江苏大学智能控制双语课件Chapter 1 Introduction

合集下载

《智能控制基础了解》课件

《智能控制基础了解》课件

能化的控制方式,智能化程度高于传统 的控制方法。
智能控制可以分为模糊控制、神经网络
控制、遗传算法控制等多种形式,根据
具体应用场景选择合适的方法。
3
模糊控制
模糊控制利用模糊逻辑推理来处理不确
定性和模糊性,适用于复杂且非线性的
神经网络控制
4
控制系统。
神经网络控制利用神经网络模型来建立
动态系统的映射关系,适用于数据驱动
基于遗传算法控制的电力 系统
遗传算法控制可以优化电力系统 的发电和输电策略,实现能源的 高效利用和环境保护。
未来展望
1 智能控制发展趋势
智能控制将越来越融入各个领域,实现更智能、更自动化的控制系统。
2 智能控制在智能家居、智能制造等领域的应用
智能控制可以提升家居和制造业的智能化水平,提供更便捷和高效的生活和工作环境。
控制系统基础
控制系统的组成要素
控制系统由信号接收、处理、执行三个基本组 成要素构成,实现对被控物体的控制。
PID控制器
PID控制器是最常用的控制器之一,包括比例、 积分和微分三个部分,用于提高系统的稳定性 和响应速度。
智能控制基础
1
智能控制的概念
智能控制是指利用人工智能技术实现智
智能控制的分类
2
智能控制基础了解
本课程将介绍智能控制的基础知识,包括概述、控制系统基础、智能控制基 础、智能控制的应用举例、未来展望和总结。
概述
1 什么是智能控制?
智能控制是指利用现代科技,通过感知、推 理和决策等能力来实现高效、自动化的控制 系统。
2 智能控制的应用领域
智能控制广泛应用于工业控制、机器人、自 动化设备、智能交通等领域,提高生产效率 和生活质量。

智能控制技术ppt课件

智能控制技术ppt课件
发展历程
智能控制技术经历了从经典控制理论到现代控制理论,再到智能控制理论的演 变过程。随着计算机技术的飞速发展,智能控制技术得到了广泛应用和深入研 究。
应用领域及现状
应用领域
智能控制技术已广泛应用于工业自动化、智能制造、智能交 通、智能家居、智慧农业等领域,为现代社会的生产和生活 提供了便捷和高效的技术支持。

对选择出的个体进行交叉操 作,生成新的个体。常见的 交叉方式有单点交叉、多点
交叉和均匀交叉等。
变异操作
对新生成的个体进行变异操 作,以增加种群的多样性。 常见的变异方式有位翻转、 交换变异和逆序变异等。
终止条件判断
判断算法是否满足终止条件 (如达到最大迭代次数、找 到满足精度要求的解等), 若满足则输出最优解,否则
04
神经网络控制技术
神经网络基本原理与模型
01
02
03
04
生物神经网络启发
模拟人脑神经元连接与信息传 递机制
神经元模型
输入、权重、偏置、激活函数 等要素
网络拓扑结构
前馈、反馈、循环等不同类型 的神经网络
学习与训练算法
监督学习、无监督学习、强化 学习等
神经网络在智能控制中应用
系统建模与控制
通过神经网络逼近非线性系统 动态特性
综合处理多传感器信息,提高控制精度与鲁 棒性
跨模态智能控制
实现语音、图像、文本等不同模态信息的协 同控制
05
遗传算法与进化计算 在智能控制中应用
遗传算法基本原理及操作过程
遗传算法基本原理
模拟生物进化过程中的自然选择 和遗传学机制,通过种群中个体 的适应度评估、选择、交叉和变 异等操作,实现问题求解的优化
现代控制理论的发展背景

智能控制-第一章 概论

智能控制-第一章 概论
• 为了提高性能,传统控制系统可能变得很复杂,从而增加了 设备的初投资和维修费用,降低系统的可靠性。
• 为研究这类系统提出并遵循的一些假设在应用中与实际不符。
2. 自动控制面临挑战的原因
• 科学技术间的相互影响和相互促进; • 当前和未来应用的需求; • 基本概念和时代思潮发展水平的推动。
3. 自动控制工作者面临挑战的任务
定义1.16
智能控制系统
1.3 定义、特点与一般结构
用于驱动自主智能机器以实现其目标而无需操作人员干预 的系统叫智能控制系统。智能控制系统的理论基础是人工智能、 控制论、运筹学和信息论等学科的交叉。
4、物理符号系统3个推论
推论一 既然人具有智能,那么他(她)就一定是个物理符号系统。 人之所以能够表现出智能,就是基于他的信息处理过程。
推论二 既然计算机是一个物理符号系统,它就一定能够表现出智
能。这是人工智能的基本条件。 推论三 既然人是一个物理符号系统,计算机也是一个物理符号系
统,那么就能够用计算机来模拟人的活动。
1.1 人工智能
1.1.2 人类智能与人工智能
思维策略 计算机程序 计算机语言 计算机硬件
• 人是一种智能信息处理系统 • 物理符号系统的六种基本功能 • 物理符号系统的假设
– 推论一 – 推论二 – 推论三
初级信息处理 生理过程
图1.1
人类认知活动与计算机的比较
1、符号处理系统的六种基本功能 信息处理系统又叫符号操作系统(Symbol Operation System)或物理 符号系统(Physical Symbol System)。所谓符号就是模式(pattern)。 一个完善的符号系统应具有下列6种基本功能: (1)输入符号(input); (2)输出符号(output); (3)存储符号(store); (4)复制符号(copy); (5)建立符号结构:通过找出各符号间的关系,在符号系统中形成符 号结构; (6)条件性迁移(conditional transfer):根据已有符号,继续完成活 动过程。

智能控制课件

智能控制课件

1Introduction1.1Induction MotorConversion from electrical energy to mechanical energy is an important process in modern industrial civilization.About half of the electricity generated in a developed country is eventually converted to mechanical energy,usually by means of electrical machines (Leonhard,1996;Sen,1997).Typical applications of electrical machine drives are:1.Appliances(washing machines,blowers,compressors,pumps);2.Heating/ventilation/air conditioning(HVAC);3.Industrial servo drives(motion control,robotics);4.Automotive control(electric vehicles).Since its invention in1888,the induction motor has become the most widely used motor in pared with d.c.motors,the cage induction motor has distinct advantages (Novotny and Lipo,1996)as listed below:1.No commutator and brushes,2.Ruggedness,3.Lower rotor inertia,4.Maintenance free,simpler protection,5.Smaller size and weight,6.Lower price.Consequently,most industrial drive applications employ induction motors.Unfortunately, the speed of an induction motor cannot be continuously varied without additional expensive equipment.High-performance control of an induction motor is more difficult than d.c.motors,because the induction motor is inherently a dynamic,recurrent,and nonlinear system.Applied Intelligent Control of Induction Motor Drives, First Edition. Tze-Fun Chan and Keli Shi.© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82556-32Applied Intelligent Control of Induction Motor Drives1.2Induction Motor ControlInduction motor control problems have attracted the attention of researchers for many years. Most of the earlier researches are based on classical control theory and electric machine theory, using precise mathematical models of the induction motor.As shown in Figure1.1,an induction motor control system consists of the controller,sensors,inverter,and the induction motor.It can be seen that a study of induction motor control involves three main electrical engineering areas:control,power electronics,and electrical machines(Bose,1981).Figure1.1An induction motor control system.The induction motor can be described by afifth order nonlinear differential equation with two inputs and only three state variables are available for measurement(Marino and Tomei,1995).The control task is further complicated by the fact that the induction motor is subject to unpredictable disturbances(such as noise and load changes)and there are uncertainties in machine parameters.Induction motor control has constituted a theoretically interesting and practically important class of nonlinear systems,and is evolving into a benchmark example for nonlinear control(Ortega and Asher,1998).Intelligent control,which includes expert-system control,fuzzy-logic control,neural-network control,and genetic algorithm,is not only based on artificial intelligence(AI)theory, but also based on conventional control theory.Consequently,new control methods can be developed by the application of artificial intelligence(Bose,1993).1.3Review of Previous WorkScientists and experts have devoted a lot of efforts to induction motor control in the past decades.Developing new control principle,algorithm,and hardware for induction motor control has become a challenge that industry must face today.The development of induction motor control may be summarized as follows.In1946,Weygandt and Charp investigated the transient performance of induction motor by using an analog computer(Weygandt and Charp,1946).In1956,Bell Laboratories invented the thyristor(or silicon-controlled rectifier)(Bose,1989). In1959,Kovacs and Racz applied rotating reference frames and space vectors to the study of induction motor transients(Kovacs and Racz,1959).Since1960,various scalar control strategies of constant voltage/frequency(V/Hz)control of induction motor had been proposed(Bose,1981).In1961,McMurray and Shattuck proposed the inverter circuit with pulse width modulation (PWM)(McMurray and Slattuck,1961).Introduction3 In1968and in1970,field orientation principle wasfirst formulated by Hasse and Blaschke (Hasse,1969;Blashke,1972).In1985,direct self control was proposed by M.Depenbrock,I.Takahashi,and T.Noguchi (Depenbrock,1985;Takahashi and Noguchi,1986).In the1990s,intelligent control of induction motor received wide attention(Bose,1992). Recently,revolutionary advances in computer technology,power electronics,modern control,and artificial intelligence have led to a new generation of induction motor control that may provide significant economic benefits.The voltage or current supplied to an induction motor can be expressed as a sinusoidal function of magnitude and frequency or magnitude and phase.Accordingly,induction motor control methods are classified into two categories:scalar control in which the voltage magnitude and frequency are adjusted,and vector control in which the voltage magnitude and phase are adjusted.1.3.1Scalar ControlThe scalar controllers are usually used in low-cost and low-performance drives.They control the magnitude/frequency of voltage or current.Typical studies of scalar control include open-loop voltage/frequency(V/Hz)control,closed-loop V/Hz control,and stator current and slip-frequency control(Bose,1981).When the load torque is constant and there are no stringent requirements on speed regulation, it suffices to use a variable-frequency induction motor drive with open-loop V/Hz control. Applications which require only a gradual change in speed are being replaced by open-loop controllers,often referred to as general purpose AC drives(Rajashekara,Kawamura,and Matsuse,1996).When the drive requirements include faster dynamic response and more accurate speed or torque control,it is necessary to operate the motor in the closed-loop mode. Closed-loop scalar control includes closed-loop V/Hz control and stator current and slip frequency control.1.3.2Vector Control(Rajashekara,Kawamura,and Matsuse,1996)The vector controllers are expensive and high-performance drives,which aim to control the magnitude and phase of voltage or current vectors.Vector control methods includefield-oriented control(FOC)and direct self control(DSC).Both methods attempt to reduce the complex nonlinear control structure into a linear one,a process that involves the evaluation of definite integrals.FOC uses the definite integral to obtain the rotorflux angle,whereas DSC uses the definite integral to obtain the statorflux space vector.Although the implementation of both methods has largely been successful,they suffer from the following drawbacks:1.Sensitivity to parameter variations;2.Error accumulation when evaluating the definite integrals;if the control time is long,degradation in the steady-state and transient responses will result due to drift in parameter values and excessive error accumulation;3.In both methods,the control must be continuous and the calculation must begin from aninitial state.4Applied Intelligent Control of Induction Motor Drives1.3.3Speed Sensorless ControlSpeed sensorless control of induction motors is a new and promising research trend.To eliminate the speed and position sensors,many speed and position estimation algorithms have been proposed recently.These algorithms are generally based on complex calculations which involve the machine parameters and the measurement of terminal voltages and currents of the induction motor.Speed sensorless control can be regarded as open-loop control because the measurement is included in the controller(Rajashekara,Kawamura,and Matsuse,1996).1.3.4Intelligent Control of Induction MotorDespite the great efforts devoted to induction motor control,many of the theoretical results cannot be directly applied to practical systems.The difficulties that arise in induction motor control are complex computations,model nonlinearity,and uncertainties in machine para-meters.Recently,intelligent techniques are introduced in order to overcome these difficulties. Intelligent control methodology uses human motivated techniques and procedures(for example,forms of knowledge representation or decision making)for system control (Bose,1997;Narendra and Mukhopadhyay,1996).1.3.5Application Status and Research Trends of Induction Motor Control Among the above control techniques,market evidence shows that up to the present only two have found general acceptance.They are the open-loop constant V/Hz control for low-performance applications and the indirect vector control for high-performance applications (Bose,1993).Vector control principle,intelligent-based algorithm,and DSP-based hardware represent recent research trends of induction motor control.1.4Present StudyThe present research status of induction motor control suggests the areas that require further investigation and development.The objective of this book is to investigate intelligent control principles and algorithms in order to make the performance of the controller independent of,or less sensitive to,motor parameter changes.Based on theories of the induction motor and control principles,expert-system control,fuzzy-logic control,neural-network control,and genetic algorithm for induction motor drive will be investigated and developed.The scope of the present book is summarized as follows:puter modeling of induction motorThe induction motor model typically consists of an electrical model and a mechanical model,which is afifth-order nonlinear ing MATLABÒ/Simulink software,three induction motor models(current-input model,voltage-input model,discrete-state model) are constructed for the simulation studies of the induction motor drive.The three models can be used to simulate the actual induction motor effectively.In addition,a PWM model,an encoder model,and a decoder model are also proposed.Introduction5 2.Expert-system based acceleration controlAn expert-system based acceleration controller is developed to overcome the drawbacks (sensitivity to parameter variations,error accumulation,and the needs for continuous control with initial state)of the vector controller.In every time interval of the control process,the acceleration increments produced by two different voltage vectors are compared,yielding one optimum stator voltage vector which is selected and retained.The on-line inference control is built using an expert system with heuristic knowledge about the relationship between the motor voltage and acceleration.Because integral calculation and motor parameters are not involved,the new controller has no accumulation error of integral as in the conventional vector control schemes and the same controller can be used for different induction motors without modification.Simulation results obtained on the expert-system based controller show that the performance is comparable with that of a conventional direct self controller,hence proving the feasibility of expert-system based control.3.Hybrid fuzzy/PI two-stage controlA hybrid fuzzy/PI two-stage control method is developed to optimize the dynamicperformance of a current and slip frequency controller.Based on two features(current magnitude feature and slip frequency feature)of thefield orientation principle,different strategies are proposed to control the rotor speed during the acceleration stage and the steady-state stage.The performance of the two-stage controller approximates that of afield-oriented controller.Besides,the new controller has the advantages of simplicity and insensitivity to motor parameter changes.Very encouraging results are obtained from a computer simulation using MATLABÒ/Simulink software and experimental verification using a DSP-based drive.4.Neural-network-based direct self control(DSC)Artificial neural network(ANN)has the advantages of parallel computation and simple hardware,hence it is superior to a DSP-based controller in execution time and structure.In order to improve the performance of a direct self controller,an ANN-based DSC with seven layers of neurons is proposed at algorithm level.The execution time is decreased from 250m s(for a DSP-based controller)to21m s(for the ANN-based controller),hence the torque andflux errors caused by long execution times are almost eliminated.A detailed simulation study is performed using MATLABÒ/Simulink and Neural-network Toolbox.5.Genetic algorithm based extended Kalmanfilter for rotor speed estimation ofinduction motorAddressing the current research trend,speed-sensorless controller with the extended Kalmanfilter is investigated.To improve the performance of the speed-sensorless controller,noise covariance and weight matrices of the extended Kalmanfilter are optimized by using a real-coded genetic algorithm(GA).MATLABÒ/Simulink-based simulation and DSP-based experimental results are presented to confirm the efficacy of the GA-optimized EKF for speed estimation in induction motor drives.6.Parameter estimation using neural networksIntegral models of an induction motor are described and implemented by using an artificial neural network(ANN)approach.By using the proposed ANN-based integral models, almost all the machine parameters can be derived directly from the measured data,namely the stator currents,stator voltages and rotor speed.With the estimated parameters,load, statorflux,and rotor speed may be estimated for induction motor control.6Applied Intelligent Control of Induction Motor Drives 7.Optimized random PWM strategies based on genetic algorithmRandom carrier-frequency PWM,random pulse-position PWM,random pulse-width PWM,and hybrid random pulse-position and pulse-width PWM are optimized by genetic algorithm(GA).A single-phase inverter is employed for the optimization study,and the resulting waveforms are evaluated based on Fourier analysis.The validity of the GA-optimized random carrier-frequency PWM is verified by experimental studies on a DSP-based voltage controlled inverter.The GA-optimized PWM proposed may be applied to single-phase ac induction motor drives for low performance applications,such as pumps, fans and mixers,as well as uninterruptible power supply(UPS).8.Hardware experimentsAt the hardware level,an experimental system for intelligent control of an induction motor is proposed and implemented.The system is configured by a DSP(ADMC331),a power module(IRPT1058A),a three-phase Hall-effect current sensor,an encoder (Model GBZ02),a data acquisition card(PCL818HG),a PC host and a data-acquisition PC,as well as a147-W3-phase induction motor.With the experimental hardware, the MATLABÒ/Simulink models,hybrid fuzzy/PI two-stage control algorithm,and GA-EKF method described in this book are verifiing a TMS320F2812DSP board and an IRAMX16UP60A inverter module,a GA-optimized single-phase random-carrier-frequency PWM inverter is implemented.Besides,programming examples are presented to demonstrate RTDX(Real Time Data exchange)technique to exchange real-time data between a TMS320F28335DSP and MATLABÒsoftware.With the RTDX technique,real-time DSP applications can be supported by a complex MATLABÒAI program running simultaneously on a PC.9.Programming examplesUsing MATLABÒ/Simulink software and CCStudio_v3.3software,a large number of programming examples are described in the book and the source codes can be found on the book companion website as supplementary materials.The programming examples may be classified into the following categories.a.Modeling and simulation of induction motor(Chapter3)b.Fundamentals of intelligent control simulation(Chapter4)c.Induction motor controlExpert-system based acceleration control(Chapter5)Hybrid fuzzy/PI two-stage control(Chapter6)Direct self control of induction motor(Chapter7)Neural-network based direct self control(Chapter7)Field-oriented control of induction motor(Chapter8)V oltage-frequency controlled induction motor drive(Chapter9).d.Estimations for induction motor drivesParameter estimation using neural networks(Chapter8)Load estimation based on integral model of induction motor(Chapter8)Flux estimation based on integral model of induction motor(Chapter8)Rotor speed estimation based on integral model of induction motor(Chapter8)GA-optimized extended Kalmanfilter for speed estimation(Chapter9).e.Sensorless control of induction motorIntegral-model-based sensorless control of induction motor(Chapter8)Introduction7 EKF-based sensorless V/Hz control of induction motor(Chapter9)EKF-based sensorlessfield-oriented control(FOC)of induction motor(Chapter9).f.PWM strategiesSpace vector PWM Simulink model(in the folder‘Chapter8.4’of the book companion website)Optimized random PWM strategy based on genetic algorithms(Chapter10).g.DSP TMS320F28335programming examples3-phase PWM programming example(Chapter11)RTDX programming example(Chapter11)ADC programming example(Chapter11)CAP programming example(Chapter11).ReferencesBlashke,F.(1972)The principle offield-orientation as applied to the new‘Transvektor’closed-loop control system for rotating-field machines.Simians Review,34(5),21–220.Bose,B.K.(1981)Adjustable Speed AC Drive Systems,IEEE Press,New York.Bose,B.K.(1989)Power electronics–an emerging technology.IEEE Transactions on Industrial Electronics, 36,403–411.Bose,B.K.(1992)Recent advances in power electronics.IEEE Transactions on Power Electronics,7(1),2–16. Bose,B.K.(1993)Power electronics and motion control-technology status and recent trends.IEEE Transactions on Industry Applications,29,902–909.Bose,B.K.(1997)Expert system,fuzzy logic,and neural networks in power electronics and drives,in Power Electronics and Variable Frequency Drives:Technology and Applications(ed.B.K.Bose),IEEE Press,New Jersey. Depenbrock,M.(Inventor)(18,Oct.1985)‘Direct Self-control of the Flux and Rotary Moment of a Rotary-field Machine,’United States Patent4,678,248.Hasse,K.(1969)‘About the Dynamics of Adjustable-speed Drives with Converter-fed Squirrel-cage Induction Motors’(in German),Dissertation,Darmstadt Technische Hochschule.Kovacs,K.P.and Racz,J.(1959)Transiente Vorgane in Wechse Istrommaschinen,Verlag der Ungarischen Akademie der Wissenschaften,Budapest.Leonhard,W.(1996)Control of Electrical Drives,Springer-Verlag Berlin,Heidelberg.Marino,R.and Tomei,P.(1995)Nonlinear Control Design,Prentice Hall Europe,Hemel Hempstead. McMurray,W.and Slattuck,D.D.(1961)A silicon-controlled rectifier inverter with improved commutation.AIEE Transactions on Communications and Electronics,80,531–542.Narendra,K.S.and Mukhopadhyay,S.(1996)Intelligent Control Using Neural Networks,in Intelligent Control Systems:Theory and Applications(eds M.M.Gupta and N.K.Sinha),IEEE Press,New York.Novotny,D.W.and Lipo,T.A.(1996)Vector Control and Dynamics of AC Drives,Oxford University Press,Oxford. Ortega,R.and Asher,G.(1998)Joint special issue on nonlinear control of induction motor.IEEE Transactions on Industrial Electronics,45(2),367.Rajashekara,K.,Kawamura,A.,and Matsuse,K.(1996)Speed sensorless control of induction motor,in Sensorless Control of AC Motor Drives(eds K.Rajashekara,A.Kawamura,and K.Matsuse),IEEE Press,New Jersey. Sen,P.C.(1997)Principles of Electric Machines and Power Electronics,John Wiley&Sons,Inc.,New York. Takahashi,I.and Noguchi,T.(1986)A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications,22(5),820–827.Weygandt,C.N.and Charp,S.(1946)Electromechanical transient performance of induction motors.AIEE Transac-tions,64(Pt.III),1000.。

智能控制技术第一讲

智能控制技术第一讲

1.4 智能控制的主要形式
例如:动物识别系统——识别虎、金钱豹、斑马、长 颈鹿、鸵鸟、企鹅、信天翁等七种动物的产生式系统 。
1.3 智能控制的主要类型
规则库:
r1: IF 该动物有毛发 THEN 该动物是哺乳动物 r2: IF 该动物有奶 THEN 该动物是哺乳动物 r3: IF 该动物有羽毛 THEN 该动物是鸟 r4: IF 该动物会飞 AND 会下蛋 THEN 该动物是鸟 r5: IF 该动物吃肉 THEN 该动物是食肉动物 r6: IF 该动物有犬齿 AND 有爪 AND 眼盯前方
1.3 智能控制的主要类型
模糊控制系统:
它的基本思想是把人类专家对特定的被控对象或过程的控 制策略总结成一系列以“IF(条件)THEN(作用)”形式表 示的控制规则,通过模糊推理得到控制作用集,作用于被 控对象或过程。
工作过程:首先将信息模糊化,然后经模糊推理规则得 到模糊控制输出,再将模糊指令进行精确化计算最终输 出控制值。
(2)
IC=AI ∩ CT ∩ OR ∩ IT
(3)
Al—人工智能 (Artificial Intelligence);
AC一自动控制(Automatic Control);
OR—运筹学 (Operation Research);
IT—信息论(Information theory)
IC — 智能控制 ( Intelligent Control);
智能 混合 动力 电动 轿车 的系 统构 成简 图
整车分层控制系统结构图
该系统 能实现对整 车的综合协 调控制, 在 实现整车各 项功能的同 时, 确保整 车具有系统 最优的安全 性、经济性 和驾 驶性能。
1.7 智能控制技术应用实例

《智能控制》PPT课件

《智能控制》PPT课件
(3)组织功能:对于复杂任务和分散的传感信息具有自组织和协调功能,使系统具有 主动性和灵活性。智能控制器可以在任务要求范围内进行自行决策,主动采取行动,当 出现多目标冲突时,在一定限制下,各控制器可以在一定范围内自行解决。
1.1.4 智能控制的研究对象 (1)不确定性的模型
7
模型的不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可 能在很大范围内变化。
可以概括为:智能控制是“三高三性”的产物。即“控制系统的高度复杂性、高度不 确定性及人们要求越来越高的控制性能”
8
1.1.5 智能控制系统的结构 1.智能控制系统的基本结构
数据库
感知信息 与处理
认知学习 智能控制器
评价机构
传感器
环境 广义对象
还包括外部各种干 扰等不确定制、神经网络控制、专家控制、 学习控制及仿人控制等。
3
第一章
第一节 智能控制的基本概念 1.1.1 智能控制的由来
绪论
传统控制理论(包括经典控制理论和现代控制理论)是建立在被控对象精确数学模
型基础上的控制理论。实际上,许多工业被控对象或过程常常具有非线性、时变性、变 结构、多层次、多因素以及各种不确定性等,难于建立精确的数学模型。即使对一些复 杂对象能够建立起数学模型,模型也往往过于复杂,既不利于设计也难于实现有效控制。 虽然对缺乏数学模型的被控对象可以进行在线辨识,但是由于算法复杂、实时性差,使 得应用范围受到一定限制。
IC:智能控制(intelligent control) AI:人工智能(artificial intelligent) AC:自动控制(automatic control)
9
2. 分层递阶智能控制结构
1977年Saridis以机器人控制为背景提出了三级递阶控制结构。

智能控制ppt课件


精选编辑ppt
6
智能控制的基本概念
智能控制的定义一: 智能控制是由智能机器自 主地实现其目标的过程。而智能机器则定义为, 在结构化或非结构化的、熟悉的或陌生的环境 中,自主地或与人交互地执行人类规定的任务 的一种机器。
精选编辑ppt
7
智能控制的基本概念
定义二: K.J.奥斯托罗姆则认为,把人类 具有的直觉推理和试凑法等智能加以形式 化或机器模拟,并用于控制系统的分析与 设计中,以期在一定程度上实现控制系统 的智能化,这就是智能控制。他还认为自 调节控制、自适应控制就是智能控制的低 级体现。
协调级(Coordination level):协调级可进一步 划分为两个分层:控制管理分层和控制监督分层。
执行级(executive level):执行级的控制过程 通常是执行一个确定的动作。
精选编辑ppt
26
专家控制系统(Expert System)
专家指的是那些对解决专门问题非常熟悉的 人们,他们的这种专门技术通常源于丰富的经验, 以及他们处理问题的详细专业知识。
Control) 主 要 由 三 个 控 制 级 组 成 , 按 智
能控制的高低分为组织级、协调级、执
行级,并且这三级遵循“伴随智能递降
精度递增”原则,其功能结构如下图所
示。
精选编辑ppt
22
精选编辑ppt
23
精选编辑ppt
24
分级递阶控制系统
精选编辑ppt
25
分级递阶控制系统
组织级(organization level):组织级通过人机 接口和用户(操作员)进行交互,执行最高决策 的控制功能,监视并指导协调级和执行级的所 有行为,其智能程度最高。
人类自身各种优良的控制调节机制的一种尝试。 所谓学习是一种过程,它通过重复输人信号, 并从外部校正该系统,从而使系统对特定输人 具有特定响应。学习控制系统是一个能在其运 行过程中逐步获得受控过程及环境的非预知信 息,积累控制经验,并在一定的评价标准下进 行估值、分类、决策和不断改善系统品质的自

智能控制技术第1章PPT课件


精选ppt课件2021
12
从二十世纪60年代起,由于空间技 术、计算机技术及人工智能技术的发 展,控制界学者在研究自组织、自学 习控制的基础上,为了提高控制系统 的自学习能力,开始注意将人工智能 技术与方法应用于控制中。
精选ppt课件2021
13
1966年,J.M.Mendal首先提出将人工 智能技术应用于飞船控制系统的设计;
精选ppt课件2021
5
1.2 智能控制的概念
智能控制是一门交叉学科,著名美籍 华人傅京逊教授1971年首先提出智能控 制是人工智能与自动控制的交叉,即二 元论。美国学者G.N.Saridis1977年在此 基础上引入运筹学,提出了三元论的智 能控制概念,即
IC=AC∩AI∩OR
精选ppt课件2021
精选ppt课件2021
35
(1)在机器人控制中的应用
智能机器人是目前机器人研究中的热门
课题。J.S.Albus于1975年提出小脑模型小
脑 模 型 关 节 控 制 器 ( Cerebellar Model
Arculation Controller,简称CMAC),它
是仿照小脑如何控制肢体运动的原理而建立
在工程实践中,人们发现,一个复杂的控
制系统可由一个操作人员凭着丰富的实践经验
得到满意的控制效果。这说明,如果通过模拟
人脑的思维方法设计控制器,可实现复杂系统
的控制,由此产生了精选模ppt课糊件2控021制。
18
1965年美国加州大学自动控制系 L.A.Zedeh提出模糊集合理论,奠定了模 糊控制的基础;
1 简述智能控制的概念。 2 智能控制由哪几部分组成?各自的特 点是什么? 3 比较智能控制和传统控制的特点? 4 智能控制有那些应用领域?试举出一 个应用实例。

智能控制理论及应用PPT课件

智能控制理论及应用PPT课件
目 录
• 智能控制理论概述 • 智能控制基础理论 • 智能控制技术与方法 • 智能控制系统设计与实现 • 智能控制在工业领域应用案例 • 智能控制在非工业领域应用案例 • 智能控制发展趋势与挑战
01
智能控制理论概述
智能控制定义与发展
定义
智能控制是模拟人类智能,具有自 学习、自适应、自组织等能力,能 够处理复杂、不确定和非线性系统 的控制方法。
模糊控制器设计 介绍模糊控制器的结构、设计步骤及优化方法, 包括输入输出变量的选择、模糊化方法、模糊规 则制定等。
神经网络基础
01
神经元模型与神经网络结构
阐述神经元模型的基本原理,介绍常见的神经网络结构,如前馈神经网
络、循环神经网络等。
02
神经网络学习算法
介绍神经网络的学习算法,包括监督学习、无监督学习和强化学习等,
发展历程
从经典控制理论到现代控制理论, 再到智能控制理论,经历了数十年 的发展,目前已成为控制领域的研 究热点。
智能控制与传统控制比较
控制对象
控制性能
传统控制主要针对线性、时不变系统, 而智能控制则面向复杂、非线性、时 变系统。
传统控制在稳定性和精确性方面表现 较好,而智能控制则在适应性和鲁棒 性方面更具优势。
智能家居系统架构
包括传感器、控制器、执行器等 组成部分,实现家庭环境的智能 感知与控制。
智能家居应用场景
如智能照明、智能安防、智能家 电等,提高家居生活的便捷性和 舒适性。
智能家居系统实现
技术
包括物联网技术、云计算技术、 人工智能技术等,实现家居设备 的互联互通和智能化控制。
智能交通信号控制策略优化
模糊控制在生产调度中的应用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
2
9/8/2016
Scope

Artificial intelligence techniques applied to control system design. Topics include: Fuzzy Sets, Artificial Neural Networks, methods for designing fuzzy-logic controllers and neural network controllers; application of computer-aided design techniques for designing fuzzy-logic and neural-network controllers. The main principles of genetic algorithms are introduced. The application of genetic algorithms in system optimization is discussed.
11
wrt: with regard to
Conventional Control Techniques

“Modern” Control Techniques: 1. Linear quadratic regulator (LQR): Minimize a cost function (maximize a performance index Optimal control). 2. Pole placement: Locate system poles (eigenvalues) to modify the modes (i.e., fundamental free natural responses) with respect to stability, speed of response, etc. modal control.
A smart person learns from his/her mistakes; but a wise person learns from others’ mistakes Definition of Intelligent Quotient: Definition of Emotional Quotient:
9/8/2016
Group of Process Information Engineering
Intelligent Control & Systems
Prof. Tianhong Pan
Department of Automation Jiangsu University
1
Chapter 1. Introduction
7
Textbook
1. 刘金琨. 智能控制. 电子工业出版社. 2. Nazmul Siddique. Intelligent Control. A Hybrid Approach Based on Fuzzy Logic, Neural Networks and Genetic Algorithms. Springer International Publishing
IQ Person's Intelligence Average intelligence of persons of same age
EQ
Person's emotional behavior Average emotional behavior of persons ofsame age
10
5
9/8/2016
Conventional Control Techniques

Broad Division: 1. Time domain techniques (Differential equations wrt time t; can be nonlinear) 2. Frequency domain techniques (Transfer functions algebraic wrt frequency ω; typically linear) Servo Control: To track a specified trajectory (Commonly uses proportional-integral-derivative or PID control; typically linear) Compensators: Hardware/software modules that “compensate” for the controller shortcomings in achieving the required system performance (Lead, Lag, Lead-Lag)
That’s why we have may words that describe human intelligence based on situations. For example, General: Clever, Bright, Brilliant, Wise, Sharp, Smart, Business: Shrewd, Perceptive, Insightful, Arts: Gifted, Talented, Creative Trades: Resourceful, Ingenuous, Inventive, Skillful Reasoning: Rational, Logical, Reasonable, Sound, Sensible, Quick witted,

6
3
9/8/2016
Grade Composition

Attendance/Participation Simulation & Report Final Exam/Project Total
= 10% = 20% = 70% = 100%
Project to formulate a realistic control problem (preferably related to his/her own research, or otherwise we can help), to do analysis and design for the problem using the course material, to analyze the designed controller in simulation (and in implementation if possible), to give a seminar, and to submit a report
5
Semester Plan
Introduction Fuzzy Sets and Fuzzy Logic Fuzzy Control Neural Networks Neural Network Control Evolutionary Computing/Genetic Algorithms
8
4
9/8/2016
A Feedback Control System
9
Terminology
Plant or Process: System to be controlled Inputs: Excitations (known, unknown) to the system Outputs: Responses of the system Sensors: They measure system variables (excitations, responses, etc.) Actuators: They drive various parts of the system. Controller: Device that generates control signal Control Law: Relation or scheme according to which the control signal is generated Control System: Plant + controller, at least (Can include sensors, signal conditioning, etc.) Feedback Control: Control signal is determined according to plant “response” Open-loop Control: No feedback of plant response to controller Feed-forward Control: Control signal is determined according to plant “inputs” not “outputs”
12
6
9/8/2016
Conventional Control Techn: 1. Linear Quadratic Gaussian (LQG) Control: LQR plus a Kalman filter. When inputs and the measurements have noise 2. Nonlinear Feedback Control (Feedback Linearization Technique or FLT): Feedback signal (based on measurements or an analytical model of the plant) is applied to compensate for (remove) nonlinear effects 3. Adaptive Control: Controller parameters (e.g., PID parameters) are adjusted (tuned) according to a performance criterion. Nonlinear. 4. Sliding Mode Control: A switching controller. Control signal is switched between control laws to push the response towards a desired region (sliding surface). Nonlinear. 5. H-infinity Control: H-infinity norm (a performance criterion) is minimized. Linear (uses system transfer function).
相关文档
最新文档