层结构复杂,井筒度偏大,井壁易坍塌等因素影响钻井井筒的直度和位置,这时候就需要采用复杂结构井钻井技术。

它能够充分发挥钻井设备的功能,保证钻井效率和安全性,并且能够在各种地质环境下顺利实施。

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术
深井、超深井和复杂结构井垂直钻井技术是油气勘探与开发领域中的关键技术,它们的应用能够有效提高油气资源的开采效率和效益。

本文将从深井钻井技术、超深井钻井技术和复杂结构井钻井技术三个方面进行探究。

深井钻井技术是针对井深较大的油气井而设计的一项钻井技术。

一般而言,当井深超过3000米时,我们称为深井。

而在深井井段的钻进过程中,由于岩石力学性质的改变,钻井速度变慢,井漏、井塌等问题也随之增加。

深井钻井技术需要考虑钻井液体系的设计与优化、钻具与井眼之间的匹配、钻头的选择与设计等问题。

深井井下环境恶劣,对工具设备和井下作业人员有更高的要求,深井钻井技术还需要关注井下作业的安全性。

而复杂结构井钻井技术则是指针对复杂地质条件下的油气井而开发的钻井技术。

复杂地质条件包括但不限于水平井、斜井、S形井、复杂沉积层等。

针对这种类型的井,传统的垂直钻井技术往往难以达到预期的效果。

复杂结构井钻井技术需要解决的问题包括井眼的稳定性、钻进路径的控制、横向钻井技术的应用等。

通过合理的设计和技术手段,可以提高复杂结构井的构建效率和完整程度,从而提高油气资源的开采效益。

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术【摘要】深井超深井和复杂结构井垂直钻井技术在油气开采中具有重要意义。

本文从技术概述、特点、介绍、原理和关键技术等方面对这些钻井技术进行了探究。

深井超深井钻井工程具有高温高压、井深大、技术复杂等特点,复杂结构井更是面临地质构造复杂等挑战。

垂直钻井技术在解决这些问题中发挥着重要作用。

未来,技术研究将持续推动深井超深井和复杂结构井垂直钻井技术的发展,并对油气开采产生深远影响。

对这些技术进行深入研究,了解其发展趋势以及对油气产业的影响至关重要。

【关键词】深井超深井、复杂结构井、垂直钻井技术、钻井工程、技术研究、发展趋势、油气开采impact。

1. 引言1.1 深井超深井和复杂结构井垂直钻井技术的重要性深井超深井和复杂结构井垂直钻井技术在油气勘探开发中具有重要意义。

随着地表资源逐渐枯竭和人们对能源需求的不断增加,对深层油气资源的开发已成为当前的热点。

而深井超深井和复杂结构井垂直钻井技术的运用则是实现这一目标的关键。

深井超深井和复杂结构井垂直钻井技术可以有效提高油气采收率。

由于深层油气资源埋藏深度较大,常规钻井技术无法满足长距离的油气开采需求。

而深井超深井和复杂结构井垂直钻井技术在探查前景、确定井位和提高产量方面有着独特的优势,可以有效提高采收率。

深井超深井和复杂结构井垂直钻井技术可以减少工程风险。

深井钻井过程中会遇到高温高压、地层变化、井下环境等复杂情况,如果采用传统的钻井技术难以应对这些挑战。

而深井超深井和复杂结构井垂直钻井技术具有更高的适应性和可靠性,可以有效降低工程风险。

深井超深井和复杂结构井垂直钻井技术在油气勘探开发中具有重要意义,对提高采收率、减少工程风险等方面都有着积极的影响。

深井超深井和复杂结构井垂直钻井技术的研究和应用具有重要意义和广阔发展前景。

1.2 研究背景随着石油和天然气资源的逐渐枯竭,人们对深层油气资源的开发需求日益增加。

深井、超深井和复杂结构井成为当前油气勘探与开发的重要领域,但其钻井技术的复杂性和困难度也相应增加。

深井超深井钻井技术

深井超深井钻井技术
智能故障诊断与预警
应用智能故障诊断与预警技术,对钻井设备和井下复杂情况进行实 时监测和预警,提高故障处理效率和生产安全性。
05 复杂地层条件下的钻井技 术挑战与对策
高温高压地层钻井技术难题及解决方案
难题
高温高压地层导致钻井液性能不稳定, 易出现井壁失稳、井喷等事故。
解决方案
选用耐高温高压的钻井液体系,加强 井壁稳定措施,优化钻井参数以降低 井内压力。
04 钻井工艺优化与提高钻井 效率策略
钻井工艺参数优化方法探讨
1 2
钻压和转速的优化
通过合理调整钻压和转速,可以实现钻井效率的 最大化,同时避免钻具的过度磨损和井下复杂情 况的发生。
钻井液性能优化
针对不同地层特性,优化钻井液的密度、粘度、 失水等性能,以提高携岩能力和井壁稳定性。
3
钻头类型与布齿优化
深井超深井钻井技术
采用先进的钻井设备和工艺,实现超深井段的稳定钻进。
复杂地层处理技术
针对复杂地层情况,采用特殊泥浆体系、井壁加固等技术 手段,确保井眼稳定和钻井安全。
井眼轨迹控制技术
应用先进的井眼轨迹测量和调整技术,实现精确制导和顺 利完钻。
实施效果评价及经验教训总结
实施效果评价
项目成功完成预定目标,实现深层油气资源的有效勘探和开发,提高了油气产量和储量 动用程度。
根据地层岩性和钻进需求,选择合适的钻头类型 和布齿方式,以提高钻头的破岩效率和使用寿命。
提高机械钻速途径分析
01
02
03
高效破岩工具研发
研制具有高破岩效率的新 型钻头、钻具和井下动力 钻具,以提高机械钻速。
钻井方式改进
采用连续油管钻井、欠平 衡钻井等高效钻井方式, 减少起下钻时间和复杂情 况处理时间。

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术深井超深井和复杂结构井的垂直钻井技术是钻井领域的重要研究课题,它们是对地下资源勘探和开发提出了更高的技术要求。

深井超深井主要指的是井深超过3000米的油气井,而复杂结构井则是指存在大量非均质地层或者构造复杂的地质条件下的井筒钻井工程。

本文将就深井超深井和复杂结构井垂直钻井技术进行深入探讨。

一、深井超深井垂直钻井技术深井超深井钻井技术是油气勘探和开发领域的重点研究方向之一,因为地下资源的开发需求越来越多地转向深层资源。

在深井超深井垂直钻井中,最关键的技术挑战之一是井深带来的高温、高压和高硬度地层,这对井下作业的钻头、钻柱和钻井液等设备都提出了更高的要求。

而且,在深井超深井钻井中,井眼稳定和排屑及井环环空的完整性等问题也是需要解决的难题。

目前,针对深井超深井的垂直钻井技术主要有以下几个方面的研究:1. 高温高压钻井技术:高温高压环境下的固体控制、液相控制、井下设备选择等方面的技术研究和应用;2. 钻柱设计优化:传统的钻井钻具在高深度井钻造施工能力上存在局限性,因此需要研发更加稳定可靠的高深度钻具;3. 钻井液技术:针对深井超深井的地层条件,研究开发适应高压、高硬度地层的钻井液技术,以保证井钻的正常运行;4. 井下设备研发:研发适应深井超深井井下环境的各种井下设备,包括测井工具、定向钻井仪器等。

通过以上技术的研究和应用,可以有效解决深井超深井井下作业中遇到的各种问题,提高井深井的施工效率和成功率。

复杂结构井的钻井工程是指勘探开发中遇到非均质地层或者构造复杂的地质条件下的井筒钻井工程,这类井种在勘探开发中的比例逐年增加。

复杂结构井垂直钻井技术的发展也是为了满足对地下资源勘探和开发的需要。

复杂结构井钻井中,井筒的方向、倾角和弯曲度都不断变化,因此在施工过程中需要克服更多的困难和挑战。

1. 定向钻井技术:通过改变钻头参数、采用不同的钻头类型、优化钻柱结构等手段,实现对井筒方向的控制。

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术

探究深井超深井和复杂结构井垂直钻井技术深井超深井和复杂结构井是石油勘探开发领域中的难点和重点。

为了提高井深和提高钻井效率,高效、安全、可靠的垂直钻井技术显得尤为重要。

深井超深井钻井技术是指针对超过5000米或更深井深的垂直钻井而言的,在这个范围内,钻井面临的挑战有:高温高压、地层钻进难度大、极易发生事故、井底钻头易受损等。

为了解决这些问题,人们采用了下面的方法:1. 确定合适的钻井液体系结构。

钻井液的质量会对井的钻进效率起到重要的影响,特别是在深井超深井钻井时。

2. 优化钻井工艺,特别针对井口、井筒以及井底的情况进行优化,减少阻力,提高钻进效率。

3. 高效地利用井眼以及钻头的各种功能,例如:钻头可以作为测井工具、地层样品采集工具等。

4. 使用新型的测井技术。

利用高分辨率测井工具,如多频声波测井技术、多角度声波测井技术等。

复杂结构井钻井技术,是指在非垂直井管内钻孔的技术,例如斜井、水平井、方向钻井等。

这种钻井技术常常被应用于开采层状、层状粘土、页岩、煤制气等井型。

为了解决复杂结构井钻井时面临的困难,例如遇到高压、高温、高地层压力、高气水比、钻柱损坏等问题,我们可以采用下面的方法:1. 应用高压钻井液。

因为在水平井、斜井中钻井时,井眼形状复杂,液体能流阻力加大,因此需要使用高压钻井液,以弥补这种能流阻力。

2. 选择合适的防护装置。

为了防止顶部的岩石物质落入井眼,我们需要使用合适的防护装置,如套管、电缆保护管、钢丝绳内钢管等。

3. 选择合适的钻井工具。

钻井工具优化可以提高钻进速度、延长钻头使用寿命、减少钻柱损坏等问题。

4. 积极采用新型的钻井技术。

例如利用地下导向仪、方向钻井技术等。

总之,深井超深井和复杂结构井的钻井技术与传统钻井工艺有很大不同点,需要我们采用先进的钻井技术,才能充分发挥其巨大的生产潜力。

第六章 深井、超深井钻井技术

第六章 深井、超深井钻井技术

第一节 深井、超深井概述
• 第二阶段从1976年到1985年。1976年4月30日, 我国第一口超深井四川女基井(井深6011m) 完成,标志着我国钻井工作由打深井进一步发 展到打超深井。从1976年开始,我国每年都打 深井(超深井),并且数量逐步增加,由1976 年完成3口上升到1985年完成29口。在这一阶 段中,除完成100多口深井外,还完成了10口 超深井。其中2口井深超过7000m(四川关基井 7125m;新疆固2井7002m),这是我国深井、 超深井钻井的初步发展阶段。
方 案 2
钻头尺寸in (mm) 套管尺寸in (mm) 间隙(mm)
26 (660.4) 20 (508) 76.2
18 ½ (470) 16 (406.6) 31.8
14¾ (374.7) 10¾ (273.1) 50.8
9½ (241.3) 75/8 (193.7) 23.8
6½ (165.1) 5 (127) 19.1
第一节 深井、超深井概述
• 与国际深井钻井水平相比,我国的主要 差距是: • (1)设计水平较差,主要表现是地质依 据不足,针对性差,软件落后等。 • (2)钻井设备相对落后,缺少深井大功 率电动钻机以及配套顶驱、自动仪表等 辅助装备。
第一节 深井、超深井概述
• (3)随钻监测和钻头、参数优选技术跟不上。 • (4)超深井钻井液体系有待进一步提高。 • (5)缺少适用于深井的特殊钻具及防斜、减 震等井下工具。 • (6)超深井的闭环钻井技术欠缺,如防斜打 直的VDC垂直钻井系统,美国贝克休斯公司的 SDD直井钻井装置等。
第六章 深井、超深井钻井技术
第一节 深井、超深井概述
第一节 深井、超深井概述
• 由于在钻井过程中随着井深的增 加地层变化幅度大,地层的压力 随之增大,井底温度提高,导致 了不可见因素增多,因此深井钻 井的设备、工具、材料以及工艺 都有它的特殊性。

深井、超深井钻井技术

深井、超深井钻井技术

深井、超深井钻井技术(Driling Technology of Deep and Superdeep Well)主讲人:熊继有(西南石油大学石油工程学院)时间:2010-11-12地点:西南石油大学研发楼1504(教育部石油天然气装备设计重点实验室)一、概念深井(Deep Well):完钻井深为4500—6000米;超深井(Superdeep Well):完钻井深为6000米上;经常遇到的问题:高温高压、井眼失稳、钻速低、井控安全及储存伤害等安全问题。

地质情况复杂:山前构造、高陡构造、多压力系统、不稳定岩层、地质埋藏深、地质压力异常、岩性复杂、地层含盐膏层、地层可钻性差、及有些地层存在高温高压效应。

△技术难点:如何提高机械钻速的问题1)高陡构造,地层倾角大,井深质量难以控制;2)地层岩性复杂,井壁易失稳;3)盐膏层发育,钻井难度大;4)裂缝溶洞发育,漏失严重;5)深井固井难度大,裸眼段长,温度高,固井质量难以控制。

△易发生的井下事故及原因:1)井漏→堵漏方法:循环堵漏,注堵漏泥浆;2)压差卡钻→浸泡解卡法,U型管效应;3)断钻具和井下落物。

△井身机构优化设计套管技术的发展(可以成为研究重点发展方向)1、钻头设计及选型1)岩石的结构和特点:岩石的变形性质2)牙轮钻头的破碎机理:①冲击压碎作用;②剪切作用3)PDC钻头破碎机理:剪切、预压碎、犁削、磨削等方式破碎岩石4)钻头设计理念①三牙轮钻头设计理念;②常规PDC难以吃入、地层变化频繁、最大程度提高钻头的工作稳定性)2、钻井机械参数设计(钻头的工作参数——钻压和钻速)1)钻压的选用:钻压↑→旋转阻力↑→钻具所受挤压力↑2)钻盘转速的选用:①牙轮钻头钻井参数合理配合②金刚石钻头钻井参数合理配合(钻压、转速、排量——比水功率250W/cm²左右)3)超深井小井眼环空流体流动特性(小井眼的环空压力)3、钻井水力参数设计(建立小井眼环空压耗损计算途径)△深井、超深井钻井新技术A)防斜打直技术(①②③④⑤影响因素);B)国内防斜打直技术:1)钟摆法井斜控制技术;2)偏轴防斜打快控制技术(偏轴接头钻具)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具钻深井方面处于世界领先地位,电磁波MWD、井眼轨迹控制及纠斜 技术先进。
欧洲北海是世界上深井超深井集中地区,平均井深超过5000m,属高温
高压深井,目前北海地区测量井深8000m左右的大位移井钻井周期一般 只有90d左右。
德国1990年完成的KTB大陆科探井井深9101m,在钻井应用了高新技
塔西南坳 陷
表中5口井的情况反映了我国当前复杂地质条件下深探钻井现状,即井下 复杂情况和事故多(时效超过10%),周期长(均超过2年),因此,钻 井费用较高,井身质量和固井质量也还存在诸多问题
11
一、深井超深井钻井技术发展现状
美国复杂地质条件初探井钻井情况
地 区 井 号 No.1 Bighornl-5 P34-29R 960-LNo.1 Daville No.1 完井年份 1982 1985 1986 1986 1994 井深(m) 7461 7564 7447 7608 6299 完井周期(d) 320 640 370 318 636
5
一、深井超深井钻井技术发展现状
世界上完成7口特深井:前苏联SG -3井12869m及SG -1井过9000m、美国瑟 SG-3 SG-1 复兰奇1 -9井9034m、巴登1号井9159m、罗杰斯1号井9583m、Emma Lou2 1-9 井9029 m、德国HTB井9101m,其中美国占4口。 国外超深井钻井技术发展主要集中在钻机、钻头、井下工具、钻井泥浆等 方面:
超深井钻机功率大、性能好、自动化程度高、配套设备性能可靠,从而在装 备上为快速打好深井提供了物质上的准备。 钻头质量好、品种全、选型合理,可获得钻头耗用数少、钻井进尺多、钻井速 度快的好效果。 钻井液具有良好的热稳定性、润滑性和剪切稀释特性、固相含量低、高压失水 量低、可抗各种可溶性盐类和酸性气的污染。 运用井下动力钻具提高钻速、井身结构设计灵活、高强度钻杆等工具配套齐 全,使得国外超深井钻井速度快、事故少、成本低、效益好。
9
一、深井超深井钻井技术发展现状
第三阶段(1986~现在): 1986年3月揭开了塔里木大规模勘探的序幕,紧接着在90年代前期川东气 区的勘探开发也进入高潮,使我国深井超深井钻井工作进入规模应用的 阶段。 在这个阶段中,深井超深井数量进一步增加,11年共完成深井超深井678 口,其中超深井33口。 90年代以来陆上深井超深井钻井技术有了明显的进步。但是,复杂地质 条件下的深探井,特别是新区或新层的第一口深探井,钻井工作还存在 许多问题。 下表是塔里木盆地各复杂地质条件新区第一口深探井的钻井情况。
4
一、深井超深井钻井技术发展现状
2、国外深井超深井钻井概况
世界上钻深井、超深井的国家有80多个,其中,美国、前苏联、德国的超 深井钻井技术装备和综合技术水平处于国际领先地位。 美国是世界上钻超深井历史最长、工作量最大、技术水平最高的国家,世 界上大多数超深井集中在美国。 世界上第一口超深井、特深井分别于1949年、1972年由美国完成,井深分 别为6254.8m、9159m。 1984年,前苏联钻成世界上第一口深超万米的特深井(12260 m),1991 年该井第二次测钻至井深12869 m,目前仍保持着世界最深钻井记录。
美加利福尼亚 934-29R井914.4+660.4+508+406.4+273.1+196.9(尾管)+127(尾管) 美加利福尼亚934-29R井914.4+660.4+508+406.4+273.1+196.9(尾管)+127(尾管) 沙特阿拉伯 Khuff井914.4+762+609.6+473.1+339.7+244.5+177.8(尾管)+114.3(尾管) 沙特阿拉伯Khuff井914.4+762+609.6+473.1+339.7+244.5+177.8(尾管)+114.3(尾管) 美得克萨斯 NPI960-L1井1219.2+914.4+660.4+473.1+355.6+273.1(尾管)+228.6裸眼完钻 美得克萨斯NPI960-L1井1219.2+914.4+660.4+473.1+355.6+273.1(尾管)+228.6裸眼完钻 美怀俄明洲 Bighorn1-5井762+508+406.4+301.6+250.8(尾管)+196.9(尾管)+139.7(尾管) 美怀俄明洲Bighorn1-5井762+508+406.4+301.6+250.8(尾管)+196.9(尾管)+139.7(尾管) 美阿克拉何马州 DanvilleA#1井762+609.6+406.4+301.6(尾管)+244.5(尾管) 美阿克拉何马州DanvilleA#1井762+609.6+406.4+301.6(尾管)+244.5(尾管) 德国 KTB超深井622.3+406.4+339.7+244.5(尾管)+193.7(尾管) 德国KTB超深井622.3+406.4+339.7+244.5(尾管)+193.7(尾管) 拉丁美洲及墨西哥海湾地区 762+609.6+508+406.4+346.1(尾管)+295.3(尾管)+244.5(尾 拉丁美洲及墨西哥海湾地区762+609.6+508+406.4+346.1(尾管)+295.3(尾管)+244.5(尾 管 )+193.7(尾管) 管)+193.7(尾管)
13 (4)完井套管尺寸小,甚至只能是裸眼完井,难以满足采油方面的要求 。
二、深井超深井井身结构
1、增加套管柱层次的途径
(1)增大上部套管和井眼的尺寸 增大上部井眼和套管的尺寸,可增加套管柱层次,如在 508mm套管上面 增 加一层 660.4mm或 762mm的套管来封隔地表疏松地层或用作隔水管。 国外典型复杂深井超深井套管柱程序(直径/mm):
14
二、深井超深井井身结构
上部井眼采用大尺寸套管结构为下部井眼套管及钻头尺寸的选择提供了
较大的空间。
在钻遇复杂情况时,可增加一层或几层套管,或者可按地质加深要求进
一步加深井眼。
采用大尺寸井眼和套管受到地面设备条件、管材及工具的限制,如钻机提
升能力和套管强度限制大尺寸套管的下入深度,钻大尺寸井眼的钻头也不 容易获得等。
术,包括VDS垂直钻井系统、顶驱、铝合金钻杆、金刚石绳索取心、无 固相抗高温钻井液、耐高温低转速大扭矩螺杆马达、变速涡轮钻具等。 7
一、深井超深井钻井技术发展现状
3、国内深井超深井钻井概况
我国超深井钻井主要集中在塔里木盆地、准噶尔盆地、四川盆地及柴达木 盆地等地区。超深井钻井技术起步较晚,我国陆上深井超深井钻井大致可 分为三个发展阶段。 第一阶段(1966~1975年): 1966年7月28日,我国第一口深井大庆松基6井(井深4719 M)完成,标志 4719M 着我国钻井工作由打浅井和中深井发展到打深井的阶段。 在这个阶段中只打了5口深井,这5口深井是在十分艰苦的条件下,依靠我 们自己的力量完成的。继松基6井之后,又分别在大港、胜利和江汉油田打 成了超过5000M的深井,初步积累了钻深井的经验。
6
一、深井超深井钻井技术发展现状
据统计美国钻一口7000m的超深井仅需7~10个月。其中处理井下复杂情
况所耗费的时间占完井周期的5%~15%。复杂地质条件下所钻成的深约 7500m的初探井,其完井周期最短的不到1年,最长的不超过2年。
前苏联拥有适用高纬度地区的先进超深井钻井技术,其中涡轮及电动钻
8
一、深井超深井钻井技术发展现状
第二阶段(1976~1985年): 1976年4月30日,我国第一口超深井女基井(井深6011M)在四川完成,标 志着我国钻井工作由打深井进一步发展到打超深井。 从1976年开始,我国每年都打深井,并且数量逐步增加,由1976年完成3口 上升到1985年完成29口。 在这个阶段中,除完成170口深井外,还完成了10口超深井,其中包括井深 超过7000M的2口超深井(四川关基井,7175M;新疆固2井,7002M),这 是我国深井超深井钻井的初步发展阶段。 在深井钻井工艺技术方面,发展了优选参数钻井和近平衡钻井技术;钻井液 体系由细分散发展到粗分散,开发了三磺和聚合物等钻井液体系;钻井液化 学处理剂和水泥外加品种增多,逐步形成系列。但是,在处理深井井下复杂 情况和事故方面,特别是井喷着火使我们付出了沉重代价。
2
3
一、深井超深井钻井技术发展现状
1、深井超深井的概念
按国际通用概念:井深超过4500m或15000ft的井为深井; 井深超过6000m或 20000ft的井为超深井;井深超过9000m或30000ft的井为特深井。 从4500m深井到6000m超深井的钻井实践,人类约经历了11年时间。 从6000m超深井7500m超深井实践,人类约经历了10年时间。 从4500m深井到9000m特深井的钻井实践,人类约经历了34年,其中从6000m 超深井到9000m特深井实践约经历了23年时间,从7500m超深井到9000m特深 井实践约经历了13年。 从4500m深井到12000m特深井的钻井实践,人类约经历了46年时间,其中从 6000m到12000m特深井实践约经历了35年,从9000m特深井到12000m特深井 实践约经历了12年。
深井超深井钻井完井技术
林元华 (13908085550 ,yhlin28@ ) (13908085550, yhlin28@)
相关文档
最新文档