2012年中考数学一轮复习讲义_4

合集下载

2012年中考数学一轮复习精品讲义 三角形

2012年中考数学一轮复习精品讲义 三角形

第七章三角形本章小结小结1 本章概述三角形是几何知识中的重要内容,也是几何学的基础.本章从三角形出发,先学习与三角形有关的线段和角再到多边形,其中包括三角形的内角和、外角和及多边形的内角和等知识,最后到多边形的实际应用.小结2 本章学习重难点【本章重点】了解三角形的有关概念(内角、外角、中线、高、角平分线);会画出任意三角形的角平分线、中线和高.【本章难点】通过探索平面图形的镶嵌,知道任意一个三角形、四边形或六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.【学习本章应注意的问题】正确理解三角形的有关概念,掌握有关性质.在学习中,要注意观察,搜集资料,多交流,注重新旧知识的联系,学会将新知识转化到已学的知识上去,再进行归纳、整理、分析,要深刻理解并掌握归纳、类比的方法.学习中,还要多注意结合图形,理解用多边形镶嵌图案的道理,欣赏丰富多彩的图案,体验数学美,提高审美情趣.小结3 中考透视本章知识在中考中所占比重较大,一方面以填空题、选择题形式出现,以考查对基本概念、基本定理的理解为主;另一方面以综合题形式出现,主要考查对知识的灵活运用及综合运用的能力,利用本章知识解决实际问题的题目也越来越多地出现在中考试题中,还有平面图形的镶嵌内容也是近年来的热点考题,备受关注.由于镶嵌问题具有较强的实用性,对知识的运用要求灵活性较高,所以要得到这类问题的分数也不是太容易的,分值占3~4分.知识网络结构图专题总结及应用一、知识性专题专题1 三角形的三条重要线段【专题解读】三角形的中线、角平分线和高是三角形的三条重要线段,它们具有十分重要的性质,三角形的高构造了垂直的条件,三角形的中线隐含线段相等,通过三角形的中线可以把三角形的面积分成相等的两部分,三角形的角平分线提供了角相等的条件.掌握这些概念,对解与三角形有关的问题十分重要.例1 如图7-64所示,D为△ABC中AC边上一点,AD=1,DC=2,AB=4,E是AB上一点,且△DEC的面积等于△ABC的面积的一半,求EB.分析已知△DEC的面积等于△ABC的面积的一半,在图形中, △DEC与△ABC既不同底也不等高,因此需寻找桥梁△AEC来建立二者之间的关系,因为△AEC既与△DEC等高也与△ABC等高.解:作EF⊥AC于F,则122132DECAECDC EFS DCS ACAC EF===,作CG⊥AB于点G,则12142AECABCAE CGS AE AES ABAB CG===,∴234DEC AECAEC ABCS S AES S=⨯,即6DECABCS AES=.又∵12DECABCSS=,∴162AE=,∴AE=3,∴BE=AB-AE=1,即BE的长为1.【解题策略】等高的两个三角形的面积比等于底边长的比,它是面积问题中常用的解题策略.专题2 多边形的内角和及外角和【专题解读】用三角形的内角和定理可以推出多边形的内角和定理及外角和定理,在推导的过程中体现了转化思想,在解有关多边形的问题时,如求多边形的内角、外角、边数及对角线等问题,这两个定理都很重要.例2 已知一个多边形的内角和与某个外角的度数的总和为1350°,求这个多边形的边数.分析应充分利用多边形每个外角在0°~180°间和等式的性质巧解此题.解:设这个多边形的这个外角为x,它的边数为n,则(n-2)·180°+x=1350°, ∴(n-2) ·180°=8×180°-(90°+x),由此可得90°+x是180°的倍数. ∵0°<x<180°,∴x=180°-90°=90°,∴(n-2) ·180°=7×180°,∴n=9.【解题策略】灵活运用多边形的内角和定理及外角和定理是解决此类问题的关键.二、规律方法专题专题3 用公式法解有关对角线的条数问题【专题解读】用n边形的对角线有(3)2n n-条来解决相关问题.例3 若一个多边形有77条对角线,求它的内角和.分析由(3)2n n-=77,求n.解:设这个多边形的边数为n,由题意,得(3)2n n-=77.解得n=14,即这个多边形是十四边形,十四边形的内角和为(14-2) ×180°=2160°,即内角和为2160°.【解题策略】根据对角线条数的公式(3)2n n -,即已知边数可求对角线的条数,反之已知对角线的条数,可求出边数.三、思想方法专题 专题4 转化思想 【专题解读】转化思想在本章中有很多的应用,主要体现在探索有关多边形的问题时经常转化为三角形的问题进行解决.例4 填表.分析 先由三角形的内角和为180°及外角和为360°逐一推广,将4,5,…,n 边形分割成若干个三角形,易得答案.解:填表如下.2011中考真题精选(2011陕西,12,3分)如图,AC ∥BD ,AE 平分∠BAC 交BD 于点E ,若︒=∠641, 则=∠2 .考点:平行线的性质。

2012年中考数学一轮复习讲义

2012年中考数学一轮复习讲义

2012年中考数学一轮复习讲义1 有理数小结1 概述知识要点主要包括有理数的意义和有理数的运算两部分内容,其课标要求是:理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数和绝对值;理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能灵活使用运算律简化运算;能运用有理数的运算解决简单的问题;会用科学记数法表示较大的数,并能按要求取近似数.小结2 学习重难点重点是:有理数的意义及运算;难点是:负数概念的建立以及对有理数运算法则的理解.关键是能够运用有理数的运算法则正确进行运算,并且能够掌握好有理数的运算顺序及符号的确定.小结3 本章学法点津1.注重从算术到代数的过渡,要克服学习小学数学时的思维局限性,考虑问题时不能忽略负数的可能性.2.注重学习方法的更新和能力的提升.学习中要多观察思考、讨论交流、探究反思、归纳总结,从而提升自己的思维能力.3.注重数学思想的运用.掌握数形结合、分类、转化、类比等数学思想是学好数学的重要保障.知识网络结构图重点题型总结及应用题型一绝对值理解绝对值的意义及性质是难点,由于|a|表示的是表示数a的点到原点的距离,因此|a|≥0.可运用|a|的非负性进行求解或判断某些字母的取值.例1 如果a与3互为相反数,那么|a +2|等于( )A.5 B.1 C.-1 D.-5解析:a与3互为相反数,则a=-3,所以|a+2|=|-3+2|=|-1|=1.答案:B例2 若(a-1)2+|b+2|=0,则a+ b=.解析:由于(a-1)2≥0,|b+2|≥0,又(a-1)2与|b+2|互为相反数,因此(a-1)2=0且|b+2|=0,则a=1,b=-2,所以a +b=-1.答案:-1规律若几个非负数的和为0,则这几个数分别为0.题型二 有理数的运算有理数的运算包括加减法、乘除法及乘方,是初中数学运算的基础.要熟记法则,灵活运算,进行混合运算时,还要注意运算顺序及运算律的应用.例3 (-1)2 011的相反数是( )A .1B .-1C .2 011D .-2 011解析:由于指数2 011为奇数,所以(-1)2 011=-1,其相反数为1.答案:A例4 计算:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452; (2)⎡⎤⎛⎫⎡⎤--⨯⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3. 解:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452 2⎛⎫⎛⎫=-⨯⨯÷ ⎪ ⎪⎝⎭⎝⎭523(-8)-9-452 =4-9×49=4-4=0. (2)⎡⎤⎛⎫⎡⎤--⨯⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3 =⎡⎤⎛⎫--⨯ ⎪⎢⎥⎝⎭⎣⎦111(2-9)6 =⎛⎫⨯ ⎪⎝⎭51-(-7)6 =.⨯17(-7)=-66题型三 运用运算律简化运算过程运用加法的交换律、结合律,把某些具有相同属性的数(如正数、负数、分数中的分母具有倍数关系、相反数等)分别结合在一起相加,可以简化运算过程.例5 计算下列各题.(1)21-49.5+10.2-2-3.5+19; (2)⎛⎫⎛⎫---++-- ⎪ ⎪⎝⎭⎝⎭1137222323483; (3)2⎛⎫⎛⎫⎛⎫÷-++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭311113*********-42434(-0.2); (4)32323⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3351914321251943252. 分析:混合运算,应按法则进行,同时注意灵活运用运算律,简化运算过程.解:(1)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8;(2)原式⎛⎫⎛⎫=-++--=-+-+- ⎪ ⎪⎝⎭⎝⎭11372137122232232348324833; =-=311118324; (3)原式3⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭12457551241654341-5 ⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭14575524242412540434 =-+++113927056-330+125=-121=120404040; (4)原式=322⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦335194-22519435 =⎛⎫-⨯-⨯+=-⨯= ⎪⎝⎭2794319162700.8251943258点拨(1)正、负数分别结合相加;(2)分数中,同分母或分母有倍数关系的分数结合相加;(3)除法转化为乘法,正向应用乘法分配律;(4)逆向应用分配律a (b +c )=ab +ac ,即ab +ac =a (b +c ).题型四 利用特殊规律解有关分数的计算题根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.例6 计算下列各题. (1)--+-5231591736342; (2)⎛⎫⎛⎫--⨯-+ ⎪ ⎪⎝⎭⎝⎭3173155959595212777; (3)++++++++1111111112612203042567290(4)+++++++1111111…24816512 1 024 2 048. 分析:(1)带分数相加,可将带分数中整数部分与分数部分拆开分别相加.(2)本题若按常规计算方法比较麻烦,但若用运算律可简化运算.(3)由于==-==-==-⨯⨯⨯111111111111, , ,212262323123434 ==-⨯1111204545,==-⨯1111305656,==-⨯1111426767,==-⨯1111567878,==-⨯1111728989,==-⨯111190910910,所以将原算式变形裂项后,再进行计算. (4)算式中,后一个分数的分母是前一个分数分母的2倍,可在算式中加上最后一个分数12 048,再减去12 048,加上的12 048与前一个分数运算,所得的和再与前一个分数运算,依次向前进行,最终求得运算结果. 解:(1)原式=-5---++--523191736342 ⎛⎫=+--+-==- ⎪⎝⎭523111(-5-9+17-3)0-11634244;(2)⎛⎫⎛⎫--⨯-+ ⎪ ⎪⎝⎭⎝⎭3173155959595212777 ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--⨯-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31731559+59+59+5212777 ⎛⎫⎛⎫=--⨯-+ ⎪ ⎪⎝⎭⎝⎭31731559+59-59+5212777 ⎡⎤⎛⎫⎛⎫=--⨯+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦317315(59-59+59)5212777 ()⎛⎫=--⨯ ⎪⎝⎭31759+15212 =⨯⨯⨯31760-60-60=36-30-35=-295212. (3)原式=++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯1111111111223344556677889910 ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111223344556⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111677889 =-=1911010(4)原式=++++=-+++++++16181412120481204812048110241...161814121 (2048)15121...161814121204811024110241-+++++=-++ .=+-=-=1111 2 047122 2 048 2 048 2 048 点拨利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.题型五 有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.例7 有8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?分析:本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.解析:1.2+(-0.8)+2.3+1.7+(-1.5)+(-2.7)+2+(-0.2)=1.2-0.8+2.3+1.7-1.5-2.7+2-0.2=(2.3+1.7+2)+(-0.8-2.7-1.5)+(1.2-0.2)=6-5+1=2.则15×8+2=122(千克).答案:这8箱橘子的总重量是122千克.例8 一货车为一家摩托车配件批发部送货,先向南走了8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?解:(1)能.如图1-6-1所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5-(-3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|-3.5|+|-7.5|+|3|=8+3.5+7.5+3=22(千米).题型六 探索数字规律找数字规律的题目成为近几年中考的热点问题,这类题目灵活多变.解题时要认真观察、分析思考,找出规律,并运用规律解决问题.例9 某种细菌在繁殖过程中,每半小时分裂一次,由一个分裂成两个,2.5小时后,这种细菌可分裂为( )A .8个B .16个C .32个D . 64个解析:本题数字的规律是1→2→4→8…,每半小时细菌个数变为原来的2倍,所以经过2.5小时,细菌个数应变为原来的25倍,即32个.答案:C( )例10 观察图1-6-2,寻找规律,在“?”处应填上的数字是A .128B .136C .162D .188解析:观察图个数字特点可发现:8=4+2+2;14=8+4+2;26=14+8+4;….所以“?”=88+48+26=162.答案:C思想方法归纳本章中所体现的数学思想方法主要有:1.数形结合思想:在本章中,自始至终利用数轴来定义或描述有理数的概念和运算,数轴成为理解有理数及其运算的重要工具.这种把数与形(图形或数轴)结合起来进行研究的思想方法,是学习数学的重要思想方法.2.分类讨论思想:a 与-a 哪个大呢? a 的绝对值等于什么?在本章中,我们都是通过分类讨论解决问题,分类讨论可以把一个复杂的问题分成若干个较简单的问题来处理,这是数学中处理问题的一种重要思想方法.不重复、不遗漏是对分类讨论提出的基本要求.例如,我们常把有理数分成正有理数、负有理数和零三类,如果遗漏了零,只考虑正有理数和负有理数两种情况,就会犯错误.3.转化思想:有理数的加法是通过符号法则转化为绝对值(小学所学的数)的加减法进行的;有理数的减法是通过转化为加法进行的;有理数的除法是通过转化为乘法,或者说有理数的乘除法是通过符号法则转化为绝对值的乘除法进行的.1.数形结合思想数轴是数形结合的重要工具,涉及含字母或绝对值符号的问题,借助数轴往往有利于问题的迅速解决.例1 |a |>|b |,a >0,b <O ,把a 、b 、-a 、-b 按由小到大的顺序排列.分析:将a 、b 、-a 、-b 在数轴上对应点的位置找出来,就可以比较大小了.解:由a >0,b <0可知,a 为正数,b 为负数,a 、b 所对应的点分别在数轴上原点的右边和左边.由于|a |>|b |,从绝对值的几何意义可知,表示数a 的点离原点的距离比表示数b 的点离原点的距离远,而互为相反数的两个数绝对值相等,即|a |=|-a |,|b |=|-b |,于是a 、b 、-a 、-b 在数轴上的位置如图1-6-3所示.故由小到大的顺序排列为-a <b <-b <a .提示比较数的大小,可在数轴上把这些对应点表示出来,按从左到右的顺序确定后,就能写出这些数的大小关系.从本例看,我们还可以进一步得到-a <b <0<-b <a .例2 有理数a 、b 在数轴上对应点的位置如图l -6-4所示,则必有( )A .a + b >0B .a - b <oC .a b >0D . a b<0解析:由数轴可知0<a<1,b<-l<0且|b|>|a|,因此有a+b<0 a-b>0,ab<0,ab<0.故选D.答案:D点拨本题要注意读懂图形(数轴),掌握数轴上点的性质,还要注意有理数的四则运算法则.2.分类讨论思想例3 比较2 a与-2 a的大小.分析:由于a可能为正数,也可能为负数和0,所以应分a>0,a<0,a=0三种情况讨论.解:当a>0时,2 a>-2 a;当a<0时,2 a<-2 a;当a=0时,2 a=-2 a.规律解此类题时用分类讨论的思想方法来完成.3.转化思想例4 计算:l3+23+33+43+…+993+1003的值.分析:直接求解,当然不行,必须探索规律,将运算进行转化.解:∵l3=1,13+23=9=32=(1+2)2,13+23+33=36=62=(1+2+3)2,13+23+33+43=100=(1+2+3+4)2,…,由此可知13+23+33+43+…+993+1003=(1+2+3+4+…+99+100)2=2⨯⎡⎤⎢⎥⎣⎦(1+100)1002=5 0502=25 502 500.点拨利用转化思想可将“复杂问题”转化为“简单问题”,把“陌生”问题转化为“熟悉”的知识解决.本题中把“立方”运算转化为“平方”运算,把“求和”运算转化为“乘方”的运算.4.用“赋值法”解题在做选择题和填空题时,问题的结论如果运用法则、定义等推导,有些题容易,而有些题很复杂,对于那些推导过程比较复杂的题目可采取“赋值法”,这样就能又快又准地得出结论.例5 m-n的相反数是( )A.-( m + n) B.m+ n C.m-n D.-( m-n)解析:可设m=2,n=1,则m-n=1.又-( m + n)=-3,m+ n=3,m-n=1,-( m-n)=-1.故选D.答案:D点拨赋值时取值要符合题意,但又不能特殊,本题中m,n不能取0,得出结论后再用其他值试一试,如:m=3,n=-2等.例6 如果a>0,b<0,|a|>| b|,那么a+ b0,a-b0.(填“>”或“<”)解析:由前提条件设a=3,b=-1,则a+b=2,a-b=4.答案:>>例7 若x yx y+-中的x,y都扩大到原来的5倍,则x yx y+-的值( )A.缩小,B.不变C. 扩大到原来的5倍D.缩小到原来的1 5解析:取x=3,y=2,32532x yx y++==--,5x=15,5 y=10,15+1015-10=5.答案:B点拨(1)“赋值法”只能在客观题(填空题、选择题)上并且用其他方法不易解出时使用,一般不提倡使用,但可以作为检验结论是否正确的方法。

2012年数学中考第一轮复习:数与代数考点整理

2012年数学中考第一轮复习:数与代数考点整理

2012年中考数学第一轮总复习讲义第1-10课时 数与代数(一)考点整理:1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数实数与数轴上的点是一一对应的。

数轴上即有有理数点,又有无理数点。

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.5.实数比大小:(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;(5)平方法:先平方再作差(6)倒数法{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数0,0,0a b a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则41,11m m m m n m n m n n n n >⇔>=⇔=<⇔<()作商比较法:设m 、n 是两个正实数,则6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; a 1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:同号为正,异号为负,并把绝对值相除。

2012年904班中考数学总复习讲义02:空间与图形

2012年904班中考数学总复习讲义02:空间与图形

空间与图形部分考点总结第一章:线段、角、相交线、平行线考点1 三种基本图形—直线、射线、线段:1、直线:直线是几何中不加定义的基本概念,直线的两大特征是“直”和“向两边无限延伸”。

直线公理:经过两点有且只有 一 条直线。

注:两直线相交,只有一个交点。

2、射线:直线上一点和它的一旁的部分叫做射线。

射线的特征:“向一方无限延伸,它有一个端点。

”两条射线为同一射线必须同时具备:①端点是同一点 ;②延伸方向相同;3、线段:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

线段公理:两点之间,线段最短;说明:两个点之间连线有很多条,但只有线段最短,这条线段的长度,就叫做这两点之间的距离。

线段的中点:①定义:如图1一1中,点B 把线段AC 分成两条相等的线段,点B 叫做线段AC 的中点。

②表示法:∵AB =BC ∴点 B 为 AC 的中点 或∵ AB =21MAC ∴点 B 为AC 的中点,或∵AC =2AB ,∴点B 为AC 的中点反之也成立∵点 B 为AC 的中点,∴AB =BC 或∵点B 为AC 的中点, ∴AB=21AC 或∵点B 为AC 的中点, ∴AC=2BC考点2 角:1)角的两种定义:① 有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点 ,这两条射线叫做角的边。

注:角是由两条射线组成的图形;这两条射线必须有一个公共端点。

② 一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

注:起始位置的射线与终止位置的射线就形成了一个角。

2)角的度量与角的分类:角的度量:度量角的大小,可用“度”作为度量单位。

把一个圆周分成360等份,每一份叫做一度的角。

1度=60分;1分=60秒。

角的分类:(1)锐角:小于直角的角叫做锐角(2)直角:平角的一半叫做直角(3)钝角:大于直角而小于平角的角(4)平角:把一条射线,绕着它的端点顺着一个方向旋转,当终止位置和起始位置成一直线时,所成的角叫做平角。

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第4讲二次根式及其运算(讲义)(原卷版)-2024年浙江中考数学一轮复习

第一单元 数与式第4讲 二次根式及其运算1.了解二次根式和最简二次根式的概念,知道二次根式a 中被开方数a 为非负数并且a 也是非负数.2.了解二次根式(根号下仅限于数)的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.二次根式的有关概念:(1)二次根式:式子 叫做二次根式.(2)最简二次根式需满足两个条件:①被开方数 .②被开方数中 的因数或因式.(3)二次根式有意义的条件:被开方数非负2.二次根式的性质:(1)(a )2= (a ≥0).(2)a 2= =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).(3)ab = (a ≥0,b ≥0).(4)ab=(a≥0,b>0).二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式.(2)二次根式的乘法:a·b=(a≥0,b≥0).(3)二次根式的除法:ab=(a≥0,b>0).运算结果中的二次根式,一般都要化成最简二次根式或整式.■考点一二次根式的相关概念►◇典例1:(2023•恩阳区模拟)若代数式有意义,则实数x的取值范围是.【变式训练】1.(2023•婺城区一模)在二次根式中,字母x的取值范围是.2.(2023•慈溪市模拟)若分式有意义,则x的取值范围是()A.x>2 B.x≤2 C.x=2 D.x≠2■考点二二次根式的性质►◇典例2:(2022•河北)下列正确的是()A.=2+3 B.=2×3 C.=32D.=0.7【变式训练】1.(2022•桂林)化简的结果是()A.2B.3 C.2D.22.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1 B.2 C.2a D.1﹣2a■考点三二次根式的运算►◇典例3:(2021•西宁)计算:(+3)(﹣3)﹣(﹣1)2.【变式训练】1.(2023•娄星区校级一模)下列各式计算正确的是()A.B.C.D.2.(2022•青岛)计算(﹣)×的结果是()深度讲练A .B.1 C .D.33.(2022•甘肃)计算:×﹣.4.(2023•兰州模拟)计算:.■考点四二次根式的化简求值及应用►◇典例4:(2020•金华二模)先化简,再求值:(a +)(a ﹣)﹣a(a﹣2),其中a =+1.【变式训练】1.(2022•瑞安市校级三模)当时,代数式(a﹣1)2﹣2a+2的值为.真题演练1.(2023•金华)要使有意义,则x的值可以是()A.0 B.﹣1 C.﹣2 D.22.(2021•杭州)下列计算正确的是()A.=2 B.=﹣2 C.=±2 D.=±2 3.(2022•湖北)下列各式计算正确的是()A.B.C.D.4.(2021•金华模拟)代数式在实数范围内有意义时,x的取值范围为()A.x>﹣1 B.x≥﹣1 C.x≥﹣1且x≠0 D.x≠05.(2023•萧山区一模)已知,则实数a的值为()A.9 B.3 C.D.±36.(2023•南湖区一模)下列各式中,正确的是()A.(﹣3)2=9 B.(﹣2)3=﹣6 C.D.7.(2021•丽水模拟)若方程组,设x+y=a2,x﹣y=b2,则代数式的值为()A.B.C.D.8.(2022•杭州)计算:=;(﹣2)2=.9.(2022•萧山区一模)计算:=.10.(2023•青山区模拟)计算:﹣3=.11.(2023•杭州)计算:=.12.(2023•浙江模拟)若最简根式与是同类二次根式,则m=.13.(2023•龙游县一模)已知:a=()﹣1+(﹣)0,b=(+)(﹣),则=.14.(2023•临汾模拟)计算:=.15.(2023•萧山区一模)婷婷对“化简:”的解答过程如下:解:原式=2×3=(2×3)×()2=6×2=12.试问婷婷的解答过程是否正确?若正确,请再写出一种解答过程;若有错误,请写出正确的解答过程.16.(2021•永嘉县校级模拟)计算:﹣+3+.17.(2023•舟山二模)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值.18.(2023•张家界)阅读下面材料:将边长分别为a,a+,a+2,a+3的正方形面积分别记为S1,S2,S3,S4.则S2﹣S1=(a+)2﹣a2=[(a+)+a]•[(a+)﹣a]=(2a+)•=b+2a例如:当a=1,b=3时,S2﹣S1=3+2根据以上材料解答下列问题:(1)当a=1,b=3时,S3﹣S2=,S4﹣S3=;(2)当a=1,b=3时,把边长为a+n的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1﹣S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2﹣S1,t2=S3﹣S2,t3=S4﹣S3,…,t n=S n+1﹣S n,且T=t1+t2+t3+…+t50,求T的值.。

中考数学一轮教材复习-第四章 三角形 平行四边形与多边形

中考数学一轮教材复习-第四章  三角形  平行四边形与多边形
AB,BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数

72
度.
(第五章 四边形和多边形)
考点1 多边形(10年1考)
1-1 [2024遵义十一中模拟改编]风铃,又称铁马,古称“铎”,常见于中国
传统建筑屋檐下[如图(1)].如图(2),是六角形风铃的平面示意图,其
底部可抽象成正六边形ABCDEF,连接CF,则∠AFC的度数为
A.45°
B.60°
C.110°
D.135°
F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形.
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
(第五章 四边形和多边形)
(1)证明:∵四边形ABCD是矩形, (2)如图,连接DE.
∴AD∥BC,AD=BC.
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
E,AF⊥CD 于点F
1.两组对边分别①平行 ,即AD//BC,AB∥CD

2.两组对边分别相等,即AD=BC,AB=CD

3.两组对角分别② 相等 ,即∠BAD=




∠BCD, ∠ABC= ∠ADC
4.对角线互相平分,即AO=CO,BO=DO
5.平行四边形是③中心 对称图形,
对称中心是两条对角线的交点
(2)在▱ABCD中,AB=CD,
∴CD∥BE.
在▱DBEC中,CD=BE,∴AB=BE.
∵CE∥BD,
∵CE⊥AC,∴BC=AB=BE=5,
∴四边形DBEC为平行四边形.
∴AE=10.
∵AC=8,∴CE= 2 − 2 =6,

2012年中考数学一轮复习精品讲义 二次根式


二、规律方法专题 专题 4 配方法 【专题解读】 把被开方数配方,进而应用 a =|a |化简. 例 11 化简 5 2 6 .
2
解: 5 2 6 3 2 2 3 2 ( 3)2 ( 2) 2 2 3 2 ( 3 2)2 | 3 2 | 3 2.
A. 8 2 2 C. (2+ 5)(2- 5) 1
27 12 9 4 1 3 6 2 D. 3 2 2 B.
分析 根据具体选项,应先进行化简,再计算. A 选项中, 8 2 2 2 2
2,
B 选若可化为
3 32 3 3 , C 选项逆用平方差公式可求得 而 D 选项 ( 2 5 )(2- 5 )= 4- 5= - 1, 3 3 6 2 2 3 2 -1 .故选 A. 2
x 2 ( 3 5 3 5 ) 2,
2 ∴x =( 3 5 ) ( 3 5 )+2 3 5 × 3 5 =10
x>0, x 10,即原式 10.
专题 6 代入法 【专题解读】 通过代入求代数式的值. 例 14 已知 a 2b 2400, ab 2 5760, 求 a 2 b 2 的值 .
解:由a 2b 2400, ab 2 5760,两式相除得b 2.4a, a 2b 2400, 2.4a3 2400, a3 1000, a 10, b 2.4 10 24, a 2 b 2 102 242 676 26.
专题 7 约分法 【专题解读】 通过约去分子和分母的公因式将第二次根式化简.
b 15, a b>0, a b<0.
用心
爱心
专心
5
b a b a (a b) 2 (a b) 2 2 2 a b a b ab ab ab ba ab ab ab ab ab ba ab ab ab 2 ab . b

2012年中考数学一轮复习精品讲义 二次函数

第二十六章 二次函数本章小结小结1 本章概述本章从实际问题的情境入手引出基本概念,引导学生自主探索变量之间的关系及其规律,认识二次函数及其图象的一些基本性质,学习怎样寻找所给问题中隐含的数量关系,掌握其基本的解决方法.本章的主要内容有两大部分:一部分是二次函数及其图象的基本性质,另一部分是二次函数模型.通过分析实例,尝试着解决实际问题,逐步提高分析问题、解决问题的能力.二次函数综合了初中所学的函数知识,它把一元二次方程、三角形等知识综合起来,是初中各种知识的总结.二次函数作为一类重要的数学模型,将在解决有关实际问题的过程中发挥重要的作用. 小结2 本章学习重难点【本章重点】 通过对实际问题情境的分析,确定二次函数的表达式,体会二次函数的意义;会用描点法画二次函数的图象,能从图象中认识二次函数的性质;会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题;会利用二次函数的图象求一元二次方程的近似解.【本章难点】 会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题. 【学习本章应注意的问题】1.在学习本章的过程中,不要死记硬背,要运用观察、比较的方法及数形结合思想熟练地画出抛物线的草图,然后结合图象来研究二次函数的性质及不同图象之间的相互关系,由简单的二次函数y =ax 2(a ≠0)开始,总结、归纳其性质,然后逐步扩展,从y =ax 2+k ,y =a (x -h )2一直到y =ax 2+bx +c ,最后总结出一般规律,符合从特殊到一般、从易到难的认识规律,降低了学习难度.2.在研究抛物线的画法时,要特别注意抛物线的轴对称性,列表时,自变量x 的选取应以对称轴为界进行对称选取,要结合图象理解并掌握二次函数的主要特征.3.有关一元二次方程与一次函数的知识是学习二次函数内容的基础,通过观察、操作、思考、交流、探索,加深对教材的理解,在学习数学的过程中学会与他人交流,同时,在学习本章时,要深刻理解两种思想和两种方法,两种思想指的是函数思想和数形结合思想,两种方法指的是待定系数法和配方法,在学习过程中,对数学思想和方法要认真总结并积累经验小结3 中考透视近几年来,各地的中考试卷中还出现了设计新颖、贴近生活、反映时代特点的阅读理解题、开放性探索题和函数的应用题,尤其是全国各地中考试题中的压轴题,有三分之一以上是这一类题,试题考查的范围既有函数的基础知识、基本技能以及基本的数学方法,还越来越重视对学生灵活运用知识能力、探索能力和动手操作能力的考查,特别是二次函数与一元二次方程、三角形的面积、三角形边角关系、圆的切线以及圆的有关线段组成的综合题,主要考查综合运用数学思想和方法分析问题并解决问题的能力,同时也考查计算能力、逻辑推理能力、空间想象能力和创造能力.知识网络结构图二次函数的概念二次函数的图象开口方向对称轴顶点坐标增减性专题总结及应用二次函数 二次函数的性质 二次函数的应用 一元二次方程的近似解 一元二次不等式的解集 二次函数的最大(小)值 在实际问题中的应用一、知识性专题专题1 二次函数y =ax 2+bx +c 的图象和性质【专题解读】 对二次函数y =ax 2+bx +c 的图象与性质的考查一直是各地中考必考的重要知识点之一,一般以填空题、选择题为主,同时也是综合性解答题的基础,需牢固掌握.例1 二次函数y =ax 2+bx +c (a ≠0)的图象如图26-84所示,则下列结论:①a >0;②c >0;③b 2-4ac >0.其中正确的个数是 ( )A .0个B .1个C .2个D .3个分析 ∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半铀,∴c >0;∵抛物线与x 轴有两个交点,∴b 2-4ac >0.故②③正确.故选C .【解题策略】 解此类题时,要注意观察图象的开口方向、与y 轴交点的位置以及与x 轴交点的个数.例2 若y =ax 2+bx +c ,则由表格中的信息可知y 与x 之间的函数关系式是 ( )x -1 0 1 ax 2 1 ax 2+bx +c83A .y =x 2-4x +3B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +8分析 由表格中的信息可知,当x =1时,ax 2=1,所以a =1.当x =-1时,ax 2+bx +c =8,当x =0时,ax 2+bx +c =3,所以c =3,所以1³(-1)2+b ³(-1)+3=8,所以b =-4.故选A .【解题策略】 本题考查用待定系数法求二次函数的解析式,解决此题的突破口是x =1时,ax 2=1,x =0时,ax 2+bx +c =3和x =-1时,ax 2+bx +c =8.例3 已知二次函数y =ax 2+bx +1的大致图象如图26-85所示,则函数y =ax +b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 分析 由图象可知a <0,2ba-<0,则b <0,所以y =ax +b 的图象不经过第一象限.故选A .【解题策略】 抛物线的开口方向决定了a 的符号,b 的符号由抛物线的开口方向和对称轴共同决定.例4 已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.其中正确的个数为 ( )A .0个B .1个C .2个D .3个 分析 由a >0,得抛物线开口向上,由2ba-<0,得对称轴在y 轴左侧,由c <0可知抛物线与y 轴交于负半轴上,可得其大致图象如图26—86所示,因此顶点在第三象限,故①③正确.故选C.【解题策略】 此题考查了二次函数的开口方向、对称轴、顶点等性质,解题时运用了数形结合思想.例5 若A 113,4y ⎛⎫- ⎪⎝⎭,B 25,4y ⎛⎫- ⎪⎝⎭,C 31,4y ⎛⎫ ⎪⎝⎭为二次函数y =x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( )A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2分析因为y=x2+4x+5的图象的对称轴为直线x=-2,所以x=134-与x=-34的函数值相同,因为抛物线开口向上,所以当54-<34-<14时,y2<y1<y3.故选B.【解题策略】此题考查了抛物线的增减性和对称轴,讨论抛物线的增减性需在对称轴的同侧考虑,因此将x=134-的函数值转化为x=-34的函数值.例6 在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是(如图26—87所示) ( )分析直线y=-x+1与y轴交于正半轴,抛物线y=-32(x-1)2的顶点为(1,0),且开口向下.故选D.专题2 抛物线的平移规律【专题解读】当二次函数的二次项系数a相同时,图象的形状相同,即开口方向、大小相同,只是位置不同,所以它们之间可以进行平行移动,移动时,其一,把解析式y=ax2+bx+c化成y=a(x-h)2+k的形式;其二,对称轴左、右变化,即沿x轴左、右平移,此时与k的值无关;顶点上、下变化,即沿y轴上、下平移,此时与h的值无关.其口诀是“左加右减,上加下减”.例7 把抛物线y=-2x2向上平移1个单位,得到的抛物线是 ( )A.y=-2(x+1)2 B.y=-2(x-1)2C.y=-2x2+1 D.y=-2x2-1分析原抛物线的顶点为(0,0),向上平移一个单位后,顶点为(0,1).故选C.【解题策略】解决此题时,可以用“左加右减,上加下减”的口诀来求解,也可以根据顶点坐标的变化来求解.例8 把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=x2-3x +5,则 ( )A.b=3,c=7 B.b=6,c=3C.b=-9,c=-5 D.b=-9,c=21分析y=x2-3x+5变形为y=232x⎛⎫-⎪⎝⎭+5-94,即y=232x⎛⎫-⎪⎝⎭+114,将其向左平移3个单位,再向上平移2个单位,可得抛物线y=2332x⎛⎫-+⎪⎝⎭+114+2,即y=x2+3x+7,所以b=3,c=7.故选A.【解题策略】此题运用逆向思维解决了平移问题,即抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到y=x2-3x+5,那么抛物线y=x2-3x+5则向左平移3个单位,再向上平移2个单位,可得到抛物线y =x 2+bx +c .专题3 抛物线的特殊位置与函数关系的应用【专题解读】若抛物线经过原点,则c =0,若抛物线的顶点坐标已知,则2ba -和244acb a-的值也被确定等等,这些都体现了由抛物线的特殊位置可以确定系数a ,b ,c 以及与之有关的代数式的值.例9 如图26-88所示的抛物线是二次函数y =ax 2+3ax +a 2-1的图象,则a 的值是 .分析 因为图象经过原点,所以当x =0时,y =0,所以a 2-1=0,a =±1,因为抛物线开口向下,所以a =-1.故填-1:专题4 求二次函数的最值【专题解读】 在自变量x 的取值范围内,函数y =ax 2+bx +c 在顶点24,24b ac b a a ⎛⎫-- ⎪⎝⎭处取得最值.当a >0时,抛物线y =ax 2+bx +c 开口向上,顶点最低,当x =2ba -时,y 有最小值为244acb a-;当a <0时,抛物线y =ax 2+bx +c 开口向下,顶点最高,当x =2ba -时,y 有最大值为244acb a-.例10 已知实数x ,y 满足x 2+2x +4y =5,则x +2y 的最大值为 .分析 x 2+2x +4y =5,4y =5-x 2-2x ,2y =12(5-x 2-2x ),x +2y =12(5-x 2-2x )+x ,整理得x +2y =-12x 2+52.当x =0时,x +2y 取得最大值,为52.故填52. 专题 5 二次函数与一元二次方程、一元二次不等式的关系【专题解读】 二次函数与一元二次方程、一元二次不等式之间有着密切的联系,可以用函数的观点来理解方程的解和不等式的解集.已知函数值,求自变量的对应值,就是解方程,已知函数值的范围,求对应的自变量的取值范围,就是解不等式.例11 已知二次函数y =ax 2+bx 的图象经过点(2,0),(-1,6). (1)求二次函数的解析式;(2)不用列表,画出函数的图象,观察图象,写出当y >0时x 的取值范围.分析 (1)列出关于a ,b 的方程组,求a ,b 的值即可.(2)观察图象求出y >0的解集.解:(1)由题意可知,当x =2时,y =0,当x =-1时,y =6,则420,6,a b a b +=⎧⎨-=⎩解得2,4.a b =⎧⎨=-⎩ ∴二次函数的解析式为y =2x 2-4x .(2)图象如图26—89所示,由图象可知,当y >0时,x <0或x >2.【解题策略】 求二次函数的解析式,其实质就是先根据题意寻求方程组,并解方程组,从而使问题得到解决.二、规律方法专题专题6 二次函数解析式的求法【专题解读】 用待定系数法可求出二次函数的解析式,确定二次函数的解析式一般需要三个独立的条件,根据不同的条件,选择不同的设法.(1)设一般式:y =ax 2+bx +c (a ≠0).若已知条件是图象经过三个点,则可设所求的二次函数解析式为y=ax2+bx+c,将已知条件代入,即可求出a,b,c的值.(2)设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数的图象与x轴的两个交点的坐标分别为(x1,0),(x2,0),则可设所求的二次函数解析式为y=a(x-x1)(x-x2),将第三点(m,n)的坐标(其中m,n为已知数)代入,求出待定系数a,最后将解析式化为一般式.(3)设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),则可设所求的二次函数解析式为y=a(x-h)2+k,将已知条件代入,求出待定系数a,最后将解析式化为一般式.(4)设对称点式:y=a(x-x1)(x-x2)+m(a≠0).若已知二次函数图象上的对称点(x1,m),(x2,m),则可设所求的二次函数解析式为y=a(x-x1)(x-x2)+m(a≠0),将已知条件代入,求得待定系数a,m,最后将解析式化为一般式.例12 根据下列条件求函数解析式.(1)已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式;(2)已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),求此抛物线的解析式;(3)已知抛物线与x轴交于A(-1,0),B(1,0)两点,且经过点M(0,1),求此抛物线的解析式;(4)已知抛物线经过(-3,4),(1,4)和(0,7)三点,求此抛物线的解析式.分析 (1)已知图象上任意三点的坐标,可选用一般式,从而得到关于a,b,c的方程组,求出a,b,c的值,即可得到二次函数的解析式.(2)已知抛物线的顶点坐标,应选用顶点式.(3)由于A(-l,0),B(1,0)是抛物线与x轴的两个交点,因此应选用交点式.(4)显然已知条件是抛物线经过三点,故可用一般式,但由于(-3,4),(1,4)是抛物线上两个对称点,因此选用对称点式更简便.解:(1)设二次函数的解析式为y=ax2+bx+c将(-1,-6),(1,-2)和(2,3)分别代入,得6,2,423,a b ca b ca b c-+=-⎧⎪++=-⎨⎪++=⎩解得1,2,5.abc=⎧⎪=⎨⎪=-⎩∴所求的二次函数的解析式为y=x2+2x-5.(2)∵抛物线的顶点为(-1,-3),∴设其解析式为y=a(x+1)2-3,将点(0,-5)代入,得-5=a-3,∴a=-2,∴所求抛物线的解析式为y=-2(x+1)2-3.即y=-2x2-4x-5.(3)∵点A(-1,0),B(1,0)是抛物线与x轴的两个交点,∴设抛物线的解析式为y=a(x+1)(x-1),将点M(0,1)代入,得1=-a,∴a=-1,∴所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1(4)∵抛物线经过(-3,4),(1,4)两点,∴设抛物线的解析式为y=a(x+3)(x-1)+4,将点(0,7)代入,得7=a²3²(-1)+4,∴a=-1,∴所求抛物线的解析式为y=-(x+3)(x-1)+4,即y=-x2-2x+7.【解题策略】 (1)求二次函数解析式的4种不同的设法是指根据不同的已知条件寻求最简的求解方法,它们之间是相互联系的,不是孤立的.(2)在选用不同的设法时,应具体问题具体分析,特别是当已知条件不是上述所列举的4种情形时,应灵活地运用不同的方法来求解,以达到事半功倍的效果.(3)求,函数解析式的问题,如果采用交点式、顶点式或对称点式,最后要将解析式化为一般形式.三、思想方法专题 专题7 数形结合思想【专题解读】 把问题的数量关系和空间形式结合起来考查,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题来讨论,也可以把图形的性质问题转化为数量关系的问题来研究.例13 二次函数y =ax 2+bx +c 的图象如图26-90所示,则点A (a ,b )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 分析 由图象开口方向向下可知a <0,由对称轴的位置可知x =2ba->0,所以b >0,故点A 在第二象限.故选B .【解题策略】 解决此题的关键是观察图象的开口方向以及对称轴的位置. 专题8 分类讨论思想【专题解读】 分类讨论是对问题的条件逐一进行讨论,从而求得满足题意的结果.例14 已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴交于B (1,0),C (5,0)两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,F 的坐标,并求出这个最短总路径的长.分析 (1)用待定系数法求a ,b ,c 的值.(2)用分类讨论法求直线CD 的解析式.(3)根据轴对称解决最短路径问题.解:(1)根据题意,得c =3,所以30,25530,a b a b ++=⎧⎨++=⎩解得3,518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为y =35x 2-185x +3.(2)依题意可知,OA 的三等分点分别为(0,1),(0,2), 设直线CD 的解析式为y =k x +b ,当点D 的坐标为(0,1)时,直线CD 的解析式为y =-15x +1,当点D 的坐标为(0,2)时,直线CD 的解析式为y =-25x +2. (3)由题意可知M 30,2⎛⎫⎪⎝⎭,如甲26-91所示,点M 关于x 轴的对称点为M ′30,2⎛⎫- ⎪⎝⎭,点A 关于抛物线对称轴x =3的对称点为A ′(6,3),连接A ′M ′,根据轴对称性及两点间线段最短可知,A ′M ′的长就是点P 运动的最短总路径的长.所以A ′M ′与x 轴的交点为所求的E 点,与直线x =3的交点为所求的F 点. 可求得直线A ′M ,的解析式为y =34x -32. 所以E 点坐标为(2,0),F 点坐标为33,4⎛⎫⎪⎝⎭,由勾股定理可求出A ′M ′=152. 所以点P 运动的最短总路径(ME +EF +FA )的长为152. 【解题策略】 (2)中点D 的位置不确定,需要分类讨论,体现了分类讨论的数学思想.(3)中的关键是利用轴对称性找到E ,F 两点的位置,从而求出其坐标,进而解决问题.专题9 方程思想【专题解读】 求抛物线与坐标轴的交点坐标时,可转化为二次函数y =0或x =0,通过解方程解决交点的坐标问题.求抛物线与x 轴的交点个数问题也可以转化为求一元二次方程根的情况.例15 抛物线y =x 2-2x +1与x 轴交点的个数是 ( ) A .0个 B .1个 C .2个 D .3个分析 可设x 2-2x +1=0,Δ=(-2)2-4³1³1=0,可得抛物线y =x 2-2x +1与x 轴只有一个交点.故选B .【解题策略】 抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的个数可由一元二次方程ax 2+bx +c =o(a ≠0)的根的个数来确定.专题10 建模思想【专题解读】 根据实际问题中的数量关系建立二次函数关系式,再用二次函教的性质来解决实际问题. 例16 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天的销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W (元)与销售价x (元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?分析 (1)原来每箱售价50元,价格每提高1元,平均每天少销售3箱,若提高(x -50)元,则平均每天少销售3(x -50)箱,所以提价后每天销售[90-3(x -50)]箱,即y =90-3(x -50).(2)每天的销售利润可用(x -40)[90-3(x -50)]来表示.(3)建立W 和x 之间的二次函数关系式,利用二次函数的最值求利润的最值. 解:(1)y =90-3(x -50),即y =-3x +240.(2)W =(x -40)(-3x +240)=-3x 2+360x -9600,(3)∵a =-3<0,∴当x =2ba-=60时,W 有最大值, 又∵当x <60时,y 随x 的增大而增大, ∴当x =55时,W 取得最大值为1125元,即每箱苹果的销售价为55元时,可获得1125元的最大利润.【解题策略】 求实际问题的最值时,可通过建立二次函数关系式,根据二次函数的最值来求解. 例17 某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a 元. (1)试求a 的值;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元),则产品的年销售量将是原销售量的y倍,且y与x之间的关系如图26—92所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并计算广告费x(万元)在什么范围内时,公司获得的年利润S(万元)随广告费的增多而增多.(注:年利润S=年销售总额-成本费-广告费) 解:(1)由题意得a(1+25%)=250,解得a=200(元).(2)①依题意可设y与x之间的函数关系式为y=ax2+bx+1,则421 1.36,1641 1.64,a ba b++=⎧⎨++=⎩,解得0.01,0.2,ab=-⎧⎨=⎩∴y=-0.01x2+0.2x+1.②S=(-0.01x2+0.2x+1)³10³250-10³200-x,即S=-25x2+499x+500,整理得S=-25(x-9.98)2+2990.01.∴当0≤x≤9.98时,公司获得的年利润随广告费的增多而增多.例18 某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是元;(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是;(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元.分析本题是用二次函数解决有关利润最大的问题,由浅入深地设置了三个问题.解:(1)18000(2)y=12-x2+10x+18000(3)当y=17600时,-12x2+10x+400=0,即x2-20x-800=0.解得x=-20(舍去)或x=40.180+40=220,所以这天每间客房的价格是220元.例19 (09²泰安)如图26-93(1)所示,△OAB是边长为2的等边三角形,过点A的直线y=+m与x轴交于点E.(1)求点E的坐标;(2)求过A,O,E三点的抛物线的解析式.解:(1)如图26-93(2)所示,过A作AF⊥x轴于F,则OF =OA cos 60°=1,AF =OF tan 60°∴点A (1.代入直线解析式,得1+mm, ∴y=x. 当y =0时,=0, 解得x =4,∴点E (4,0).(2)设过A ,O ,E 三点的抛物线的解析式为y =ax 2+bx +c , ∵抛物线过原点,∴c =0,∴1640,a b a b ⎧+=⎪⎨+=⎪⎩解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=x 2x . 例20 如图26-94所示,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的表达式.解:(1)如图26-95所示,过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E ,则AF =2,OF =1. ∵OA ⊥OB ,∴∠AOF +∠BOE =90°. 又∵∠BOE +∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴BE OE OBOF AF OA===2 ∴BE =2,OE =4. ∴B (4,2).(2)设过点A (-1,2),B (4,2),O (0,0)的抛物线的表达式为y =ax 2+bx +c .则2,1642,0.a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得1,23,20.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求抛物线的表达式为y =12x 2-32x . 例21如图26-96所示,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式.解:(1)已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点, ∴01,200,b c c =++⎧⎨=++⎩解得3,2,b c =-⎧⎨=⎩∴所求抛物线的解析式为y =x 2-3x +2.(2)∵A (1,0),B (0,2),∴OA =1,OB =2, 可得旋转后C 点的坐标为(3,1).当x =3时,由y =x 2-3x +2得y =2,可知抛物线y =x 2-3x +2过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C∴平移后的抛物线的解析式为y =x 2-3x +1.例22 如图26-97所示,抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标.解:(1)∵抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,∴40,4 4.a b a a --=⎧⎨-=⎩解得1,3.a b =-⎧⎨=⎩∴抛物线的解析式为y =-x 2+3x +4.(2)如图26-98所示,点D (m ,m +1)在抛物线上,∴m +1=-m 2+3m +4,即m 2-2m -3=0,∴m =-1或m =3.∵点D 在第一象限,∴点D 的坐标为(3,4). 由(1)得B 点的坐标为(4,0), ∴OC =OB ,∴∠CBA =45°.设点D 关于直线BC 的对称点为点E .∵C(0,4),∴CD∥AB,且CD=3,∴∠ECB=∠DCB=45°,∴E点在y轴上,且CE=CD=3.∴OE=1,∴E(0,1).即点D关于直线BC对称的点的坐标为(0,1).2011中考真题精选点评:本题考查了二次函数图象上点的坐标特点,一元二次方程解的意义.关键是求二次函数解析式,根据二次函数的对称轴,开口方向判断函数值的大小.2.(2011黑龙江牡丹江,18,3分)抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A、﹣2B、2C、15D、﹣15考点:二次函数图象上点的坐标特征;代数式求值。

重庆市中考数学一轮复习(课件)4.第2节 三角形及其性质


面积计算公式:S=⑪ 1 ah ,其中a是底边长,
h是底边上的高
2
未完继续
温馨提示 ①对于等腰三角形的边、角、周长的计算,顶 点位置的探索,往往由于腰、底的不确定,需分类讨论解 决,防止漏解;②等腰三角形的“三线合一”是一条重要性 质,在计算和证明中,往往作为辅助线,需灵活添加解决
返回
1.三边相等
(2)如图①,若D在BC的延长线上,∠ACD=110°, 求∠BAC的度数;
(3)如图②,若D在BC的延长线上,AC=DC, ∠BAC=40°,求∠D的度数;
(4)如图③,若D是AC上一点,且AD=BD=BC,求∠A的度数;
(5)如图④,若E是AC上的点,且BE是△ABC的中线,BE把 △ABC的周长分为12和15两部分,求△ABC的三边长;
等 腰 三 角 形(如 图⑤)
对称图形,有一条对称轴,即AD

4.顶角的⑩ 角平分线 重合(三线合一)
,底边上的高和底边的中线互相
判定
1.有两边相等的三角形是等腰三角形

2.有两角相等的三角形是等腰三角形
作垂线,顶点和垂足之间的线段
高 线

图形及性质:如图③,在△ABC中,AD为BC边上的 高线,则有AD⊥⑧ BC ,即∠ADB=∠ADC=90°


垂心:三角形的三条高线的交点,该点称为三角 形的垂心
返回
定义:连接三角形两边中点的线段
中 位

图形及性质:如图④,在△ABC中,D、E分别为AB、
第四章 三角形
第2节 三角形及其性质
考点特训营
三角形及其边角关系

三角形的分类 三角形边角关系

中考数学复习考点知识与题型专题讲义4---用分式方程解决问题(提高篇

中考数学复习考点知识与题型专题讲义 04 用分式方程解决问题(提高篇)1.从贵阳到广州,乘特快列车的行程约为1800km ,高铁开通后,高铁列车的行程约为900km ,运行时间比特快列车所用的时间减少了16h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.【分析】设特快列车平均速度为xkm /h ,则高铁列车平均速度为2.5xkm /h ,根据高铁列车运行900km 比特快列车运行1800km 的时间减少了16h ,列方程求解.【解答】解:设特快列车的平均速度为x km /h ,根据题意可列出方程为1800x =9002.5x +16,解得x =90.检验:当x =90时,2.5x ≠0.所以x =90是方程的解.答:特快列车的平均速度为90km /h .【点评】本题考查了分式方程的应用,解答本题的关键是读懂原题,设出未知数,找出合适的等量关系,列方程求解,注意检验.2.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【分析】(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,根据所购数量是第一批数量的2倍,但单价贵了1元,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题.【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.【点评】本题考查分式方程的应用,解题的关键是学会设未知数,寻找等量关系,注意解分式方程必须检验.3.母亲节前夕,某花店购进康乃馨和百合两种鲜花,销售过程中发现康乃馨比百合销量大,店主决定将百合每枝降价2元促销,降价后100元可购买百合的数量是原来可购买百合数量的54倍. (1)试问:降价后每枝百合的售价是多少元?(2)根掂销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,百合的进价是5元/枝.试问至少需要购进多少枝百合?【分析】(1)可设降价后每枝百合的售价是x 元,根据等量关系:降价后100元可购买百合的数量是原来可购买百合数量的54倍,列出方程求解即可; (2)可设购进百合y 枝,根据不等量关系:购进康乃馨的钱数+购进百合的钱数≤1000元,列出不等式求解即可.【解答】解:(1)设降价后每枝百合的售价是x元,依题意有100 x =100x+2×54,解得:x=8.经检验,x=8是原方程的解.答:降价后每枝百合的售价是8元.(2)设购进百合y枝,依题意有6(180﹣y)+5y≤1000,解得:y≥80.答:至少购进百合80枝.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.4.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用2000元购进医用口罩若干个,第二次又用2000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个.(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个3元的价格出售,卖出了a个后购进第二批同款罩,由于进价提高了,药店将口罩的售价也提升至每个3.5元继续销售卖出了b个后,两次共收入4800元.因当地医院医疗物资紧缺,药店决定将剩余的口罩全部捐赠给医院.请问药店捐赠口罩至少有多少个?【分析】(1)设第一次购进医用口罩的数量为x个,根据题意给出的等量关系即可求出答案.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a+3.5b=4800,所以a=1600−76b,根据条件可求出b 的最小值,从而可求出药店捐赠的口罩至少有多少个.【解答】解:(1)设第一次购进医用口罩的数量为x 个,∴第二次购进医用口罩的数量为(x ﹣200)个,∴由题意可知:2000x−200=1.25×2000x ,解得:x =1000,经检验,x =1000是原方程的解,且符合题意,∴x ﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:3a +3.5b =4800,∴a =1600−76b ,∴1800﹣a ﹣b =1800﹣(1600−76b )﹣b =200+b 6,∵a ≤1000,∴1600−76b ≤1000,∴b ≥51427, ∵a ,b 是整数,∴b 是6的倍数,∴b 的最小值是516,∴1800﹣a ﹣b ≥286,答:药店捐赠口罩至少有286个.【点评】本题考查分式方程,解题的关键是正确找出等量关系,本题属于中等题型.5.甲、乙两地相距360千米,一辆贩毒车从甲地往乙地接头取货,警方截取情报后,立即组织干警从甲地出发,前往乙地缉拿这伙犯罪分子,结果警车与贩毒车同时到达,将犯罪分子一网打尽.已知贩毒车比警车早出发1小时15分,警车与贩毒车的速度比为4:3,求贩毒车和警车的速度.【分析】设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据警车与贩毒车之间的时间关系建立方程求出其解,即可得出结果.【解答】解:设警车的速度为4xkm /h ,则贩毒车的速度为3xkm /h ,根据题意得:3603x −3604x =1.25,解得:x =24,经检验,x =24是原方程的根,∴原方程的根为x =24.∴警车的速度为:4×24=96(km /h ),贩毒车的速度为:3×=72(km /h ).答:警车的速度为96km /h ,贩毒车的速度为72km /h .【点评】本题是一道行程问题的运用题,考查了列分式方程解实际问题的运用、分式方程的解法;根据题意列出方程是解决问题的关键,注意检验.6.某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2倍,用1200元单独购买甲图书比用1200元单独购买乙图书要少25本.(1)甲、乙两种图书每本价格分别是多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍少5本,且用于购买甲、乙两种图书的总经费不超过1800元,那么该图书馆最多可以购买多少本乙图书?【分析】(1)利用用1200元单独购买甲图书比用1200元单独购买乙图书要少25本得出等式求出答案;(2)根据题意表示出购买甲、乙两种图书的总经费进而得出不等式求出答案.【解答】解:(1)设乙图书每本价格为x 元,则甲图书每本价格是2x 元,根据题意可得:1200x −12002x =25,解得:x =24,经检验得:x =24是原方程的根,则2x =48,答:乙图书每本价格为24元,则甲图书每本价格是48元;(2)设购买甲图书本数为a 本,则购买乙图书的本数为:2a ﹣5,故48a +24(2a ﹣5)≤1800,解得:a ≤20,故2a ﹣5≤35,答:该图书馆最多可以购买35本乙图书.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确表示出图书的价格是解题关键.7.某工厂准备今年春季开工前美化厂区,计划对面积为2000m 2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m 2?(2)若工厂每天需付给甲队的绿化费用为0.4万元,乙队为0.5万元,要使这次的绿化总费用不超过10万元,至少应安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据“在独立完成面积为480m 2区域的绿化时,甲队比乙队少用6天”,即可得出关于x 的分式方程,解之并检验后,即可得出结论;(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y 的取值范围,取其内的最小正整数即可.【解答】解:(1)设乙工程队每天能完成绿化的面积为xm 2,则甲工程队每天能完成绿化的面积为2xm 2,根据题意得:480x −4802x =6,解得:x =40.经检验,x =40是原方程的解,∴2x =80.答:甲工程队每天能完成绿化的面积为80m 2,乙工程队每天能完成绿化的面积为40m 2.(2)设安排甲工程队工作y 天,则乙工程队工作2000−80y 40=(50﹣2y )天,根据题意得:0.4y +0.5(50﹣2y )≤10,解得:y ≥25.答:至少应安排甲队工作25天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,列出关于x 的分式方程;(2)根据总费用=需付给甲队总费用+需付给乙队总费用结合这次的绿化总费用不超过10万元,列出关于y 的一元一次不等式.8.某企业在甲地一工厂(简称甲厂)生产某产品,2017年的年产量过百万,2018年甲厂经过技术改造,日均生产的该产品数是该厂2017年的2倍还多2件.(1)若甲厂2018年生产200件该产品所需的时间与2017年生产98件该产品所需的时间相同,则2017年甲厂日均生产该产品多少件?(2)由于该产品深受顾客喜欢,2019年该企业在乙地建立新厂(简称乙厂)生产该产品,乙厂的日均生产的该产品数是甲厂2017年的3倍还要多5件,同年该企业要求甲、乙两厂分别生产m ,n 件产品(甲厂的日均产量与2018年相同),m :n =12:17,若甲、乙两厂同时开始生产,谁先完成任务?请说明理由.【分析】(1)设2017年甲厂日均生产该产品x 件,根据题意列出方程即可求出答案.(2)设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,由题意可知 m n =100p 152q ,求出p 与q 的比值即可求出答案.【解答】解:(1)设2017年甲厂日均生产该产品x 件,则改造后日均生产该产品(2x +2)件,∵2002x+2=98x ,解得:x =49,经检验,x =49是原分式方程的解,答:2017年甲厂日均生产该产品49件;(2)由题意可知:2019年乙厂日均生产是152件,2018年甲厂日均生产100件,设甲厂完成m 件产品需要的时间为p ,乙厂完成n 件产品需要的时间为q ,∴m n=100p 152q =1217, ∴p q =456425,故乙厂先完成.【点评】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.9.为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织总共需要购买2000件物资,请问该爱心组织如何购买这2000件物资,才能使得购买资金最少?【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m件,根据“灾区对甲种物资的需求量不少于乙种物资的1.5倍”列出不等式.【解答】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,350x+10=300x,解得:x=60.经检验,x=60是原方程的解,x+10=60+10=70.答:甲每件70元,乙每件60元;(2)设甲种物品件数为m件,根据题意得:m≥1.5(2000﹣m).解得:m≥1200.故m最小值为1200,2000﹣m=800.此时:70×1200+60×800=132000(元).答:甲购入1200件,乙购入800件,最少需要132000元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.10.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)分别求出每个甲种配件、每个乙种配件的价格为多少万元?(2)现投入资金40万元,假设投入资金全部用完,根据维修需要预测,甲种配件要比乙种配件至少多25件,乙种配件最多可购买多少件?【分析】(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据数量=总价÷单价结合用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买甲种配件m件,购买乙种配件n件,根据总价=单价×购买数量,即可得出m=50﹣1.5n,再结合甲种配件要比乙种配件至少要多11件,即可得出关于n的一元一次不等式,解之结合m,n均为非负整数可得出n的最大值.【解答】解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:16x−0.4=24x,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m +1.2n =40,∴m =50﹣1.5n .∵m ﹣n ≥25,∴50﹣1.5n ﹣n ≥25,∴n ≤10,∵m ,n 均为非负整数,∴n 的最大值为10.答:乙种配件最多可购买10件.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.11.某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,根据工作时间=工作总量÷工作效率结合在独立完成面积为360平方米区域的绿化时甲队比乙队少用3天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,根据总费用=700×甲队工作时间+500×乙队工作时间结合这次的绿化总费用不超过14500元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设乙工程队每天能完成绿化的面积是x 平方米,则甲工程队每天能完成绿化的面积是1.5x 平方米,依题意,得:360x −3601.5x =3,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴1.5x =60.答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.(2)设安排甲队工作m 天,则需安排乙队工作1200−60m 40天,依题意,得:700m +500×1200−60m 40≤14500, 解得:m ≥10.所以m 最小值是10.答:至少应安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.12.列方程解应用题:港珠澳大桥是中国中央政府支持香港、澳门和珠三角地区城市快速发展的一项重大举措,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门,止于珠海洪湾,总长55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.某天,甲乙两辆巴士均从香港口岸人工岛出发沿港珠澳大桥开往珠海洪湾,甲巴士平均每小时比乙巴士多行驶10千米,其行驶时间是乙巴士行驶时间的56.求乘坐甲巴士从香港口岸人工岛出发到珠海洪湾需要多长时间.【分析】设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时,则乙巴士的行驶时间需要65x 小时,根据“甲巴士平均每小时比乙巴士多行驶10千米”列出方程并解答.【解答】解:设甲巴士从香港口岸人工岛出发到珠海洪湾的行驶时间需要x 小时, 则乙巴士的行驶时间需要65x 小时, 根据题意得:55x =5565x +10 解得:x =1112经检验,x =1112是原分式方程的解且符合题意 答:甲巴士从香港口岸人工岛出发到珠海洪湾需要1112小时.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.13.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)按照(2)中两种汽车进价不变,如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:90 m =100m+1,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同,此时,购买A款汽车6辆,B款汽车9辆对公司有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.14.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?【分析】(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)根据盈利=总售价﹣总进价,进而求出即可.【解答】解:(1)设第一批购进书包的单价为x 元.依题意,得2000x ×3=6300x+4,整理,得20(x +4)=21x ,解得x =80.检验:当 x =80时,x (x +4)≠0,∴x =80是原分式方程的解.答:第一批购进书包的单价为80元,(2)200080×(80−68)+630084×(84−70)=300+1050=1350答:商店共盈利1350元.【点评】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系.15.“阅读陪伴成长,书香润泽人生.”某校为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同.(1)求每本A类图书和每本B类图书的价格各为多少元?(2)根据学校实际情况,需从书店一次性购买A、B两类图书共300册,购买时得知:一次性购买A、B两类图书超过100册时,A类图书九折优惠(B类图书按原价销售),若该校此次用于购买A、B两类图书的总费用不超过5100元,那么最多可以购买多少本A类图书?【分析】(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元.依据“用1200元购进的A类图书与用900元购进的B类图书册数相同”列出方程并解答;(2)设该校A类图书y本,则根据题中的已知条件“该校此次用于购买A、B两类图书的总费用不超过5100元”列出不等式,并解答.【解答】解:(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元,根据题意可得:1200 x =900x−5,解得:x=20,经检验x=20是方程的解,所以x﹣5=20﹣5=15,答:每本A类图书的价格是20元,每本B类图书的价格是15元;(2)设该校A类图书y本,则B类图书(300﹣y),根据题意可得:20×90%y+15×(300﹣y)≤5100,解得:y≤200,答:最多可以购买200本A类图书.【点评】本题考查了分式方程的应用、一元一次不等式的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.16.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,则甲队的工效为13x ,乙队的工效为1x,由已知得:甲队工作了30天,乙队工作了10天完成,列方程得:303x +10x=1,解出即可,要检验;(2)根据(1)中所求得出甲、乙合作需要的天数,进而求出总费用,即可得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:303x +10x=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(120+160)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.【点评】本题考查了分式方程的应用,属于工程问题,明确三个量:工作总量、工作效率、工作时间,一般情况下,根据已知设出工作时间,根据题意表示出工效,找等量关系列分式方程,本题表示等量关系的语言叙述为:“甲队先做20天,剩下的工程再由甲、乙两队合作10天完成”.17.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.【分析】方案(1)、(3)不耽误工期,符合要求,求出费用即可判断,方案(2)显然不符合要求.【解答】解:设规定日期为x天.由题意得3 x +xx+6=1,3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.18.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【分析】设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得400 x −4002x=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学一轮复习讲义1 有理数小结1 概述知识要点主要包括有理数的意义和有理数的运算两部分内容,其课标要求是:理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数和绝对值;理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能灵活使用运算律简化运算;能运用有理数的运算解决简单的问题;会用科学记数法表示较大的数,并能按要求取近似数.小结2 学习重难点重点是:有理数的意义及运算;难点是:负数概念的建立以及对有理数运算法则的理解.关键是能够运用有理数的运算法则正确进行运算,并且能够掌握好有理数的运算顺序及符号的确定.小结3 本章学法点津1.注重从算术到代数的过渡,要克服学习小学数学时的思维局限性,考虑问题时不能忽略负数的可能性.2.注重学习方法的更新和能力的提升.学习中要多观察思考、讨论交流、探究反思、归纳总结,从而提升自己的思维能力.3.注重数学思想的运用.掌握数形结合、分类、转化、类比等数学思想是学好数学的重要保障.知识网络结构图重点题型总结及应用题型一绝对值理解绝对值的意义及性质是难点,由于|a|表示的是表示数a的点到原点的距离,因此|a|≥0.可运用|a|的非负性进行求解或判断某些字母的取值.例1 如果a与3互为相反数,那么|a +2|等于( )A.5 B.1 C.-1 D.-5解析:a与3互为相反数,则a=-3,所以|a+2|=|-3+2|=|-1|=1.答案:B例2 若(a-1)2+|b+2|=0,则a+ b=.解析:由于(a-1)2≥0,|b+2|≥0,又(a-1)2与|b+2|互为相反数,因此(a-1)2=0且|b+2|=0,则a=1,b=-2,所以a +b=-1.答案:-1规律若几个非负数的和为0,则这几个数分别为0.题型二 有理数的运算有理数的运算包括加减法、乘除法及乘方,是初中数学运算的基础.要熟记法则,灵活运算,进行混合运算时,还要注意运算顺序及运算律的应用.例3 (-1)2 011的相反数是( )A .1B .-1C .2 011D .-2 011解析:由于指数2 011为奇数,所以(-1)2 011=-1,其相反数为1.答案:A例4 计算:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452; (2)⎡⎤⎛⎫⎡⎤--⨯⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3. 解:(1)2⎛⎫⎛⎫⎛⎫-⨯+⨯÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211(-8)-9-1452 2⎛⎫⎛⎫=-⨯⨯÷ ⎪ ⎪⎝⎭⎝⎭523(-8)-9-452 =4-9×49=4-4=0. (2)⎡⎤⎛⎫⎡⎤--⨯⨯ ⎪⎢⎥⎣⎦⎝⎭⎣⎦21110.52-(-3)3 =⎡⎤⎛⎫--⨯ ⎪⎢⎥⎝⎭⎣⎦111(2-9)6 =⎛⎫⨯ ⎪⎝⎭51-(-7)6 =.⨯17(-7)=-66题型三 运用运算律简化运算过程运用加法的交换律、结合律,把某些具有相同属性的数(如正数、负数、分数中的分母具有倍数关系、相反数等)分别结合在一起相加,可以简化运算过程.例5 计算下列各题.(1)21-49.5+10.2-2-3.5+19; (2)⎛⎫⎛⎫---++-- ⎪ ⎪⎝⎭⎝⎭1137222323483; (3)2⎛⎫⎛⎫⎛⎫÷-++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭311113*********-42434(-0.2); (4)32323⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3351914321251943252. 分析:混合运算,应按法则进行,同时注意灵活运用运算律,简化运算过程.解:(1)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8;(2)原式⎛⎫⎛⎫=-++--=-+-+- ⎪ ⎪⎝⎭⎝⎭11372137122232232348324833;=-=311118324; (3)原式3⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭12457551241654341-5 ⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭14575524242412540434 =-+++113927056-330+125=-121=120404040; (4)原式=322⎡⎤⎛⎫⎛⎫⎛⎫-⨯-⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦335194-22519435 =⎛⎫-⨯-⨯+=-⨯= ⎪⎝⎭2794319162700.8251943258点拨(1)正、负数分别结合相加;(2)分数中,同分母或分母有倍数关系的分数结合相加;(3)除法转化为乘法,正向应用乘法分配律;(4)逆向应用分配律a (b +c )=ab +ac ,即ab +ac =a (b +c ).题型四 利用特殊规律解有关分数的计算题根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.例6 计算下列各题. (1)--+-5231591736342; (2)⎛⎫⎛⎫--⨯-+ ⎪ ⎪⎝⎭⎝⎭3173155959595212777; (3)++++++++1111111112612203042567290(4)+++++++1111111…24816512 1 024 2 048. 分析:(1)带分数相加,可将带分数中整数部分与分数部分拆开分别相加.(2)本题若按常规计算方法比较麻烦,但若用运算律可简化运算.(3)由于==-==-==-⨯⨯⨯111111111111, , ,212262323123434 ==-⨯1111204545,==-⨯1111305656,==-⨯1111426767,==-⨯1111567878,==-⨯1111728989,==-⨯111190910910,所以将原算式变形裂项后,再进行计算. (4)算式中,后一个分数的分母是前一个分数分母的2倍,可在算式中加上最后一个分数12 048,再减去12 048,加上的12 048与前一个分数运算,所得的和再与前一个分数运算,依次向前进行,最终求得运算结果. 解:(1)原式=-5---++--523191736342 ⎛⎫=+--+-==- ⎪⎝⎭523111(-5-9+17-3)0-11634244; (2)⎛⎫⎛⎫--⨯-+ ⎪ ⎪⎝⎭⎝⎭3173155959595212777⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=--⨯-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31731559+59+59+5212777 ⎛⎫⎛⎫=--⨯-+ ⎪ ⎪⎝⎭⎝⎭31731559+59-59+5212777 ⎡⎤⎛⎫⎛⎫=--⨯+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦317315(59-59+59)5212777 ()⎛⎫=--⨯ ⎪⎝⎭31759+15212 =⨯⨯⨯31760-60-60=36-30-35=-295212. (3)原式=++++++++⨯⨯⨯⨯⨯⨯⨯⨯⨯1111111111223344556677889910 ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111223344556⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111111677889 =-=1911010(4)原式=++++=-+++++++16181412120481204812048110241...161814121 (2048)15121...161814121204811024110241-+++++=-++ .=+-=-=1111 2 047122 2 048 2 048 2 048 点拨利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.题型五 有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.例7 有8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,-0.8,2.3,1.7,-1.5,-2.7,2,-0.2,则这8箱橘子的总重量是多少?分析:本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.解析:1.2+(-0.8)+2.3+1.7+(-1.5)+(-2.7)+2+(-0.2)=1.2-0.8+2.3+1.7-1.5-2.7+2-0.2=(2.3+1.7+2)+(-0.8-2.7-1.5)+(1.2-0.2)=6-5+1=2.则15×8+2=122(千克).答案:这8箱橘子的总重量是122千克.例8 一货车为一家摩托车配件批发部送货,先向南走了8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?解:(1)能.如图1-6-1所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5-(-3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|-3.5|+|-7.5|+|3|=8+3.5+7.5+3=22(千米).题型六 探索数字规律找数字规律的题目成为近几年中考的热点问题,这类题目灵活多变.解题时要认真观察、分析思考,找出规律,并运用规律解决问题.例9 某种细菌在繁殖过程中,每半小时分裂一次,由一个分裂成两个,2.5小时后,这种细菌可分裂为( )A .8个B .16个C .32个D . 64个解析:本题数字的规律是1→2→4→8…,每半小时细菌个数变为原来的2倍,所以经过2.5小时,细菌个数应变为原来的25倍,即32个.答案:C( )例10 观察图1-6-2,寻找规律,在“?”处应填上的数字是A .128B .136C .162D .188解析:观察图个数字特点可发现:8=4+2+2;14=8+4+2;26=14+8+4;….所以“?”=88+48+26=162.答案:C思想方法归纳本章中所体现的数学思想方法主要有:1.数形结合思想:在本章中,自始至终利用数轴来定义或描述有理数的概念和运算,数轴成为理解有理数及其运算的重要工具.这种把数与形(图形或数轴)结合起来进行研究的思想方法,是学习数学的重要思想方法.2.分类讨论思想:a 与-a 哪个大呢? a 的绝对值等于什么?在本章中,我们都是通过分类讨论解决问题,分类讨论可以把一个复杂的问题分成若干个较简单的问题来处理,这是数学中处理问题的一种重要思想方法.不重复、不遗漏是对分类讨论提出的基本要求.例如,我们常把有理数分成正有理数、负有理数和零三类,如果遗漏了零,只考虑正有理数和负有理数两种情况,就会犯错误.3.转化思想:有理数的加法是通过符号法则转化为绝对值(小学所学的数)的加减法进行的;有理数的减法是通过转化为加法进行的;有理数的除法是通过转化为乘法,或者说有理数的乘除法是通过符号法则转化为绝对值的乘除法进行的.1.数形结合思想数轴是数形结合的重要工具,涉及含字母或绝对值符号的问题,借助数轴往往有利于问题的迅速解决.例1 |a |>|b |,a >0,b <O ,把a 、b 、-a 、-b 按由小到大的顺序排列.分析:将a 、b 、-a 、-b 在数轴上对应点的位置找出来,就可以比较大小了.解:由a >0,b <0可知,a 为正数,b 为负数,a 、b 所对应的点分别在数轴上原点的右边和左边.由于|a |>|b |,从绝对值的几何意义可知,表示数a 的点离原点的距离比表示数b 的点离原点的距离远,而互为相反数的两个数绝对值相等,即|a |=|-a |,|b |=|-b |,于是a 、b 、-a 、-b 在数轴上的位置如图1-6-3所示.故由小到大的顺序排列为-a <b <-b <a .提示比较数的大小,可在数轴上把这些对应点表示出来,按从左到右的顺序确定后,就能写出这些数的大小关系.从本例看,我们还可以进一步得到-a <b <0<-b <a .例2 有理数a 、b 在数轴上对应点的位置如图l -6-4所示,则必有( )A .a + b >0B .a - b <oC .a b >0D . a b<0 -b >0,ab <0,a b<解析:由数轴可知0<a <1,b <-l <0且|b |>|a |,因此有a +b <0 a0.故选D .答案:D点拨本题要注意读懂图形(数轴),掌握数轴上点的性质,还要注意有理数的四则运算法则.2.分类讨论思想例3 比较2 a 与-2 a 的大小.分析:由于a 可能为正数,也可能为负数和0,所以应分a >0,a <0,a =0三种情况讨论.解:当a >0时,2 a >-2 a ;当a <0时,2 a <-2 a ;当a =0时,2 a =-2 a .规律解此类题时用分类讨论的思想方法来完成.3.转化思想例4 计算:l 3+23+33+43+…+993+1003的值.分析:直接求解,当然不行,必须探索规律,将运算进行转化.解:∵l 3=1,13+23=9=32=(1+2)2,13+23+33=36=62=(1+2+3)2, 13+23+33+43=100=(1+2+3+4)2,…,由此可知13+23+33+43+…+993+1003=(1+2+3+4+…+99+100)2 =2⨯⎡⎤⎢⎥⎣⎦(1+100)1002=5 0502=25 502 500. 点拨利用转化思想可将“复杂问题”转化为“简单问题”,把“陌生”问题转化为“熟悉”的知识解决.本题中把“立方”运算转化为“平方”运算,把“求和”运算转化为“乘方”的运算.4.用“赋值法”解题在做选择题和填空题时,问题的结论如果运用法则、定义等推导,有些题容易,而有些题很复杂,对于那些推导过程比较复杂的题目可采取“赋值法”,这样就能又快又准地得出结论.例5 m -n 的相反数是( )A .-( m + n )B .m + nC .m - nD .-( m - n )解析:可设m =2,n =1,则m - n =1.又-( m + n )=-3,m + n =3,m - n =1,-( m - n )=-1.故选D . 答案:D点拨赋值时取值要符合题意,但又不能特殊,本题中m ,n 不能取0,得出结论后再用其他值试一试,如:m =3,n =-2等.例6 如果a >0,b <0,|a |>| b |,那么a + b 0,a - b 0.(填“>”或“<”)解析:由前提条件设a =3,b =-1,则a +b =2,a -b =4.答案:> >例7 若x y x y +-中的x ,y 都扩大到原来的5倍,则x y x y+-的值( ) A .缩小, B .不变 C . 扩大到原来的5倍 D .缩小到原来的15 解析:取x =3,y =2,32532x y x y ++==--,5x =15,5 y =10,15+1015-10=5. 答案:B点拨(1)“赋值法”只能在客观题(填空题、选择题)上并且用其他方法不易解出时使用,一般不提倡使用,但可以作为检验结论是否正确的方法。

相关文档
最新文档