第3章_晶格振动与晶体的热学性质2

合集下载

第三章 晶格的振动

第三章 晶格的振动

i [ q ( 2 n2 ) at ]Be it Ae it
原胞内的不同原子以相同的振幅和位相做整体运动。
长声学波代表原胞质心的振动。
2)光频支 2 2 cos qaA ( 2 M ) B 0 两种原子的振幅比:
2 A 2 M2 ( )2 B 2 cos qa
玻恩—卡门边界条件: 晶格振动的波矢数等于晶体的原胞数。 晶格振动的频率数等于晶体的自由度数
(振动模式数)
2. 一维单原子链的波矢数
N M x N 1 x1 i q ( N 1) a t i qa t Ae Ae i qna t x Ae n ei qNa 1 Nqa 2l 2l q Na
光学波代表原胞中两个原子的相对运动。
三、玻恩—卡门边界条件 1. 玻恩—卡门假设和主要结果 a. 由N个原子构成的原子链为无限长的原子 链上的一段,这里N=mM m—每个原胞的原子数,M—原胞数。 b. 把这N个原子组成的一维原子链看成一个 闭合环,它包含有限数目的原子,但实际 上第N+1个原子就是第1个原子。 只要N足够大,圆环半径远远大于晶格常数就 局部看仍认为原子排列在一条直线上从而 得出结论。
0
U 1 2U 2 U ( x0 ) U ( x0 ) ( ) x0 x x0 ( 2 ) x0 x x0 ... x 2 x U 1 2U U ( x0 ) ( ) x0 ( 2 ) x0 2 ... x 2 x
2

mM
{(m M ) [m 2 M 2 2m M cos(2qa)] }
1 2
2. 振动方程及其试探解 类似于一维单原子链的讨论

晶格振动与晶体的热学性质关系综述

晶格振动与晶体的热学性质关系综述

晶格振动与晶体的热学性质关系综述晶格振动是晶体中原子或分子在平衡位置周围的微小振动。

它是晶体内部热学性质的基础,与晶体的热导率、热膨胀系数、比热容等热学性质密切相关。

本文将综述晶格振动与晶体热学性质的关系,并探讨晶格振动在材料科学中的应用。

晶体的热学性质与晶格振动的频率、波矢以及振幅有密切关系。

一般来说,晶格振动频率高、振幅小的晶体热导率会较高,热膨胀系数较小。

这是因为晶格振动频率高意味着晶格中原子或分子之间的相互作用强,能量传递效率高;而振幅小意味着原子或分子振动的范围小,不易导致晶格的漂移,从而减小了热膨胀系数。

晶格振动与晶体的比热容也存在一定的关系。

在低温下,晶格振动对比热容的贡献为Debye模型所描述的三维声子气模型。

而在高温下,由于激发了大量的非谐振动模式,晶格振动对比热容的贡献将显著增加。

除了热学性质,晶格振动还与晶体的光学性质相关。

例如,晶体的红外吸收谱在一定程度上反映了晶格振动的特点。

由于不同模式的晶格振动对应不同的波矢和能量,因此红外光谱可以提供关于晶体结构和振动特性的重要信息。

在材料科学中,晶格振动也被广泛应用于热电材料和热障涂层等领域。

通过调控晶格振动,可以实现材料的热导率和电导率之间的解耦,从而提高材料的热电性能。

例如,通过引入杂质、界面掺杂或纳米结构等手段,可以有效散射晶格振动,降低热导率,进而提高材料的热电效率。

总之,晶格振动与晶体的热学性质密切相关。

研究晶格振动对于深入理解晶体的热学行为、优化材料的热学性能具有重要意义。

随着计算模拟和实验技术的发展,进一步研究晶格振动与热学性质的关系将有助于推动材料科学和能源领域的进展。

这篇文章主要综述了晶格振动与晶体的热学性质的关系,并探讨了晶格振动在材料科学中的应用。

通过调控晶格振动频率、波矢和振幅等参数,可以实现热导率、热膨胀系数和比热容等热学性质的调控。

此外,晶格振动还与晶体的光学性质相关,并被广泛应用于热电材料和热障涂层等领域。

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

q1
2 1
2a
q2
2 2
5
2a
q2
q1
2
a

三、周期性边界条件(Born-Karman边界条件)
N+1
12
n
N N+2 N+n
N n
n
Aeit N naq Aeitnaq
eiNaq 1 ei2h 1
q 2 h
Na
h =整数
在q轴上,每一个q的取值所占的空间为 2
Na
q的分布密度:
q Na L
q0时
2
M
Mm
m
1
1
4
M
Mm m
2
sin
2
1 2
aq
M
m
1
Mm
1
4Mm
M m2
1 2
aq2
2
M
Mm
m
2Mm
M m2
1 2
aq
2
2
M m
1 2
aq
2
1 2
a
2 q q
M m
这与连续介质的弹性波 =vq 一致
当q0时
n n
q0
1
在长波极限下,原胞内两种原子的运动完全一致,振
M 2 m2 2Mm cosaq
i 1 aq
M
2
2m
cos
1 2
aq
e
2
m2 2Mm cosaq
M
m
Rei
1 aq
2
即:
2 2
-在Ⅰ、Ⅳ象限,属于同位相型
物理图象:原胞中的两种原子的振动位相基本相同,原胞 基本上是作为一个整体振动,而原胞中两种原 子基本上无相对振动。

《固体物理基础》晶格振动与晶体的热学性质

《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。

固体物理基础第3章-晶格振动与晶体的热学性质

固体物理基础第3章-晶格振动与晶体的热学性质

3-2 一维单原子链模型
格波的色散关系 4 2 2 aq sin ( )
m 2 • ω取正值,则有 (3)
(q)
aq 2 sin( ) m 2 • 频率是波数的偶函数
• 色散关系曲线具有周期性, 仅取简约布里渊区的结果即可 • 由正弦函数的性质可知,只有满足 0 2 / m 的格波 才能在一维单原子链晶体中传播,其它频率的格波将被强
原子n和原子n+1间的距离
非平衡位置
原子n和原子n+1间相对位移
a n1 n
n1 n
3-2 一维单原子链模型
• 忽略高阶项,简谐近似考虑原子 振动,相邻原子间相互作用势能 1 d 2v v(a ) ( 2 ) a 2 2 dr • 相邻原子间作用力 dv d 2v f , ( 2 )a d dr • 只考虑相邻原子的作用,第n个原 子受到的作用力
• 连续介质中的波(如声波)可表示为 Ae ,则可看出 • 格波和连续介质波具有完全类似的形式 • 一个格波表示的是所有原子同时做频率为ω的振动 • 格波与连续介质波的主要区别在于(2)式中,aq取值任意加减 2π的整数倍对所有原子的振动没有影响,所以可将波数q取值 限制为 q a a
V
O
a
r
• 第n个原子的运动方程
(n1 n ) (n n1 ) (n1 n1 2n )
(1)
平衡位置
d 2 n m 2 ( n1 n 1 2n ) dt
非平衡位置
——牛顿第二定律F=ma
3-2 一维单原子链模型
• 上述(1)式的解(原子振动位移)具有平面波的形式

a
)

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

格波: 连续介质弹性波:
Ae
i t naq
i t xq
Ae
将 µ nq
Ae i t qna
i t naq
代入运动方程得
m 2 Ae
Ae
m 2 eiaq eiaq 2 2 cos aq 1
解 得
第三章 晶格振动与晶体的热学性质
布拉伐晶格晶体中的格点表示原子的平衡位置,原子在格点附近作热振动,由于晶体内 原子之间存在相互作用力,各个原子的振动不是孤立的,而是相互联系在一起的,因此在晶 体中形成各种模式的波,称为格波。只有当振动非常微弱时,原子间的相互作用可以认为是 简谐的,非简谐的相互作用可以忽略,在简谐近似下,振动模式才是独立的。由于晶体的平 移对称性,振动模式所取的能量值不是连续的,而是分立的。通常用一系列独立的简谐振子 来描述这些独立的振动模,它们的能量量子称为声子。
nj Aje
i jt naqj


频率为 j 的特解:
方程的一般解:
n

线性变换系数正交条件: 系统的总机械能化为:
Ae
j j
i jt naqj


Q q, t einaq Nm
q
1
1 N
=N=晶体链的原胞数 晶格振动格波的总数=N· 1 =晶体链的自由度数 三、格波的简谐性、声子概念
1 2 n m 2 n 2 1 U n 晶体链的势能: n 1 2 n
晶体链的动能:T

系 统 的总 机械 能 即 体系的哈密顿量为:
H

2 1 1 2 n m n n 1 2 n 2 n
1 d2V dV V a V a 2 2 d x a d x

晶格振动与晶体的热学性质

晶格振动与晶体的热学性质

系统的哈密顿量
正则方程
p&i
H Qi
正则动量
pi
L Qi
Qi
Q&&i i2Qi 0, i 1, 2, 3,L 3N —— 3N个独立无关的方程
简正坐标方程解 Qi Asin(it )
简正振动 —— 所有原子参与的振动,振动频率相同 振动模 —— 简正坐标代表所有原子共同参与的一个振动
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
原子的振动 —— 晶格振动在晶体中形成了各种模式的波 —— 简谐近似下,系统哈密顿量是相互独立简谐振动哈密
顿量之和 —— 这些模式是相互独立的,模式所取的能量值是分立的 —— 用一系列独立的简谐振子来描述这些独立而又分立的
振 动模式 —— 这些谐振子的能量量子,称为声子 —— 晶格振动的总体可看作是声子的系综
摩尔热容量 CV 3Nk 3R —— 与温度无关
—— 杜隆-珀替经验规律
—— 实验表明较低温度下,热容量随着温度的降低而下降 晶格振动 —— 研究固体宏观性质和微观过程的重要基础 晶格振动 —— 晶体的热学性质、电学性质、光学性质、超
导电性、磁性、结构相变有密切关系
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质
只考察某一个振动模
系统能量本征值计算
i
aij mi
Qj
aij mi
Asin( jt )
正则动量算符
系统薛定谔方程
(1
2
3N i1
pi2
1 2
3N
i2Qi2 ) (Q1,
i1
Q3N )
E (Q1,
Q3N )
03_01_简谐近似和简正坐标 —— 晶格振动与晶体的热学性质

第三章晶格振动和晶体的热学性质讲课文档

第三章晶格振动和晶体的热学性质讲课文档

A
2
M
第21页,共84页。
π
o
πq
a
a
长声学波
长声学支格波相邻原子都是沿着同一方向振动的。
长声学波,相邻原子的位移相同,原胞内的不同原子以相同的振 幅和位相作整体运动。因此,长声学波代表了原胞质心的运动。
长光学波:
(
A B
)
m M
;
M AmB0
长光学波,原胞的质心保持不动。所以定性地说,
长光学波代表原胞中两个原子的相对振动。
1
2 (q )m m M M 1 1 (m 4 m M M )2sin 2 1 2 q a 2 o , 光 学 支 格 波 ( 光 学 波 ) ;
1
2 (q )m m M M 1 1 (m 4 m M M )2sin 2 1 2 q a 2 A , 声 学 支 (格 a波 co, ust声 ic学 s)波
中的原子振动频率不是单一的。后来德拜通过谐振理论求得近
似的原子振动的频率分布,得到与实验更加符合的比热公式。 1912年,Max Born和Theodore von Karman发表了题为“论空间
点阵的振动的论文”。提出晶体中原子振动应该是以点阵波的形 式存在,是点阵动力学的奠基之作。
1920-1950年,点阵动力学被应用到晶体的热力学性质、热传导、 电导、介电、光学和X射线衍射等诸多方面。比较完整地总结在 Max Born和黄昆的书“晶体点阵的动力理论”中。 1950年以后,发展了测量点阵动力学性质的实验:中子衍射。
( , )
aa
对应于 N/2lN/2( l只能取N个值)
与单原子链比较可知,对应于每个波矢q,一维双原子链出现了两个频 率不同的振动模式。由于不等价的q的数目与原胞数目相等,因此,双原 子链共有2N个不同的振动模式。(N个波矢数,2N个频率数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N个原子头尾相接形成环链, 保持所有原子等价特点
Ae
i t N n aq
Ae
it naq
Ae
i t N n aq
Ae
it naq
即:e
iNaq
1
l =任意整数,因为已经把 q限制在第一布里渊区,
l 取值数目是有限的:只有布里渊区内的 N 个整数值。
n m M n q0
质心保持不动
离子晶体在某种光波的照射下,光波的电场可以激发这 种晶格振动,因此称这种振动为光学波或光学支或光频支。
电磁波只与波数相同的格 波相互作用。如果它们具有 相同的频率,就会发生共振。
光波: =c0q, c0为光速
—— 恢复力常数
于是,总的相互作用能为:
1 U u ( xij ) 2 i j 1 1 u 1 2u 2 u ( xij 0 ) ( ) ( ) ij 2 O ij O 2 i j 2 i j xij 4 i j xij
即: U U 0

iaq 2m cos aq e M 2 m2 2Mm cos aq M m
即:
i R e
aq



2


2
-在Ⅰ、Ⅳ象限,属于同相位型
物理图象:原胞中的两种原子的振动相位基本相同,原胞
基本上是作为一个整体振动,而原胞中两种原
R ei
R:大于零的实数,反映原胞中P、Q两原子的振幅比 :原胞内P、Q两原子的振动位相差
1. 光学波(optical branch)
n 2m cos aq eiaq 2 2 M m M m 2Mm cos aq n
1 2 sin aq m 2

—— 色散关系 Dispersion curves
这里ω可正可负,我们取正值,因为在物理上频率应不小于 零。 这个结果与 n 无关,说明 N 个方程都有同样结果,即所有 原子都同时以相同的频率ω和相同的振幅 A 在振动,但不同 的原子间有一个相差,相邻原子间的相差是 qa 。
(q)
=c0q +
+(0)
0
q
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远
红外光范围。离子晶体中光学波的共振可引起对远红外
光在 +(0)附近的强烈吸收。
2. 声学波(acoustic branch)
iaq 2 m cos aq e n 2 2 n M m M m 2Mm cos aq
代入U,得
d n in ( i n ) m 2 dt i
2
§3.1 一维单原子晶格振动
一、模型和动力学方程
一维无限原子链 —— 每个原子质量m,平衡时原子间距a
—— 第n个原子离开平 衡位置的位移 —— 第n个原子和第i个 原子间的相对位移
原子的运动方程:
d 2 n in ( i n ) m 2 dt i
该结果还表示:只要ω和q 满足上述关系,试解就是联立方 程的解。通常把ω和 q 的关系称作色散关系。
解的物理意义 格波 原子振动以行波的方式在晶体中传播。当两原子相 2 距 ( ) 的整数倍时(即na-ma=lλ),两原子具有 q 相同的振幅和位相。
该解表明:晶体中所有原子共同 参与的振动,以波的形式在整个 晶体中传播,称为格波。
从形式上看,格波与连续介质弹性波完全类似,但连续介质 弹性波中的 x 是可以连续取值的;而在格波中只能取 na 格 点位置这样的孤立值。
由连续介质 中的机械波 波矢 晶体中的格波 波长
总结: 格波方程: 格波波长:
格波波矢:
格波的群速度: v d a cos qa dq m 2 不同原子间相位差: 相邻原子的相位差:
实际晶体是有限的,处在表面的原子的所力显然跟内部不同, 应该有不同的方程。
跟晶体内部原子数比起来,表面的特殊性对晶体的整体性质产 生的影响可以忽略,也就是说表面的运动方式可以按数学上的方 面任意选择。表面原子的运动方式称为边界条件。Born-Karman 最早利用周期性边界条件解决了此问题,成为固体理论的一个典 范。
q 值的分布密度(单位长度上的模式数目): Na L q L=Na 为晶体链的长度。 2 2 第一布里渊区中波数 q 的取值总数等于晶体链的原子个数,
Na
2 2 Na ( q) N 至此,我们可以有把握的说找 a a 2 到了原子链的全部振动模。
一维原子链第一布里渊区内的色散关系:
4
m
sin qa 2
2
1 sin aq m 2

q
长波极限:
1ቤተ መጻሕፍቲ ባይዱ 2 sin aq m 2

在长波长极限区,即
sin qa qa 2 2
q 0时,
vs

m


m
a
a
m a

Y
aq

和弹性波的结果一致。
在 q 0 的长波极限下:类似声波,vs即声速。
q 0, 0 的色散关系称为声学支 (acoustic branch)。每组
(ω ,q)对应的振动模式称为声学模 (acoustic mode)
原胞中两原子的振动相位相同

2 q , 2a, vq 0 a q
qa vq a cos m 2


群速度为零
相邻原子振动相位相反,波既不向右传 播,也不向左传播,形成驻波
相邻原子振动方向相反
§3.2 一维双原子链 声学波和光学波
2m cos aq e
i aq
M m M 2 m2 2Mm cos aq
R ei


2a
q

2a
cos aq 0
aq
3 2 2

+在Ⅱ、Ⅲ象限之间,属于反相位型
物理图象:原胞中两种不同原子的振动位相基本上相反, 即原胞中的两种原子基本上作相对振动。 当q0时,+,原胞中两种原子振动位相完全相反。
子基本上无相对振动。
当q0时,_0,原胞内两种原子的振动位相完全相同。
q0时
2

M m
Mm
1 1 sin 2 aq 2 M m 4Mm
1 1 2 aq Mm M m M m 2Mm 2 2 2 2 aq aq 2 Mm M m M m 4Mm
二、格波的色散关系:(

4 m
特点: 1、是q的周期函数,周期为2/a。
(q Gl ) (q)
波矢的取值
Gl l 2 / a (l为整数)
一维晶格倒格矢
—— 第一布里渊区
q取不同的值,相邻两原子间的振动位相差不同,则 晶格振动状态不同。
若 q q 振动状态
u 1 u 2 u ( xij 0 ij ) u ( xij 0 ) ( ) ij ( 2 ) ij O O xij 2 xij
2
u —— 原子平衡位置的受力,因此为零; ( ) xij O 即式中第二项为零
2u ij ji ( 2) 0 xij
第三章 晶格振动与晶体的热学性质
§3.1 一维单原子晶格振动 §3.2 一维双原子晶格振动
§3.3 三维晶格振动、声子
§3.4 晶格振动谱的实验测定 §3.5 晶格振动的热力学函数 模式密度 §3.6 晶格热容
§3.7 非谐效应:热膨胀、热传导
绪言
晶体中的原子处在不停的运动中;
温度较低: 热运动较弱——在平衡位置附近微振动,平衡位
光学波和声学波的物理图象
第n个原胞中P、Q两种原子的位移之比
iaq n 2 cos aq e A iaq e 2 B 2 m n

2m cos aq eiaq M m M 2 m 2 2Mm cos aq
置是晶格格点,所以称为晶格振动; 晶格振动是原子的热运动,对晶体的热学性能起 主要贡献。(除非很低的温度下,考虑电子贡献)
温度较高:
热运动较强——少数原子脱离格点- 热缺陷; 热运动很强——整个晶体瓦解,溶解。
温度很高:
晶格振动的研究 —— 晶体的热学性质
固体热容量 ——是晶体热运动宏观性质的表现
—— 只考虑相邻原子的作用,第n个原子受到的作用力
第n个原子的运动方程
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
方程解和振动频率
(这样的线性齐次方程应有一个波形式的解)
设方程组的通解: A是振幅,为角频率,q=2/λ波矢 naq — 第n个原子振动相位因子
得到 应用三角公式
色散关系
1 2 i j ij 4 i j
—— 平蘅位置时的相互作用能
1 U 0 u ( xij 0 ) 2 i j
1 在简谐近似下有: U U 0 i j ij 2 4 i j
因此,在简谐近似下第n个原子的动力学方程为:
d 2 n U F man m 2 n dt
一维复式格子的情形 —— 一维无限长链
两种原子m和M _( M > m) —— 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 …… m原子位于2n, 2n+2, 2n+4 …… 同种原子间的距离2a——晶格常数
系统有N个原胞
d 2 n in ( i n ) m 2 dt i
相关文档
最新文档