精品全国数学竞赛训练题三(有答案)

合集下载

教育部数学竞赛试题及答案

教育部数学竞赛试题及答案

教育部数学竞赛试题及答案试题一:代数部分1. 计算下列表达式的值:\( (x^2 - 3x + 2) / (x - 1) \),当\( x = 2 \)。

2. 解方程:\( 2x^2 + 5x - 3 = 0 \)。

3. 证明:对于任意实数 \( a \) 和 \( b \),\( (a + b)^2 \leq2(a^2 + b^2) \)。

试题二:几何部分1. 已知三角形ABC中,角A为30度,角B为45度,求角C的度数。

2. 圆O的半径为5,点P在圆上,OP=3,求点P到圆心O的切线长度。

3. 证明:直角三角形斜边上的中线等于斜边的一半。

试题三:概率统计部分1. 抛掷一枚均匀硬币两次,求至少出现一次正面的概率。

2. 从1到10的整数中随机选择一个数,求这个数是奇数的概率。

3. 一个班级有30名学生,其中15名男生和15名女生。

随机选择5名学生,求至少有3名男生的概率。

试题四:数论部分1. 证明:对于任意正整数 \( n \),\( n^5 - n \) 总是能被30整除。

2. 求所有小于100的正整数,它们既是完全平方数,又是完全立方数。

3. 证明:不存在两个连续的完全平方数,它们的和是一个完全立方数。

答案:试题一:1. 将 \( x = 2 \) 代入表达式,得到 \( (2^2 - 3*2 + 2) / (2 -1) = 0 \)。

2. 解方程 \( 2x^2 + 5x - 3 = 0 \),使用公式 \( x = \frac{-b\pm \sqrt{b^2 - 4ac}}{2a} \),得到 \( x = \frac{-5 \pm\sqrt{25 + 24}}{4} = \frac{-5 \pm 7}{4} \),即 \( x = -2 \)或 \( x = \frac{1}{2} \)。

3. 证明:\( (a + b)^2 = a^2 + b^2 + 2ab \),而 \( 2(a^2 + b^2) = 2a^2 + 2b^2 \),显然 \( 2ab \leq 2a^2 + 2b^2 \),所以 \( (a + b)^2 \leq 2(a^2 + b^2) \)。

全国数学能力竞赛试题及答案

全国数学能力竞赛试题及答案

全国数学能力竞赛试题及答案试题一:代数基础题目:解下列方程组:\[ \begin{cases}x + y = 5 \\2x - y = 1\end{cases} \]答案:将第一个方程乘以2得到 \( 2x + 2y = 10 \),然后将其与第二个方程相加,得到 \( 3x = 11 \),解得 \( x = \frac{11}{3} \)。

将 \( x \) 的值代入第一个方程,解得 \( y = 5 - \frac{11}{3} = \frac{4}{3} \)。

试题二:几何问题题目:在直角三角形ABC中,∠C=90°,AC=5,BC=12,求AB的长度。

答案:根据勾股定理,AB的长度可以通过以下公式计算:\[ AB = \sqrt{AC^2 + BC^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \]试题三:概率统计题目:一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少有1个红球的概率。

答案:首先计算没有红球的概率,即两个球都是蓝球的概率,为\( \frac{3}{8} \times \frac{2}{7} = \frac{6}{56} \)。

因此,至少有1个红球的概率为 \( 1 - \frac{6}{56} = \frac{50}{56} = \frac{25}{28} \)。

试题四:数列与级数题目:数列 \( \{a_n\} \) 满足 \( a_1 = 1 \) 且 \( a_{n+1} = 2a_n \),求 \( a_5 \) 的值。

答案:根据数列的递推关系,可以依次计算出:\[ a_2 = 2a_1 = 2 \]\[ a_3 = 2a_2 = 4 \]\[ a_4 = 2a_3 = 8 \]\[ a_5 = 2a_4 = 16 \]试题五:组合数学题目:从10个人中选出3个人组成一个委员会,求不同的委员会组合数。

全国数学竞赛小学四年级决赛集训试题附答案

全国数学竞赛小学四年级决赛集训试题附答案

全国数学竞赛小学四年级决赛集训试题(附答案)全国数学竞赛小学四年级决赛集训试题(一)姓名____得分____一、填空题(每题6分,共60分)1、已知2※3=2+3+4,7※2=7+8,3※5=3+4+5+6+7,…,按此规则,如果n※8=68,那么n=。

2、计算:(2×3×4+4×6×8+6×9×10+……+200×300×400)÷(1×2×3+2×4×6+3×6×9+……+100×200×300)=。

3、如图,方格纸上放了20枚棋,以棋子为顶点的正方形一共有个。

4、从3,4,5,6,10,11,12这七个数中,取出两个数组成一个最简真分数,共有种取法。

5、一个粗心的会计,在给货主汇款时,把货主开来的发票上应付款多看了一位,使应付款扩大了10倍。

几天后,货主将她多汇的75258元如数退回了。

应付款是元。

6、小芳每分钟吹一次肥皂泡,每次恰好吹出100个。

肥皂泡吹出以后,经过1分钟有一半破了;经过2分钟还有120没破;经过2.5分钟后全部都破了。

阿芳吹完第100次时,没有破的肥皂泡共有个。

7、某部队设计训练规定:用步枪射击,发给子弹10发,每击中靶心一次奖励2发;用手枪射击,发给子弹14发,每击中一次奖励3发。

王明步枪射击,李强用手枪射击,当他们把发的和奖励的子弹都打完时,两人的射击的次数相等。

王明击中靶心20次,李强击中靶心次。

28、水果店运来的西瓜个数是哈密瓜个数的4倍,如果每天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后还剩下70个西瓜,那么水果店运来的西瓜和哈密瓜一共个。

9、自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通信员立即返回出发点,到出发点后又返回去追上自行车队,再追上时,恰好离出发点18千米,自行车的速度为千米/小时。

数学竞赛高数试题及答案

数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。

试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。

解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。

试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。

试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。

解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。

试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。

解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。

对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。

第十一届全国大学生数学竞赛决赛试题(三套全)及参考答案

第十一届全国大学生数学竞赛决赛试题(三套全)及参考答案

第十一届全国大学生数学竞赛决赛试题参考答案及评分标准 (非数学类,2021年4月17日)一、填空题(本题满分30分,每小题6分)1、极限12(1)(1sin lim (1sin )n n x x π−+−=−______________.【解】122)(1sinlim n n x x ππ−+→−= 211(sin 1)11111sin 23!n x x x n n π+−+−==⋅=− 2、设函数()y f x =由方程32arctan(2)x y y x −=−所确定,则曲线()y f x =在点1,32P ππ⎛⎫++ ⎪⎝⎭处的切线方程为______________.【解】对方程32arctan(2)x y y x −=−两边求导,得22321(2)y y y x '−−'=+−.将点P 的坐标代入,得曲线()y f x =在P 点的切线斜率为5.2y '=因此,切线方程为5(3)122y x ππ⎛⎫−+=−− ⎪⎝⎭,即51224y x π=+−.3、设平面曲线L 的方程为220Ax By Cxy Dx Ey F +++++=,且通过五个点1(1,0)P −,2(0,1)P −,3(0,1)P ,4(2,1)P −和5(2,1)P,则L 上任意两点之间的直线距离最大值为______________.【解】将所给点的坐标代入方程得0042204220A D FB E F B E F A BCDEF A B C D E F −+=⎧⎪−+=⎪⎪++=⎨⎪+−+−+=⎪+++++=⎪⎩解得曲线L 的方程为223230x y x +−−=,其标准型为22(1)144/3x y −+=,因此曲线L 上两点间的最长直线距离为4.4、设()22()23arctan 3nx f x x x =+−,其中n 为正整数,则()(3)n f −=_________. 【解】记2()(1)arctan 3n x g x x =−,则()(3)()n f x x g x =+.利用莱布尼兹法则,可得1()()()0()!()(3)()n k n k nn k n k fx n g x C x g x −−=⎡⎤=++⎣⎦∑所以()22(3)!(3)(1)4!n n n f n g n π−−=−=−.5、设函数()f x 的导数()f x '在$[0,1]$上连续,(0)(1)0f f ==,且满足[]1124()?d 8()d 03f x x f x x '−+=⎰⎰ 则()f x =______________.【解】因为1110()d ()d ,()d 0f x x x f x x f x x =−''=⎰⎰⎰,且()1201441d 3x x x −+=⎰,所以()[]1112220124()d 8()d ()8()4()16164d 3()42d 0f x x f x x f x xf x f x x x x f x x x ''⎡⎤−+=+'−'+−+⎣⎦='+−=⎰⎰⎰⎰因此()24f x x '=−,2()22f x x x C =−+..由(0)0f =得0C =..因此2()22f x x x =−.二、(12分)求极限:11nn k =−.【解】记1nn k a ==−,则1111nnn n k k k a n===⎛==≤ ⎝. ....................... 3分因为1112((1)3n nk n kk k x x n ++==≤==+−∑⎰⎰,所以221133n a n ⎛<=+ ⎝ .................................................. 3分又01123nnkk k k x x −==≥==∑⎰⎰123nn k a =≥≥ 于是可得................221133n a n ⎛≤<+ ⎝3分三、(12分)设()()212313230,,cos ,sin d F x x x f x x x x πϕϕϕ=++⎰,其中(,)f u v 具有二阶连续偏导数.已知()213230cos ,sin d i iFf x x x x x x πϕϕϕ∂∂⎡⎤=++⎣⎦∂∂⎰, ()2221323220cos ,sin d i iFf x x x x x x πϕϕϕ∂∂⎡⎤=++⎣⎦∂∂⎰,1i =,2,3 试求22232221233F F F Fx x x x x ⎛⎫∂∂∂∂+−− ⎪∂∂∂∂⎝⎭并要求化简.【解】令1323cos ,sin u x x v x x ϕϕ=+=+,利用复合函数求偏导法则易知123,,cos sin f f f f f f f x u x v x u vϕϕ∂∂∂∂∂∂∂===+∂∂∂∂∂∂∂, 22222222222222222123,,cos sin 2sin f f f f f f f f x u x v x u u v vϕϕϕ∂∂∂∂∂∂∂∂===++∂∂∂∂∂∂∂∂∂ .................................... 4分所以2223222123F F F x x x x ⎛⎫∂∂∂+− ⎪∂∂∂⎝⎭222222222232222000 d d cos sin 2sin d f f f f f x u v u u v πππϕϕϕϕϕϕν⎡⎤⎛⎫∂∂∂∂∂=+−++⎢⎥ ⎪∂∂∂∂∂∂⎝⎭⎣⎦⎰⎰⎰ 222222322sin sin 2cos d f f f x u u u v πϕϕϕϕ⎛⎫∂∂∂=−+ ⎪∂∂∂∂⎝⎭⎰又由于203cos sin d F f f x u v πϕϕϕ∂∂∂⎛⎫=+ ⎪∂∂∂⎝⎭⎰,利用分部积分,可得 22222222003222222223322002222322sin d cos d 11sin sin 2d sin 2cos d 22sin sin 2Ff u f v f u f v x u u v u v v f f f f x x u u v u v v f f f x u u v ππππϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕν⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂=−+++ ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂=−−− ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂=−+∂∂∂∂⎰⎰⎰⎰22cos d πϕϕ⎛⎫ ⎪⎝⎭⎰........................................ 4分所以222322212330F F F Fx x x x x ⎛⎫∂∂∂∂+−−= ⎪∂∂∂∂⎝⎭ ......................................................2分四、(10分)设函数()f x 在[0,1]上具有连续导数,且110053()d ,()d 22f x x x f x x ==⎰⎰.证明:存在(0,1)ξ∈,使得()3f ξ'=.【解】考虑积分[]10(1)3()d x x f x x −−'⎰ .................................................. 4分利用分部积分及题设条件,得[]111001111132000(1)3()d (1)[3()](12)[3()]d 3(21)d (12)()d 32()d 2()d 2x x f x x x x x f x x x f x xx x x x f x xx x f x x x f x x−−'=−−−−−=−+−⎛⎫=−+− ⎪⎝⎭⎰⎰⎰⎰⎰⎰3523022=−+−= ...................................... 4分根据积分中值定理,存在(0,1)ξ∈,使得[](1)3()0f ξξξ−−'=,即() 3.f ξ'=........................................ 2分五、(12分)设122021,,,B B B 为空间3R 中半径不为零的2021个球,()ij A a =为2021阶方阵,其(,)i j 元ij a 为球i B 与j B 相交部分的体积.证明:行列式||1E A +>,其中E 为单位矩阵。

第八届全国大学生数学竞赛决赛(数学类3、4)参考答案一面

第八届全国大学生数学竞赛决赛(数学类3、4)参考答案一面

dt
−∞ ∫ +∞ −A
f (x − t)e2πity dy sin(2πAt) dt πt (3) (15 分)
= ∫ =
−∞ −∞ +∞
f (x − t)
f (x − t) − f (x) sin(2πAt)dt + f (x) πt
∫ 由 f ∈ S 易得积分
+∞
−∞
f (x − t) − f (x) dt 收敛, 从而由黎曼引理可得 πt ∫
(1)
而利用分部积分立即得到 ˆ(x), (f (n) )∧ (x) = (2πix)n f 结合 (1)—(2) 并利用 f ∈ S , 可得对任何 m, k ⩾ 0. xm dk ˆ 1 f (x) = k dx (2πi)m ∫
+∞
∀n ⩾ 0
(2)

R
) dm ( (−2πiy )k f (y ) e−2πixy dy m dy
数学家
Leabharlann
第八届中国大学生数学竞赛决赛三、 四级试卷
(数学类,2017 年 3 月 18 日) 考试形式: 闭卷 考试时间: 180 分钟 满分: 150 分
一、填空题 (本题满分 20 分, 共 4 小题, 每小题 5 分) α1 α2 α3 α4 1. 设 x4 + 3x2 + 2x + 1 = 0 的 4 个根为 α1 , α2 , α3 , α4 . 则行列式 α2 α3 α4 α1 α3 α4 α1 α2 α4 α1 α2 α3 答案:0 2. 设 a 为实数,关于 x 的方程 3x4 − 8x3 − 30x2 + 72x + a = 0 有虚根的充分必要条件是 a 满足 答案:a > 27 or a < −37 解: 记: f (x) = 3x4 − 8x3 − 30x2 + 72x + a 故 f ′ (x) = 12x3 − 24x2 − 60x + 72 = 12(x3 − 2x2 − 5x + 6) = 12(x − 1)(x − 3)(x + 2) f 在 −2 和 −3 取得极小值 152 + a 和 −27 + a, f 在 1 取得极大值 37 + a. =

全国初中数学竞赛试题(含答案)-20220207144625

全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共30分)1. 若x是正数,则x²+x的最小值是()A. 0B. 1C. 2D. 32. 下列各数中,不是有理数的是()A. 2B. 0.5C. √3D. 3/43. 一个等差数列的前三项分别是2、5、8,那么这个数列的第10项是()A. 17B. 18C. 19D. 204. 若a²=36,则a的值可能是()A. 6B. 6C. 6或6D. 无法确定5. 下列各式中,与x²3x+2等价的是()A. (x2)(x1)B. (x+2)(x1)C. (x2)(x+1)D. (x+2)(x+1)6. 若一个正方形的周长是20cm,那么它的面积是()A. 25cm²B. 30cm²C. 40cm²D. 50cm²二、填空题(每题5分,共20分)7. 若a+b=5,ab=4,则a²+b²的值是______。

8. 一个圆柱的底面半径是2cm,高是5cm,那么它的体积是______cm³。

9. 若一个等比数列的前三项分别是1、2、4,那么这个数列的第4项是______。

10. 下列各式中,与3x²2x1等价的是______。

三、解答题(每题10分,共30分)11. 解方程:2x5=3x+2。

12. 求证:若a²+b²=2ab,则a=b。

13. 已知一个三角形的两边长分别是5cm和7cm,求第三边的可能长度范围。

答案:一、选择题1. B2. C3. C4. C5. A6. A二、填空题7. 9 8. 62.8 9. 8 10. (3x+1)(x1)三、解答题11. x=712. 证明:由a²+b²=2ab,得a²2ab+b²=0,即(ab)²=0,所以a=b。

2021年03月-数学类三、四年级参考解答-第五届全国决赛试卷

第五届全国大学生数学竞赛决赛 (数学类三、四年级)参考答案一、【参考证明】:设l 是过P 点的抛物面S 的一条切线,它的方向向量为V 示为= (u , v , w ),则切点可以表 Q = P + t V = (a + tu ,b + tv ,c + tw ),2 2其中t 是二次方程2(c + tw ) = (a + tu) + (b + tv ) , 也就是的唯一重根.(u 2 + v 2)t 2 + 2(au + bv - w )t + (a 2 + b 2 - 2c ) = 022 2 2 2w - au - bv a 2 + b 2 - 2c 这时,(au + bv - w) = (u+ v)(a + b - 2c ), 得t ==u 2 + v 2.w - au - bv于是切点Q = (X ,Y , Z ) = (a + tu ,b + tv ,c + tw )满足a X +b Y -Z = (a 2 + b 2 -c )+ t (a u + b v -w ) = c .于是所有切点Q 落在平面ax + by - z = c 上.二、【参考证明】:(1) 由于tr (A ) 是A 的特征值之和,得λ1 的代数重数也是 3,而A 的另一特征值λ2 = 0 ,且λ2 = 0 的代数重数为 1. 结果A 有四个线性无关的特征向量. 故A 可对角化. (2) 由于λ1 = 2 的重数为 3,故有⎛ 0 2 2 -2⎪⎫ ⎪rank (A - 2E ) = rank a -2 b c ⎪. ⎪ d e -2 f ⎪ ⎝g h k 2 ⎪⎪⎭进而a / 0 = -2 / 2 = b / 2 = c / -2 ,得a = 0,b = -2,c = 2;d / 0 =e / 2 = -2 / 2 =f / -2 ,得d = 0,e = -2, f = 2;g / 0 =h / 2 = k / 2 = 2 / -2 ,得g = 0,h = -2, k = -2 ,⎛ 2 2 2 -2⎪⎫ ⎪ 于是A = 0 0 -2 2 ⎪. 注意到f (x , x , x , x ) = x T Ax = x T Bx , 其中 1 2 3 4 0 -2 0 2 ⎪ ⎝0 -2 -2 4 ⎪⎪⎭⎛ 2 1 1 -1⎪⎫ T 1 0 -2 0 ⎪ B = A + A , B = ⎪.21 -2 0 0 ⎪ ⎪ -1 0 0 4 ⎪ ⎝⎪⎭1 2 3 4⎝ ⎢ 1 k m n k m k m k m m k m k m ⎰ ⎰ t B 的特征值为λ1 = 2 (二重),λ1,2 = 1 ± 2 为2y 2 + 2y 2 + (1 + 2 3)y 2 + (1 - 2 3)y 2. (一重). 故 f (x 1, x 2, x 3, x 4 )在正交变换下的标准型三、【参考证明】:令g (t ) = ⎛ t 0 ⎫β f (x )d x ⎪ ⎭ - t f α 0 (x )d x , 则g (t ) 可导, ⎡ ⎛ t ⎫β-1⎤ g '(t ) = f (t )⎢β f (x )d x ⎪- f α-1(t )⎥ . ⎢ ⎝⎰0 ⎪⎭ ⎥ ⎢ ⎥ ⎣ ⎦1 ⎡ 1 ⎤令h (t ) = ββ-1 ⎰ t f (x )d x - f 2(t ), 则有h '(t ) = f (t )⎢ββ-1 - 2f '(t ⎥. )⎥ 0 ⎢ ⎥⎣⎢⎥⎦ 由于β > 1, f '(x ) ≤ 1,我们有h '(t ) ≥ 0 . 这说明h (t )单调递增,从h (0) = 0 ,得h (t ) ≥ 0 . 因 2而g '(t ) ≥ 0 . 从g (0) = 0 ,得g (t ) ≥ 0 ,即⎰ f α(x ) d x ≤ ⎛ ⎰ t⎫β f (x )d x ⎪. 0 令t → +∞ ,即得所证.⎝ 0⎪⎭ 四、【参考证明】:C max =1 - 2. 不妨设f (x ) 的最小实根为 0,最大实根为a . 设 nf (x ) = (x - x 1 )(x - x 2 )(x - x n ),先证以下引理:0 = x 1 ≤ x 2 ≤ ≤ x n = a .引理:若存在2 ≤ k , m ≤ n - 1 使得x k < x m ,令x k < x ' ≤ x ' < x 满足x + x = x ' + x' , 令 f 1 (x ) = (x - x ')(x - x ' )(x - x ' ), x ' = x , i ≠ k , m .则d (f ') ≤d (f '). 1 2 n i i证明:注意到f (x ) = f 1 (x )- δF (x ),F (x ) =其中f 1 (x ), δ = x 'x '- x x> 0.(x - x ' )(x - x ' )k mk m设 α, β 分 别 为 f '(x ) 的 最 大 最 小 实 根 , 则 有 f (α) ≤ 0, f (β)(-1) ≤ 0. 由 罗 尔 定 理111α ≥ x m , β ≤ x k ,并且f '(α) = δ(2α - x ' - x ' ) f (α).(α - x ' )2 (α - x ' )2 1则 f '(α)f 1(α) ≥ 0 ,故 f '(α) ≤ 0 . 这表明 f '(x ) = 0 的最大实根大于或等于α. 同理, f '(x ) = 0 最3- ⎦ ()F ⎩小实根小于或等于β. 引理证毕. 令g (x ) = x (x -a )(x -b )n -2,b =x 2 + x 3 ++ x n -1.n 2由引理得到d (f ')≥ d (g '). 由于g '(x ) = (x - b )n -3(nx 2 -((n - 1)a + 2b )x + a b ),2 d (g ') =≥ 1 - a . n⎛ a ⎫n -2于是C 的最大值C max ≥ , 且当f (x ) = x (x -a ) x - ⎪ 时,d (f ') = ⎝ (f ). 2 ⎪⎭ 五、【参考证明】:用反证法. 设存在x 0 ∈ ⎡⎢⎣a ,b ⎤⎥ 使得z x 0 ) > y (x 0 ).令M = {x ∈ ⎡⎢a ,b ⎤⎥ | z (x ) > y (x )}, 则M 为⎡⎢a ,b ⎤⎥ 的非空开子集. 故存在开区间(α, β) ⊂ M 满足 ⎣ ⎦ ⎣ ⎦y (α) = z (α), z (x ) > y (x ), x ∈ (α, β).这推出z (x )- y (x )单调不增,故z (x )- y (x ) ≤ z (a )- y (a )= 0. 矛盾.六、【参考证明】:因为当| z |= 1 时,f (z ) = 1 ,所以根据极大模原理,在D 上 f (z ) < 1 ,即f (D )⊂ D .1 - af (z ) 若存在a ∈ D 使得a ∉ f (D ) ,则函数g (z )=f (z )- a以及1 / g (z )在D 上解析,并容易验证当| z |= 1 时, g (z ) = 1 . 因此,根据极大模原理,在D 上有 g (z )≤ 1, 1 / g (z )≤ 1, 这说明在D 上有 g (z ) = 1 . 因为模为常数的解析函数是常数,所以g (z )在D 上为常数,从而f (z )在D 上为常数,这与题设矛盾. 这就证明了f (D ) = D .七、【证明】:1) A =lim E =∞∞ E =∞ F . 其中F= ∞ E , 则k →∞ kn =1k =nkn =1 nnk =nkF 1 ⊃ F 2 ⊃⊃ F n ⊃ F n +1 ⊃因为f∈ L ∞ ⇒ fk =1E k∈ L , ∀n ≥ 1 ⇒ f n∈ L A . 令 ⎧⎪f (x ), x ∈ F ,i) f n (x ) 可测, ∀n ≥ 1;f (x ) = ⎪⎨nn⎪0, x ∉ F n . ii) lim n →∞f n (x ) = f (x )χA (x ), x ∈ R ; x ∈ R ,若x ∈ A ,则f (x )χA (x ) = f (x ), 又x ∈ A =∞ F , ∀n ≥ 1, f (x ) = f (x ).故 lim n →∞f n (x ) = f (x )χA (x ).n =1 nna 2 -2a 2⎛a - 2b ⎫2n + ⎝ n ⎪ ⎪⎭ 1 - 2n 1 - 2n(F ⎩1F EF E⎰ ⎰ ⎰ ⎰ 若x ∉ A , f (x )χA (x ) = 0. 而x ∉ A = ∞ F , ∃n , x ∉ F ,{F } ↓, ∀n ≥ n , x ∉ F ,n =1 nn 0nn故 lim n →∞f n (x ) = f (x )χA (x ).f n (x ) = 0, 即 lim n →∞f n (x ) = f (x )χA (x ).iii) f n (x ) ≤ f (x ) χF (x ), ∀n ≥ 1 ,且 f (x ) χF (x ) ∈ L R .11由控制收敛定理, lim⎰R f n (x ) d m = ⎰R lim f n (x ) d m . 即 n →∞lim ⎰⋃∞n →∞ f (x )d m = E lim ⎰Ff (x ) d mn →∞k =n kn →∞n= ⎰R f (x )χA (x )d m = ⎰Af (x ) d m2) B = lim E = ∞ ∞E = ∞F . 其中F = ∞ E , 则k →∞kn =1k =nkn =1 nnk =nkF 1 ⊂ F 2 ⊂ ⊂ F n ⊂ F n +1 ⊂f ∈ L ∞k =1 E k)⇒ f ⎧⎪f (x ), x ∈ F , ∈ L , ∀n ≥ 1 ⇒ f n∈ L B . 令f n (x) = ⎪⎨n⎪0, x ∉ F n . i) f n (x ) 可测, ∀n ≥ 1;ii) lim n →∞f n (x ) = f (x ), x ∈ B ;iii) f n (x ) ≤ f (x ) , x ∈ B 且 f (x ) χF (x ) ∈ L R .由控制收敛定理, limn →∞⎰B f n (x )d m = ⎰B f (x ) d m . 即 lim ⎰⋂∞f (x )d m = E lim ⎰Ff (x ) d mn →∞k =n kn →∞n= limn →∞⎰B f n (x )d m = ⎰B f (x )d m .3) 若{E} ↑⇒ lim E= lim E= lim E =∞ E= E . 由 2),F =∞ E = E ,kk →∞kk →∞kk →∞kk =1 knk =nkn⎰E f (x )d m = lim n →∞ nf (x )d m = lim n →∞ nf (x )d m . 若{E} ↓⇒ lim E= lim E = lim E =∞ E = E . 由 1) F =∞ E = E ,kk →∞kk →∞kk →∞kk =1 knk =nkn⎰E f (x )d m = lim n →∞ nf (x )d m = lim n →∞ nf (x )d m . 八、【参考解答】:在空间选取坐标系,使得准线l 为z -轴,抛物线Γ 落在Oxz 平面上,且抛下顶点为P = (p , 0, 0) ,焦点为F = (2p , 0, 0). 由于抛物线上的任意点X = (x , 0, z )满足 XF = x ,我们得到(x - 2p )2+ z 2 = x 2.故抛物线方程为x = p + 1 z 2. 4p 记 f (z ) = p + 1 z 2 ,这是旋转面S 的方程 4pf ' (z )2+ 112可表示为γ = γ(z , θ) = (f (z )co s θ, f (z )s in θ, z ), θ ∈ ⎡⎢⎣0, 2π⎤⎥⎦ , z ∈ R则S 的单位法向量为γθ = (-f (z )s in θ, f (z )co s θ, 0), γz = (f '(z )cos θ, f '(z )sin θ,1),1'n = (cos θ, s in θ,-ff '(z )2+ 1(z )),γθθ = (-f (z )cos θ, -f (z )si n θ, 0), γθz γzz = (-f '(z )sin θ, f '(z )cos θ, 0),= (f ''(z )cos θ, f ''(z )sin θ, 0),于 是 , 旋 转 面 的 第 一 基 本 形 式I = E d θ2 + 2F d θ d z +G d z 2 和 第 二 基 本 形 式II = L d θ2 + 2M d θ d z + N d z 2 为E = f (x )2, F = 0,G = f '(z )2+ 1 f (z )L = - , M = 0, N =f '(z )2+ 1f ''(z )因为k 1 = L / E ,k 2 = N /G , k我们得到f '(z )2+ 1 k = LG / EN = -f (z )f ''(z )= -2.【注】根据k ,k 的不同排序,也可以是k 1= - 1. 122九、【参考解答】:这个问题可以看作是一种等待时间问题. 我们等待第r 张新票券出现. 以ξ1, ξ2,依次表示对一张新票券的等待时间. 因为第一次抽到的总是新的,所以ξ1 = 1 . 于是ξ2 就是抽到任一张不同于第一张抽出的那张票券的等待时间. 由于这次抽时仍有N 张票券,但新的只有N - 1 张,因此成功的概 率为p =N - 1. 于是ξ 的分布列为N2N - 1 ⎛ 1 ⎫n -1P (ξ2 = n ) =⎪, n = 1, 2,N ⎝N ⎪⎭ ∞N - 1 ⎛ 1 ⎫n -1⎛1 ⎫ 1N从而E ξ2 = ∑n ⎪ = 1 - ⎪ ⋅ = .n =1N ⎝N ⎪⎭⎝ N ⎪⎭ ⎛ 1 ⎫2 N - 11 - ⎪ ⎝N ⎪⎭ 在收集到这两张不同的票券之后,对第三张新票券的等待时间其成功的概率为p =N - 2 . 因此Nk 2+ + + ≈ ln N .E ξ3 =N .N - 2以此类推,对1 ≤ r ≤ N ,有E (ξ ++ ξ ) = N + N ++ N1 r N N - 1 N - r + 1= N ⎛ 1++1 ⎫⎪.特别,若r = N 时,则⎝N N - r + 1⎪⎪⎭E (ξ ++ ξ ) = N ⎛ 1+ 1 ⎫⎪1N 1 + +⎪当N 时偶数,r = N / 2 时,则⎛⎫ ⎝ 2⎛ N ⎪⎭⎫⎪ ⎪1 1 ⎪ E ξ1 ++ ξN ⎪ = N ++ ⎪⎪N N ⎪⎝2 ⎭⎝ 2 + 1⎪⎭由欧拉公式1 + 1 + + 12 N= ln N +C + εN ,其中C 是欧拉常数, εN 为N 趋于无穷时的无穷小 lim 1 ⎛ 11 ⎫⎪ 量. 由于 1 + ++⎪ = 1. 于是当N 充分大时,我们可以近似公式 N →∞ ln N ⎝ 2 N ⎪⎭1 1 12 N 因而E (ξ ++ ξ ) = N ⎛ 1 + 1 ⎫⎪≈ N ln N .1N 1 + + ⎪ ⎝2 N ⎪⎭ ⎛ ⎫⎪ ⎛ ⎫⎪ 1 1 ⎪E ξ1 ++ ξN ⎪ = N ++ ⎪⎝ 2 ⎪⎭ N N ⎪= 2r ⎛ 1 ++ ⎝ 21 + 1+ 1 ⎪⎭ 1 + 1 ⎫⎪ - 2r ⎛ 1 + 1 ⎫⎪ + + ⎪ 1 + + ⎪⎝r + 1 2r 2 r ⎪⎭ ⎝ 2 r ⎪⎭ ≈ 2r ln 2r - 2r ln r = N ln 2, ⎛ ⎫⎪ 即E ξ1 ++ ξN ⎪ ≈ N ln 2 ≈ 0.69315N . 这说明如果只要收集一半票券,或只要稍多于票半数的⎝2 ⎪⎭抽取次数即可.十、【参考证明】:(a) 在(a)的条件下,要证明结论,既要证明x -1y -1xyaba -1b -1y -1x -1yx = aba -1b -1.由已知AB =BA 可得,存在A 中的元素a*, x*, B 中的元素b*, y*使得ya =a*y*, xb =b*x*.于是有1-x 2 ⎣ ⎦⎰ (1)yaba -1b -1y -1 = a *y *ba -1b -1y -1 (由ya = a *y * )= a *by *a -1b -1y -1 = a *ba *-1yb -1y - 1 (由y *a -1 = a *-1y ) = a *ba *-1b -1 = ⎡a *,b ⎤ .⎣⎢ ⎥⎦ (2) 类似可证: x ⎡a *,b ⎤ x -1 = ⎡a *,b * ⎤ , y -1 ⎡a *,b * ⎤ y = ⎡a ,b * ⎤ , x -1 ⎡a ,b * ⎤ x = ⎡a ,b ⎤ . 如所需(a)获证.⎣⎢ ⎥⎦ ⎣⎢ ⎥⎦ ⎣⎢ ⎥⎦ ⎣⎢ ⎥⎦ ⎣⎢⎥⎦ ⎣⎢ ⎥⎦ (b) 任取G 的一个换位子⎡⎢⎣a 1b 1,b 2a 2 ⎤⎥⎦,a i ∈ A ,b i ∈ B , i = 1, 2 ,有⎡⎢a b ,b a ⎤⎥= a b b a b -1a -1a -1b -1 = a b a -1b -1 b a b a b -1a -1a -1b -1 ⎣ 1 1 2 2 ⎦1 12 2 1 1 2 2 1 1 11 1 1 2 2 1 1 2 2 = ⎡⎢a ,b ⎤⎥ b a b a -1b -1b a a b -1a -1a -1b -1⎣ 1 1 ⎦ 1 1 2 12212 1 1 2 2 = ⎡⎢a ,b ⎤⎥ b a b a -1b -1 b -1b b a a b -1a -1a -1b -1⎣ 1 1 ⎦ 1 1 2 1 2 1 12 1 2 1 1 2 2= ⎡a ,b ⎤ ⎡a *,b ⎤ b b a a b -1 a -1a -1b -1 = ⎡a ,b ⎤ ⎡a *,b ⎤ b b a a b -1a -1a -1b b -1b -1⎣⎢ 1 1 ⎥⎦ ⎢⎣ 1 2 ⎥⎦ 121 21 1 2 2 ⎣⎢ 1 1 ⎥⎦ ⎢⎣ 1 2 ⎥⎦ 1212 1 21112= ⎡a ,b ⎤ ⎡a *,b ⎤ ⎡(a a )* ,b -1 ⎤⎣⎢ 1 1 ⎥⎦ ⎢⎣ 1 2 ⎥⎦ ⎢ 1 2 1 ⎥ ⎦其中(a 1a 2 )*为A 中的某元. 这样,G ' =< {⎡⎢a ,b ⎤⎥ : a ∈ A ,b ∈ B } >, 从而由(a)可知,G ' 为 Abel 群.十一、【参考证明】:(1) 用归纳法. 当n = 0, 1 时,结论显然成立.设n ≤ k 时,T n (x ) = cos (n arccos x ). 当n = k + 1 时,令x = cos θ ,则(2)<T n (x ),T mT k +1 (x ) = 2x T k (x )-T k -1 (x ) = 2 cos θ cos (k θ)- cos ((k - 1)θ) = cos ((k + 1)θ) = cos ((k + 1)arccos x )(x ) >=1 T n (x )T m(x ) d x . 令x =cos θ ,上述积分化为-1⎰ 0 cos(n θ)cos (m θ) d (cos θ) = ⎰ πcos (n θ)cos (m θ)d θπ当n ≠ m 时,上述积分为 0.sin θ 0(3) 注意以下事实: T n (x )是首项系数为 2n -1 的 n 次多项式, ||T(x ) ||∞ = 1,且T n (x )在x = cos ⎛ k π ⎫⎪ 处达到极值,即T(x ) = (- )k k = 0, 1,, n .k⎪ nk1 ,⎝ n ⎪⎭现假设|| p (x )||∞<1 2n -1, 考虑函数q (x ) = p (x )-k +11 T2n -1n(x ) , 则q (x ) 在x k 处的符号与T n (x ) 在x k 处的符号相反,即为(-1)n ,这是不可能的!因此,⎣ n,k =0, 1,, n. 于是q (x )至少有n 个零点. 但q (x )次数小于|| p (x )||∞≥1. 2n-1当|| p (x )||∞= 12n-1时,可证q (z)至少有n 个零点,从而q (x )≡0 ,即p (x )= 1 T2n-1 n(x ).。

数学竞赛专题训练精选100题及答案

数学竞赛专题训练精选100题及答案题目1:整数方程设a和b是满足以下方程的整数:5a+3b=25。

求a和b的所有整数解。

题目2:几何题在直角三角形XYZ中,∠Z为直角,XY=10,XZ=6。

点W是边XZ上的一个点,使得ZW=8。

求∠XWY的大小。

题目3:排列组合有8个不同的水果和4个不同的盘子,你打算将这些水果放在这些盘子中。

每个盘子至少有一个水果,一共有多少种不同的分配方式?题目4:函数问题考虑函数g(x)=x^4-4x^3+6x^2-4x+1。

求g(x)的最小值以及对应的x值。

题目5:概率题一枚硬币被抛掷3次。

计算至少2次出现正面的概率。

题目6:代数方程解方程:2x^2-5x-12=0。

题目7:几何问题在平面上,有一个正方形ABCD,边长为6。

点E在边AB上,离点A的距离为2。

点F在边BC上,离点B的距离为3。

求线段EF的长度。

题目8:概率问题一副扑克牌中随机抽取5张牌,计算至少有一对的概率。

题目9:代数方程解方程:3(x-2)=5(x+1)。

题目10:几何问题在直角三角形PQR中,∠R为直角,PQ=12,PR=15。

点S是边PQ上的一个点,使得QS= 8。

求∠PSR的大小。

题目11:整数方程设m和n是满足以下方程的整数:4m+7n=38。

求m和n的所有整数解。

题目12:几何题在平行四边形ABCD中,AB=8,BC=6,∠A=120°。

求BD的长度。

题目13:排列组合有10个不同的音乐家,其中有5位小提琴手和5位钢琴家。

你打算在一排座位上让他们坐下,要求相邻的座位上不能坐同一种乐器的音乐家。

一共有多少不同的座位安排方式?题目14:函数问题考虑函数h(x)=x^2-6x+9。

求h(x)的最小值以及对应的x值。

题目15:概率题一副扑克牌中随机抽取7张牌,计算至少有两张牌相同点数的概率。

题目16:代数方程解方程:2(x+3)=4(x-1)。

题目17:几何问题在等腰三角形MNO中,∠N=∠O,NO=10,MN=6。

全国初中数学竞赛试题(含答案)-20220207144625

全国初中数学竞赛试题(含答案)20220207144625一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 2B. 3C. 4D. 52. 如果一个三角形的两边长分别为3和4,那么这个三角形的周长可能是多少?A. 7B. 10C. 11D. 123. 下列哪个分数可以化简为最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个正方形的面积是36平方厘米,那么这个正方形的边长是多少厘米?A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 7的平方根是______。

2. 0.25的小数点向右移动两位后是______。

3. 一个等边三角形的边长是10厘米,那么这个等边三角形的周长是______厘米。

4. 下列哪个数是立方数?A. 2B. 3C. 4D. 5三、解答题(每题10分,共30分)1. 解方程:2x 5 = 11。

2. 计算下列表达式的值:3(2 + 4) 7。

3. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。

四、答案部分一、选择题1. A2. B3. A4. D二、填空题1. ±√72. 253. 304. C三、解答题1. x = 82. 133. 32平方厘米全国初中数学竞赛试题(含答案)20220207144625四、应用题(每题15分,共30分)1. 小明家有一块长方形的地,长是12米,宽是8米。

小明计划将这块地分成两个相同大小的正方形区域。

请问每个正方形的边长是多少米?2. 小红有一笔钱,她将其中的1/3用于购买书,剩下的钱再将其中的1/2用于购买文具。

她剩下的钱是100元。

请问小红最初有多少钱?五、证明题(每题15分,共30分)1. 证明:对于任意实数a和b,如果a < b,那么a² < b²。

2. 证明:等腰三角形的底角相等。

六、答案部分四、应用题1. 每个正方形的边长是6米。

2. 小红最初有300元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品全国数学竞赛训练题三(有答案)
1、若函数()3ln 22+-+=ax x x x x f 的最小值不小于0,则实数a 的最大值为。

2、已知单位向量a 、b 满足⋅a b =0,向量c 6=-,的取值范围是。

3、已知三棱锥P-ABC 棱长PA=1,PB=2,PC=3,且PA ⊥PB ,PB ⊥PC ,PC ⊥PA ,则此三棱锥外接球的球面上动点Q 到面ABC 的距离的最大值为。

4、设过椭圆1422=+y x 上的任意一点P 的直线m kx y +=与椭圆44
22
=+y x 交于A 、B 两点,射线PO 与椭圆4422
=+y x 交于点Q ,则ABO
ABQ S S ∆∆的值为。

5、已知1cos 31sin >+θ
θ,则θtan 的取值范围是。

6、从集合{
}2017,,3,2,1 的非空子集中随机取出一个,其元素之和恰为奇数的概率为。

7、已知12222=+++d c b a ,则bd ac da cd bc ab 4+++++的最大值为。

8、若对任意的[
]5,1∈x ,存在实数a ,使x b ax x x 622≤++≤恒成立,则实数b 的最大值为。

9、已知不等式()x
a a x x +>+1ln 对任意的()+∞∈,0x 恒成立。

(1)求实数a 的取值范围;
(2)当()+∞∈,0x 时,求证:()
121ln 2
->+x e x x 。

10、点P (1,1)为抛物线x y =2上一定点,斜率为2
1-的直线与抛物线交于A 、B 两点。

点Q 是线段PB 上任意一点(异于端点),过Q 作PA 的平行线交抛物线于E 、F 两点,求证:QB QP QF QE ⋅-⋅为定值。

11、已知数列{}n a 满足231=a ,()()*123111N n n n a a n n n ∈++⎪⎭
⎫ ⎝⎛+=+。

(1)证明:()
()21323111≥+++≤+n n n a a n n n ; (2)证明:e a n 3<。

相关文档
最新文档