江苏2018版高考数学复习高考专题突破五高考中的圆锥曲线问题教师用书文苏教版

合集下载

江苏专用2018版高考数学大一轮复习第九章平面解析几何9.8圆锥曲线的综合问题第2课时范围最值问题教师用书文

江苏专用2018版高考数学大一轮复习第九章平面解析几何9.8圆锥曲线的综合问题第2课时范围最值问题教师用书文

第2课时 范围、最值问题题型一 范围问题例1 (2015·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,FM =433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),F (-c,0),则直线FM 的方程为y =k (x +c ). 由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c +y 22c =1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由FM =c +c 2+⎝⎛⎭⎪⎫233c -02=433. 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =y x +1,即直线FP 的方程为y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t x +1 ,x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23 x +12>2, 解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,得m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0, 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是⎝ ⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.思维升华 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.(2016·扬州模拟)如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,P 是椭圆上一点,点M 在PF 1上,且满足F 1M →=λMP →(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆的方程为x28+y24=1,且点P 的坐标为(2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围. 解 (1)因为椭圆的方程为x 28+y 24=1,所以点F 1的坐标为(-2,0),点F 2的坐标为(2,0), 所以k OP =22,kF 2M =-2,kF 1M =24, 所以直线F 2M 的方程为y =-2(x -2),直线F 1M 的方程为y =24(x +2). 联立⎩⎪⎨⎪⎧y =-2 x -2 ,y =24 x +2 ,解得x =65,所以点M 的横坐标为65.(2)设点P 的坐标为(x 0,y 0),点M 的坐标为(x M ,y M ), 因为F 1M →=2MP →,所以F 1M →=23(x 0+c ,y 0)=(x M +c ,y M ),所以点M 的坐标为(23x 0-13c ,23y 0),F 2M →=(23x 0-43c ,23y 0).因为PO ⊥F 2M ,OP →=(x 0,y 0),所以(23x 0-43c )x 0+23y 20=0,即x 20+y 20=2cx 0.联立⎩⎪⎨⎪⎧x 20+y 20=2cx 0,x 20a 2+y 2b2=1,消去y 0,得c 2x 20-2a 2cx 0+a 2(a 2-c 2)=0, 解得x 0=a a +c c 或x 0=a a -cc. 因为-a <x 0<a ,所以x 0=a a -cc∈(0,a ), 所以0<a 2-ac <ac ,解得e >12.又椭圆离心率e ∈(0,1),故椭圆离心率e 的取值范围为(12,1).题型二 最值问题命题点1 利用三角函数有界性求最值例2 (2016·徐州模拟)过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则AF ·BF 的最小值是________. 答案 4解析 设直线AB 的倾斜角为θ,可得AF =21-cos θ,BF =21+cos θ,则AF ·BF =21-cos θ×21+cos θ=4sin 2θ≥4. 命题点2 数形结合利用几何性质求最值例3 (2015·江苏)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________________________. 答案22解析 双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线的距离d =|1-0|12+ -12=22.由点P 到直线x -y +1=0的距离大于c 恒成立,得c ≤22,故c 的最大值为22. 命题点3 转化为函数利用基本不等式或二次函数求最值例4 (2016·山东)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程.(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′k为定值; ②求直线AB 的斜率的最小值. (1)解 设椭圆的半焦距为c . 由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2. 所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ).所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3m x 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2). 由①知直线PA 的方程为y =kx +m ,则 直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2 m 2-22k 2+1 x 0, 所以y 1=kx 1+m =2k m 2-22k 2+1 x 0+m . 同理x 2=2 m 2-2 18k 2+1 x 0,y 2=-6k m 2-218k 2+1 x 0+m . 所以x 2-x 1=2 m 2-2 18k 2+1 x 0-2 m 2-22k 2+1 x 0 =-32k 2m 2-2 18k 2+1 2k 2+1 x 0, y 2-y 1=-6k m 2-2 18k 2+1 x 0+m -2k m 2-22k 2+1 x 0-m =-8k 6k 2+1 m 2-218k +1 2k +1 x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝ ⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上,所以x 0=4-8m 2,故此时2m -m4-8m 2-0=66, 即m =147,符合题意. 所以直线AB 的斜率的最小值为62.思维升华 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.(2016·苏州模拟)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2. 故椭圆C 的离心率e =c a =22. (2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以AB 2=(x 0-t )2+(y 0-2)2=⎝⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2 4-x 2x 20+4=x 202+8x 20+4(0<x 20≤4). 因为x 202+8x 20≥4(0<x 20≤4),当且仅当x 20=4时等号成立,所以AB 2≥8.故线段AB 长度的最小值为2 2.1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________.答案 [-1,1]解析 Q (-2,0),设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0, 解得-1≤k ≤1.2.已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM →=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为________. 答案125解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求MP 的最小值可以转化为求OP 的最小值,当OP 取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.3.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,对于左支上任意一点P 都有PF 22=8a ·PF 1(a 为实半轴长),则此双曲线的离心率e 的取值范围是__________. 答案 (1,3]解析 由P 是双曲线左支上任意一点及双曲线的定义,得PF 2=2a +PF 1,所以PF 22PF 1=PF 1+4a2PF 1+4a =8a ,所以PF 1=2a ,PF 2=4a , 在△PF 1F 2中,PF 1+PF 2≥F 1F 2, 即2a +4a ≥2c ,所以e =c a≤3. 又e >1,所以1<e ≤3.4.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则MA +MF 的最小值是________.答案 5解析 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1,则有MA +MF =MA +MM 1,结合图形(图略)可知MA +MM 1的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即6-1=5,因此MA +MF 的最小值是5.5.(2017·郑州第一次质量预测)已知椭圆C 1:x 2m +2-y 2n =1与双曲线C 2:x 2m +y 2n=1有相同的焦点,则椭圆C 1的离心率e 1的取值范围为________. 答案 (22,1) 解析 ∵椭圆C 1:x 2m +2-y 2n=1,∴a 21=m +2,b 21=-n ,c 21=m +2+n ,e 21=m +2+n m +2=1+n m +2. ∵双曲线C 2:x 2m +y 2n=1,∴a 22=m ,b 22=-n ,c 22=m -n ,∴由条件知m +2+n =m -n ,则n =-1, ∴e 21=1-1m +2. 由m >0,得m +2>2,1m +2<12,-1m +2>-12, ∴1-1m +2>12,即e 21>12,而0<e 1<1, ∴22<e 1<1. 6.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是________. 答案 3解析 依题意不妨设A (x 1,x 1),B (x 2,-x 2),OA →·OB →=2⇒x 1x 2-x 1x 2=2⇒x 1x 2=2或x 1x 2=-1(舍去).当x 1=x 2时,有x 1=x 2=2,则S △ABO +S △AFO =22+28=1728;当x 1≠x 2时,直线AB 的方程为y -x 1=x 1+x 2x 1-x 2(x -x 1),则直线AB 与x 轴的交点坐标为(2,0).于是S △ABO +S △AFO =12×2×(x 1+x 2)+12×14x 1=98x 1+x 2≥298x 1x 2=3(当且仅当98x 1=x 2时取“=”),而1728>3,故填3.7.已知椭圆C 的中心为坐标原点O ,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于异于椭圆顶点的两点A ,B ,且AP →=2PB →.(1)求椭圆的方程;(2)求m 的取值范围.解 (1)由题意,知椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意,知a =2,b =c ,又a 2=b 2+c 2,则b =2, 所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,知直线l 的斜率存在,设其方程为y =kx +m ,与椭圆方程联立,即⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m ,消去y ,得(2+k 2)x 2+2mkx +m 2-4=0,Δ=(2mk )2-4(2+k 2)(m 2-4)>0,由根与系数的关系,知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k2,x 1·x 2=m 2-42+k2,又AP →=2PB →,即有(-x 1,m -y 1)=2(x 2,y 2-m ), 所以-x 1=2x 2.则⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,所以m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22.整理,得(9m 2-4)k 2=8-2m 2, 又9m 2-4=0时等式不成立,所以k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0.所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.8. (2016·苏北四市联考)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =12,左顶点为A (-4,0),过点A 作斜率为k (k ≠0)的直线l 交椭圆C 于点D ,交y 轴于点E .(1)求椭圆C 的标准方程;(2)已知P 为AD 的中点,是否存在定点Q ,对于任意的k (k ≠0)都有OP ⊥EQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.(3)若过点O 作直线l 的平行线交椭圆C 于点M ,求AD +AEOM的最小值. 解 (1)因为左顶点为A (-4,0), 所以a =4,又e =12,所以c =2.又因为b 2=a 2-c 2=12,所以椭圆C 的标准方程为x 216+y 212=1.(2)直线l 的方程为y =k (x +4),联立⎩⎪⎨⎪⎧x 216+y 212=1,y =k x +4 ,得x 216+[k x +4 ]212=1, 化简,得(x +4)[(4k 2+3)x +16k 2-12]=0, 所以x 1=-4,x 2=-16k 2+124k 2+3. 当x =-16k 2+124k 2+3时,y =k (-16k 2+124k 2+3+4)=24k 4k 2+3, 所以点D 的坐标为(-16k 2+124k 2+3,24k4k 2+3). 因为P 为AD 的中点,所以点P 的坐标为(-16k 24k 2+3,12k4k 2+3),则k OP =-34k(k ≠0).直线l 的方程为y =k (x +4),令x =0,得点E 的坐标为(0,4k ). 假设存在定点Q (m ,n )(m ≠0),使得OP ⊥EQ , 则k OP k EQ =-1,即-34k ·n -4k m=-1,所以(4m +12)k -3n =0,所以⎩⎪⎨⎪⎧ 4m +12=0,-3n =0, 解得⎩⎪⎨⎪⎧ m =-3,n =0,因此定点Q 的坐标为(-3,0).(3)因为OM ∥l ,所以OM 的方程可设为y =kx ,联立⎩⎪⎨⎪⎧ x 216+y 212=1,y =kx ,得点M 的横坐标为x =±434k 2+3.由OM ∥l , 得AD +AE OM =|x D -x A |+|x E -x A ||x M |=x D -2x A |x M |=-16k 2+124k 2+3+8434k 2+3=13·4k 2+94k 2+3 =13(4k 2+3+64k 2+3)≥22, 当且仅当4k 2+3=64k 2+3,即k=±32时取等号. 所以当k =±32时,AD +AE OM取得最小值为2 2. 9.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2(3,0),离心率为e . (1)若e =32,求椭圆的方程; (2)设直线y =kx 与椭圆相交于A ,B 两点,若AF 2→·BF 2→=0,且22<e ≤32,求k 的取值范围. 解 (1)由右焦点F 2(3,0),知c =3,又e =32=c a ,所以a =2 3. 又由a 2=b 2+c 2,解得b 2=3.所以椭圆的方程为x 212+y 23=1. (2)由⎩⎪⎨⎪⎧ y =kx ,x 2a 2+y2b 2=1,得(b 2+a 2k 2)x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知,x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k 2. 又AF 2→=(3-x 1,-y 1),BF 2→=(3-x 2,-y 2),所以AF 2→·BF 2→=(3-x 1)(3-x 2)+y 1y 2=(1+k 2)x 1x 2+9=0,即-a 2 a 2-9 1+k 2 a 2k 2+ a 2-9+9=0,整理得k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 由22<e ≤32及c =3, 知23≤a <32,12≤a 2<18.所以a 4-18a 2=(a 2-9)2-81∈[-72,0), 所以k 2≥18,则k ≥24或k ≤-24,因此实数k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-24∪⎣⎢⎡⎭⎪⎫24,+∞.。

(教师用书)高中数学 2.1 圆锥曲线配套课件 苏教版选修1-1

(教师用书)高中数学 2.1 圆锥曲线配套课件 苏教版选修1-1

已知 F1(-4,3),F2(2,3)为定点,动点 P 满足 PF1-PF2 =2a,当 a=2 或 a=3 时,求动点 P 的轨迹.
【解】 由已知可得,F1F2=6. 当 a=2 时,2a=4,即 PF1-PF2=4<F1F2,根据双曲线 的定义知,动点 P 的轨迹是双曲线的一支(对应于焦点 F2); 当 a=3 时,PF1-PF2=6=F1F2,此时动点 P 的轨迹是 射线 F2P,即以 F2 为端点向 x 轴正向延伸的射线. 故当 a=2 时,动点 P 的轨迹是双曲线的一支(对应于焦 点 F2);当 a=3 时,动点 P 的轨迹是射线 F2P.
●教学流程
演示结束
课 标 解 读
1.了解圆锥曲线的实际背景. 2.理解椭圆、双曲线、抛物线的定 义.(重点) 3. 能依据圆锥曲线的定义判断所给 曲线的形状.(难点)
圆锥曲线
【问题导思】 1 .平面中,到一个定点的距离为定值的点的轨迹是什 么?
【提示】 圆.
2.函数 y=x2 的图象是什么? 【提示】 开口向上的抛物线. 3.用刀切火腿肠时,截面会有什么形状? 【提示】 圆、椭圆.
图 2-1-1
【思路探究】
【自主解答】 设动圆 M 的半径为 r3,则 MF1=r1+r3, MF2=r2+r3. ∴MF2-MF1=(r2+r3)-(r1+r3)=r2-r1=1, 又∵F1F2=2+3=5, ∴MF2-MF1=1<5. 由双曲线的定义知, 动圆 M 的轨迹是以 F1,F2 为焦点的 双曲线的一支.
【证明】 连结 MC(如右图). ∵MD 是线段 PC 的垂直平分线, ∴MC=MP.∴MO+MC=MO+MP=PO=r 为定值. 又∵C 在圆 O 内, ∴OC<r. ∴点 M 的轨迹是以 O、C 为焦点的椭圆.

江苏2018版高考数学复习圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版

江苏2018版高考数学复习圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版

第九章平面解析几何 9.9 圆锥曲线的综合问题第1课时直线与圆锥曲线教师用书理苏教版1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c =0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线相交;②Δ=0⇔直线与圆锥曲线相切;③Δ<0⇔直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.【知识拓展】过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )1.在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是________.(填序号)答案 ④解析 将方程a 2x 2+b 2y 2=1变形为x 21a 2+y 21b 2=1,∵a >b >0,∴1a 2<1b2,∴椭圆焦点在y 轴上.将方程ax +by 2=0变形为y 2=-a bx ,∵a >b >0,∴-a b<0,∴抛物线焦点在x 轴负半轴上,开口向左. 故④符合题意.2.(2016·常州模拟)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为________.答案 相交解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是__________________.答案 ⎝ ⎛⎭⎪⎫-23,23 解析 双曲线x 29-y 24=1的渐近线方程为y =±23x ,若直线与双曲线相交,数形结合,得k ∈⎝ ⎛⎭⎪⎫-23,23.4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB =________. 答案 16解析 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=14,∴AB =y 1+y 2+p =14+2=16.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则AB 的最小值为______.答案 4解析 由题意可设直线l 的方程为y =m , 代入x 24-y 2=1,得x 2=4(1+m 2),所以x 1=41+m2=21+m 2,x 2=-21+m 2,所以AB =|x 1-x 2|=41+m 2,所以AB =41+m 2≥4, 即当m =0时,AB 有最小值4.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·无锡模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (1)求OH ON;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理,得px2-2t 2x =0,解得x 1=0,x 2=2t2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即OH ON=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px ,得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点. 题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当AM =AN 时,求△AMN 的面积. (2)当2AM =AN 时,证明:3<k <2.(1)解 设M (x 1,y 1),则由题意知y 1>0,由AM =AN 及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 设直线AM 的方程为y =k (x +2)(k >0), 代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2,得x 1=23-4k23+4k 2,故AM =|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2),故同理可得AN =12k 1+k23k 2+4. 由2AM =AN ,得23+4k 2=k3k 2+4, 即4k 3-6k 2+3k -8=0,设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2. 思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2016·徐州模拟)设椭圆C 1:x 2a 2+y 2b 2=1 (a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,P 是椭圆上任意一点,且△PF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左,右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E (点D 与点A ,B 不重合),若C 点满足AB →⊥BC →,AD →∥OC →,连结AC 交DE 于点P ,求证:PD =PE .(1)解 由e =32,知c a =32,所以c =32a , 因为△PF 1F 2的周长是4+23,所以2a +2c =4+23, 所以a =2,c =3,所以b 2=a 2-c 2=1, 所以椭圆C 1的方程为x 24+y 2=1.(2)证明 由(1)得A (-2,0),B (2,0),设D (x 0,y 0), 所以E (x 0,0),因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为y 2y 0x 0+2=x +24, 整理得y =y 02x 0+2(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得y =y 02,即点P 的坐标为(x 0,y 02),所以P为DE 的中点, 所以PD =PE . 题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为______________. (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.答案 (1)x 218+y 29=1 (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =3 2.所以E 的方程为x 218+y 29=1.(2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2), 则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24y 1+y 2. 又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.命题点2 由中点弦解决对称问题例4 (2015·浙江)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1m x +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则AB =t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12·AB ·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN 的垂直平分线的方程为y =kx +m ,试求m 的取值范围. 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得AF =2,即(2x )2+y 2=4, 所以轨迹C 的方程为x 2+y 24=1.(2)设弦MN 的中点为P ⎝ ⎛⎭⎪⎫-12,y 0,M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点, 可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝ ⎛⎭⎪⎫-12=-1,y M +y N =2y 0,y M -y N x M -x N =-1k 代入上式,得k =-y 02.又点P ⎝ ⎛⎭⎪⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m .所以m =y 0+12k =34y 0.由点P (-12,y 0)在线段BB ′上(B ′,B 为直线x =-12与椭圆的交点,如图所示),所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.即m 的取值范围为(-334,0)∪(0,334).1.(2016·南京模拟)已知椭圆x 29+y 22=1的左,右焦点分别为F 1,F 2,点P 在椭圆上,若PF 1=4,则PF 2=______,∠F 1PF 2的大小为________. 答案 2 120°解析 由题意得PF 1+PF 2=2a =6,所以PF 2=2. 又F 1F 2=2c =27,在△PF 1F 2中,由余弦定理可得 cos∠F 1PF 2=4+16-282×2×4=-12,即∠F 1PF 2=120°.2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若AB =4,则弦AB 的中点到直线x +12=0的距离等于________. 答案 94解析 易知直线4kx -4y -k =0过抛物线y 2=x 的焦点(14,0),∴AB 为焦点弦.设A (x 1,y 1),B (x 2,y 2), 则AB 中点N (x 1+x 22,y 1+y 22), ∴AB =x 1+x 2+p =4.∴x 1+x 22=74. ∴AB 中点到直线x +12=0的距离为74+12=94.3.(2016·连云港一模)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则AB 的最大值为________. 答案4105解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4t 2-15.∴AB =1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=2·-85t 2-4×4t 2-15=425·5-t 2,当t =0时,(AB )max =4105.4.(2017·无锡月考)直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是________.答案 1解析 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.5.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为______. 答案5解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b ax ,y =x 2+1消去y ,得x 2-b ax +1=0有唯一解, 所以Δ=(b a)2-4=0,ba=2,e =c a =a 2+b 2a= 1+ba2= 5.6.已知F 为抛物线y 2=8x 的焦点,过点F 且斜率为1的直线l 交抛物线于A ,B 两点,则|FA -FB |的值为________. 答案 8 2解析 依题意知F (2,0),所以直线l 的方程为y =x -2,联立方程,得⎩⎪⎨⎪⎧y =x -2,y 2=8x ,消去y ,得x 2-12x +4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=4,x 1+x 2=12, 则|FA -FB |=|(x 1+2)-(x 2+2)| =|x 1-x 2|=x 1+x 22-4x 1x 2=144-16=8 2.7.在抛物线y =x 2上关于直线y =x +3对称的两点M ,N 的坐标分别为________. 答案 (-2,4),(1,1)解析 设直线MN 的方程为y =-x +b , 代入y =x 2中,整理得x 2+x -b =0, 令Δ=1+4b >0,∴b >-14.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1,y 1+y 22=-x 1+x 22+b =12+b ,由(-12,12+b )在直线y =x +3上,即12+b =-12+3,解得b =2,联立⎩⎪⎨⎪⎧y =-x +2,y =x 2,解得⎩⎪⎨⎪⎧x 1=-2,y 1=4,⎩⎪⎨⎪⎧x 2=1,y 2=1.8.已知抛物线y 2=4x 的弦AB 的中点的横坐标为2,则AB 的最大值为________. 答案 6解析 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4, 那么AF +BF =x 1+x 2+2,又AF +BF ≥AB ⇒AB ≤6,当AB 过焦点F 时取得最大值6.9.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是____________.答案 3x +4y -13=0解析 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得x 1+x 2x 1-x 216+y 1+y 2y 1-y 24=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2, ∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.10.已知双曲线C :x 2-y 23=1,直线y =-2x +m 与双曲线C 的右支交于A ,B 两点(A 在B的上方),且与y 轴交于点M ,则MBMA的取值范围为________. 答案 (1,7+43)解析 由⎩⎪⎨⎪⎧y =-2x +m ,3x 2-y 2-3=0可得x 2-4mx +m 2+3=0,由题意得方程在[1,+∞)上有两个不相等的实根, 设f (x )=x 2-4mx +m 2+3,则⎩⎪⎨⎪⎧2m >1,f 1≥0,Δ>0,得m >1,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2), 得x 1=2m -3m 2-1,x 2=2m +3m 2-1,所以MBMA=x2x1=2m+3m2-12m-3m2-1=-1+42-31-1m2,由m>1得,MBMA的取值范围为(1,7+43).11.如图,定直线l的方程为x=-4,定点F的坐标为(-1,0),P(x,y)为平面上一动点,作PQ⊥l于Q,若PQ=2PF.(1)求动点P的轨迹E的方程;(2)过定点F作直线交曲线E于A、B两点,若曲线E的中心为O,且AO→+3OF→=2OB→,求三角形OAB的面积.解(1)由|x+4|=2x+12+y2,化简得轨迹E的方程为x24+y23=1.(2)设直线AB的方程为ky=x+1,与椭圆方程联立消去x得(3k2+4)y2-6ky-9=0.设A(x1,y1),B(x2,y2).∵AO→+3OF→=2OB→,O(0,0),F(-1,0),∴y1=-2y2.∴y1=12k3k2+4,y2=-6k3k2+4,∴-72k23k2+42=-93k2+4,∴k2=45.∴AB=1+k2|y1-y2|=18|k|k2+13k2+4,又点O到直线AB的距离d=1k2+1,∴S△OAB=9|k|3k2+4=9516.12. (2016·泰州模拟)设点F1(-c,0),F2(c,0)分别是椭圆C:x2a2+y2=1(a>1)的左,右焦点,P为椭圆C上任意一点,且PF1→·PF2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2面积S 的最大值.解 (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),∴PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意,得1-c 2=0,c =1,则a 2=2, ∴椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m2-2=0,则Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0, 化简得m 2=2k 2+1.设d 1=F 1M =|-k +m |k 2+1,d 2=F 2N =|k +m |k 2+1. ①当k ≠0时,设直线l 的倾斜角为θ, 则|d 1-d 2|=MN ·|tan θ|, ∴MN =1|k |·|d 1-d 2|, ∴S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,∵m 2=2k 2+1,∴当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. ∴四边形F 1MNF 2面积S 的最大值为2.13. (2015·江苏)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.解 (1)由题意,得c a =22且c +a 2c=3,解得a =2,c =1,则b =1, 所以椭圆的标准方程为x 22+y 2=1.(2)当AB ⊥x 轴时,AB =2,又CP =3,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入椭圆方程, 得(1+2k 2)x 2-4k 2x +2(k 2-1)=0, 则x 1,2=2k 2±21+k21+2k2,故C 的坐标为⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2,且AB =x 2-x 12+y 2-y 12=1+k2x 2-x 12=221+k 21+2k2.若k =0,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意. 从而k ≠0,故直线PC 的方程为 y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 则P 点的坐标为⎝ ⎛⎭⎪⎫-2,5k 2+2k 1+2k 2, 从而PC =23k 2+1 1+k2|k |1+2k2. 因为PC =2AB ,所以23k 2+1 1+k 2|k |1+2k 2=421+k21+2k2,解得k =±1.此时直线AB 的方程为y =x -1或y =-x +1.。

2018年高考数学自由复习步步高系列江苏版 专题05 圆锥

2018年高考数学自由复习步步高系列江苏版 专题05 圆锥

一.基础知识整合1. 直线的倾斜角和斜率:任何直线都有倾斜角,但不一定都有斜率,如倾斜角等于90°时,斜率不存在;若两直线的倾斜角相等,斜率相等或都不存在;若两条直线的斜率相等,则两直线的倾斜角相等;当倾斜角为锐角时,倾斜角越大,斜率也越大;当倾斜角为钝角时,倾斜角越大,斜率也越大;与x 轴平行或重合的直线的倾斜角为零,斜率也为零;2. 直线的方程:点斜式:)(11x x k y y -=-; 截距式:b kx y +=;两点式:121121x x x x y y y y --=--; 截距式:1=+b ya x ;一般式:0=++C By Ax ,其中A 、B 不同时为0.3.两条直线的位置关系:两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交.两直线平行⇔两直线的斜率相等或两直线斜率都不存在;两直线垂直⇔两直线的斜率之积为1-或一直线斜率不存在,另一直线斜率为零; 与已知直线0(0,0)Ax By C A B ++=≠≠平行的直线系方程为0()Ax By m C m ++=≠; 若给定的方程是一般式,即l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0,则有下列结论:l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.两平行直线间距离公式:10(0,0)Ax By C A B ++=≠≠与2120(0,0,)Ax By C A BC C ++=≠≠≠的距离d =4.圆的有关问题:圆的标准方程:222)()(r b y a x =-+-(r >0),称为圆的标准方程,其圆心坐标为(a ,b ),半径为r ,特别地,当圆心在原点(0,0),半径为r 时,圆的方程为222r y x =+,几种特殊的圆的方程设圆的圆心为(,)a b ,半径为r(1)若圆过坐标原点,则圆的标准方程为:2222()()x a y b a b -+-=+ (2)若圆与x 轴相切,则圆的标准方程为:222()()x a y b b -+-= (3)若圆与y 轴相切,则圆的标准方程为:222()()x a y b a -+-= (4)若圆心在x 轴上,则圆的标准方程为:222()x a y r -+= (5)若圆心在y 轴上,则圆的标准方程为:222()x y b r +-= (6)若圆与坐标轴相切,则圆的标准方程为:222()()x a y a a -+-=或222()()x b y b b -+-=.圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)称为圆的一般方程,其圆心坐标为(2D -,2E -),半径为F E D r 42122-+=. 当F E D 422-+=0时,方程表示一个点(2D -,2E -);当F E D 422-+<0时,方程不表示任何图形.圆的参数方程:圆的普通方程与参数方程之间有如下关系:222r y x =+ ⇔ cos sin x r y r θθ=⎧⎨=⎩(θ为参数) 222)()(r b y a x =-+- ⇔ cos sin x a r y b r θθ=+⎧⎨=+⎩ (θ为参数) 直线与圆的位置关系: 直线与圆的位置关系的判断:【方法一】几何法:根据圆心与直线的距离与半径的大小关系进行判断;设圆心到直线的距离为d ,圆的半径为r ,则(1)d r <⇔直线与圆相交⇔直线与圆有两个公共点;(2)d r >⇔直线与圆相离⇔直线与圆无公共点;(3)d r =⇔直线与圆相切⇔直线与圆有且只有一个公共点;【方法二】代数法:把直线的方程圆的方程联立方程组,消去其中一个未知数得到关于另外一个数的未知数的一元二次方程,则(1)0∆>⇔直线与圆相交⇔直线与圆有两个公共点; (2)0∆<⇔直线与圆相离⇔直线与圆无公共点;(3)0∆=⇔直线与圆相切⇔直线与圆有且只有一个公共点;若直线与圆相交,设弦长为l ,弦心距为d ,半径为r ,则l =圆与圆的位置关系:圆与圆的位置关系的判断:设两个圆的圆心分别为12,O O ,半径分别为12,r r ,则 (1)1212||O O r r >+⇔圆与圆相离⇔两个圆有四条公切线; (2)121212||||r r OO r r -<<+⇔圆与圆相交⇔两个圆有两条公切线; (3)1212||O O r r =+⇔圆与圆相外切⇔两个圆有三条公切线; (4)1212||||OO r r =-⇔圆与圆相内切⇔两个圆有一条公切线; (5)1212||||OO r r <-⇔圆与圆相内含⇔两个圆没有公切线;若圆221110x y D x E y F ++++=与圆222220x y D x E y F ++++=相交,则公共弦所在的直线方程为121212()()()0D D x E E y F F -+-+-=; 5.椭圆及其标准方程:椭圆的定义:椭圆的定义中,平面内动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .椭圆的标准方程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知椭圆过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0,0)Ax By A B +=>>或221(0,0)x y A B A B+=>>; 椭圆的参数方程: 椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan a b =;⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换.6.椭圆的简单几何性质椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里.对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ). 线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.椭圆的第二定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ac e =(e <1=时,这个动点的轨迹是椭圆.准线:根据椭圆的对称性,12222=+b y a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+bx a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即c a y 2±=.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆122=+ba (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2,椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件.在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan 2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为2b2a7.双曲线及其标准方程:双曲线的定义:平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (小于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则无轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的一个分支,又若1MF >2MF 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.双曲线的标准方程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这里222a c b -=,其中|1F 2F |=2c.要注意这里的a 、b 、c 及它们之间的关系与椭圆中的异同.双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.如果已知双曲线过两个点(不是在坐标轴上的点),求其标准方程时,为了避免对焦点的讨论可以设其方程为221(0)Ax By AB +=<或1(0)AB A B+=< 8.双曲线的简单几何性质双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线12222=-b y a x 的渐近线方程为x a b y ±=或表示为02222=-by a x .若已知双曲线的渐近线方程是x nmy ±=,即0=±ny mx ,那么双曲线的方程具有以下形式:k y n x m =-2222,其中k 是一个不为零的常数.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线12222=-b y a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线方程分别是ca x 2-=和c a x 2=.在双曲线中,a 、b 、c 、e 四个元素间有ac e =与222b a c +=的关系,与椭圆一样确定双曲线的标准方程只要两个独立的条件.在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.9.抛物线的标准方程和几何性质抛物线的定义:平面内到一定点(F )和一条定直线(l )的距离相等的点的轨迹叫抛物线。

2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题5 第13讲 圆锥曲线中的综合问题 含答案 精品

2018年高考数学理二轮复习教师用书:第1部分 重点强化专题 专题5 第13讲 圆锥曲线中的综合问题 含答案 精品

第13讲 圆锥曲线中的综合问题题型1 圆锥曲线中的定值问题(对应学生用书第43页)■核心知识储备………………………………………………………………………·解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.■典题试解寻法………………………………………………………………………·【典题】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.[解] (1)由题意有a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.[类题通法] 定值问题的常见方法 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. ■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-6,0),e =22.图13­1(1)求椭圆C 的方程;(2)如图13­1,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值;(3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由.[解] (1)由题意得,c =6,e =22,解得a =23, ∴椭圆C 的方程为x 212+y 26=1.(2)由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12.(3)|OP |2+|OQ |2是定值18.设P (x 1,y 1),Q (x 2,y 2),联立得⎩⎪⎨⎪⎧y =k 1x x 212+y26=1,解得⎩⎪⎨⎪⎧x 21=121+2k 21y 21=12k211+2k21,∴x 21+y 21=+k 211+2k 21, 同理,可得x 22+y 22=+k 221+2k 22. 由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=+k 211+2k 21++k 221+2k 22=+k 211+2k 21+12⎣⎢⎢⎡⎦⎥⎥⎤1+⎝⎛⎭⎪⎫-12k 121+2⎝ ⎛⎭⎪⎫-12k 12=18+36k 211+2k 21=18.综上:|OP |2+|OQ |2=18.■题型强化集训………………………………………………………………………·(见专题限时集训T 3)题型2 圆锥曲线中的最值、范围问题(对应学生用书第44页)■核心知识储备………………………………………………………………………· 1.解决圆、圆锥曲线范围问题的方法(1)圆、圆锥曲线自身范围的应用,运用圆锥曲线上点的坐标的取值范围. (2)参数转化:利用引入参数法转化为三角函数来解决.(3)构造函数法:运用求函数的值域、最值以及二次方程实根的分布等知识. 2.求最值的方法(1)代数法:设变量、建立目标函数、转化为求函数的最值.注意灵活运用配方法、导数法、基本不等式法等.(2)几何法:若题中的条件与结论有明显的几何特征和意义,则考虑利用图形的几何性质来解决.■典题试解寻法………………………………………………………………………·【典题】 如图13­2,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.图13­2(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).【导学号:07804094】[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0. ①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2,代入直线方程y =mx +12,解得b =-m 2+22m 2. ②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.[类题通法]在研究直线与圆锥曲线位置关系时,常涉及弦长、中点、面积等问题.一般是先联立方程,再根据根与系数的关系,用设而不求,整体代入的技巧进行求解.易错警示:在设直线方程时,若要设成y =kx +m 的形式,注意先讨论斜率是否存在;若要设成x =ty +n 的形式,注意先讨论斜率是否为0.■对点即时训练………………………………………………………………………·如图13­3,点F 1为圆(x +1)2+y 2=16的圆心,N 为圆F 1上一动点,且F 2(1,0),M ,P 分别是线段F 1N ,F 2N 上的点,且满足MP →·F 2N →=0,F 2N →=2F 2P →.图13­3(1)求动点M 的轨迹E 的方程;(2)过点F 2的直线l (与x 轴不重合)与轨迹E 交于A ,C 两点,线段AC 的中点为G ,连接OG 并延长交轨迹E 于点B (O 为坐标原点),求四边形OABC 的面积S 的最小值. [解] (1)由题意,知MP 垂直平分F 2N , 所以|MF 1|+|MF 2|=4.所以动点M 的轨迹是以F 1(-1,0),F 2(1,0)为焦点的椭圆, 且长轴长为2a =4,焦距2c =2, 所以a =2,c =1,b 2=3. 轨迹E 的方程为x 24+y 23=1.(2)设A (x 1,y 1),C (x 2,y 2),G (x 0,y 0). 设直线AC 的方程为x =my +1,与椭圆方程联立, 可得(4+3m 2)y 2+6my -9=0,所以y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m2.由弦长公式可得|AC |=1+m 2|y 1-y 2|=+m 24+3m2,又y 0=-3m 4+3m 2,所以G ⎝ ⎛⎭⎪⎫44+3m2,-3m 4+3m 2.直线OG 的方程为y =-3m 4x ,与椭圆方程联立得x 2=164+3m 2,所以B ⎝ ⎛⎭⎪⎫44+3m 2,-3m 4+3m 2.点B 到直线AC 的距离d 1=4+3m 2-11+m 2, 点O 到直线AC 的距离d 2=11+m2. 所以S 四边形OABC =12|AC |(d 1+d 2)=613-1+3m2≥3,当且仅当m =0时取得最小值3. ■题型强化集训………………………………………………………………………·(见专题限时集训T 1、T 4)题型3 圆锥曲线中的探索性问题(答题模板)(对应学生用书第45页)圆锥曲线中的存在性(探索性)问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否存在.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.(2015·全国Ⅰ卷T20、2015·全国Ⅱ卷T20) ■典题试解寻法………………………………………………………………………· 【典题】 (本小题满分12分)(2015·全国Ⅰ卷)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a a >交于M ,N 两点.①(1)当k =0时,分别求C 在点M 和N 处的切线方程②;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ③?说明理由. [审题指导]或M (-2a ,a ),N (2a ,a ).2分又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,④C 在点(2a ,a )处的切线方程为 y -a =a (x -2a ),即ax -y -a =0.4分y =x 24在=-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0或ax +y +a =0.⑤6分(2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 8分故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2⑥=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba.[阅卷者说][类题通法] 1.定点问题的解法:(1)直线过定点:化为y -y 0=k (x -x 0), 当x -x 0=0时与k 无关.(2)曲线过定点:利用方程f (x ,y )=0对任意参数恒成立得出关于x ,y 的方程组,进而求出定点.2.存在性问题的解题步骤:一设:设满足条件的元素(点、直线等)存在;二列:用待定系数法设出,列出关于待定系数的方程组;三解:解方程组,若方程组有实数解,则元素(点、直线等)存在;否则,元素(点、直线等)不存在.■对点即时训练………………………………………………………………………·已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线2x -2y +6=0相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线y =k (x -2)(k ≠0)与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得EA →2+EA →·AB →为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.【导学号:07804095】[解] (1)由e =63,得c a =63,即c =63a , ① 又以原点O 为圆心,椭圆C 的长半轴长为半径的圆为x 2+y 2=a 2,且该圆与直线2x -2y +6=0相切, 所以a =|6|22+-22=6,代入①得c =2,所以b 2=a 2-c 2=2,所以椭圆C 的标准方程为x 26+y 22=1.(2)由⎩⎪⎨⎪⎧x 26+y 22=1,y =k x -,得(1+3k 2)x 2-12k 2x +12k 2-6=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=12k 21+3k 2,x 1x 2=12k 2-61+3k2.根据题意,假设x 轴上存在定点E (m,0),使得EA →2+EA →·AB →=(EA →+AB →)·EA →=EA →·EB →为定值,则EA →·EB →=(x 1-m ,y 1)·(x 2-m ,y 2)=(x 1-m )(x 2-m )+y 1y 2=(k 2+1)x 1x 2-(2k 2+m )(x 1+x 2)+(4k 2+m 2)=m 2-12m +k 2+m 2-1+3k2,要使上式为定值,即与k 无关,只需3m 2-12m +10=3(m 2-6),解得m =73,此时,EA →2+EA →·AB →=m 2-6=-59,所以在x 轴上存在定点E ⎝ ⎛⎭⎪⎫73,0使得EA →2+EA →·AB →为定值,且定值为-59.■题型强化集训………………………………………………………………………·(见专题限时集训T 2) 三年真题| 验收复习效果 (对应学生用书第46页)1.(2017·全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程.(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解] (1)由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.∴动圆圆心M 的轨迹C 的方程为y 2=4x .(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22,则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0.由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0,解得k =-m +12.当且仅当m >-1时,Δ>0, 于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).2.(2016·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC , 所以∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4, 所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧ y =k x -,x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3. 所以|MN |=1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),点A 到直线m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN || PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).。

2018年高考数学文江苏专用总复习教师用书:第五章 平

2018年高考数学文江苏专用总复习教师用书:第五章 平

第4讲 平面向量应用举例考试要求 1.用向量方法解决某些简单的平面几何问题,A 级要求;2.用向量方法解决简单的力学问题与其他一些实际问题,A 级要求.知 识 梳 理1.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量).(3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 2.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识. 3.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( )(2)解析几何中的坐标、直线平行、垂直、长度等问题都可以用向量解决.( ) (3)实现平面向量与三角函数、平面向量与解析几何之间的转化的主要手段是向量的坐标运算.( )(4)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( )(5)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( ) 解析 (4)中,AB →与BC →的夹角为π-B ,是钝角,只能说明B 为锐角.答案 (1)√ (2)√ (3)√ (4)× (5)√2.已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则这个三角形是________.解析 ∵AB →=(2,-2),CB →=(6,6), ∴AB →·CB →=12-12=0,∴AB →⊥CB →,∴△ABC 为直角三角形. 答案 直角三角形3.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________. 解析 AC →·BD →=(1,2)·(-4,2)=0,则AC →⊥BD →,故四边形ABCD 的对角线互相垂直,面积S =12|AC →||BD →|=12×5×25=5. 答案 54.(2017·苏州调研)在梯形ABCD 中,AB →=2DC →,|BC →|=6,P 为梯形ABCD 所在平面上一点,且满足AP →+BP →+4DP →=0,DA →·CB →=|DA →||DP →|,Q 为边AD 上的一个动点,则|PQ →|的最小值为________.解析 设AB 中点为E ,则四边形BCDE 为平行四边形,且AP →+BP →=2EP →,所以PE →=2DP →,D ,E ,P 三点共线,|DE →|=6,|DP →|=2.又DA →·CB →=DA →·DE →=3DA →·DP →=3|DA →||DP →|cos ∠ADE =|DA →||DP →|, 所以cos ∠ADE =13,sin ∠ADE =23 2.要使|PQ →|最小,即PQ ⊥AD . 此时|PQ →|=|DP →|sin ∠ADE =423.答案4235.在△ABC 中,若O A →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(从“重心”“垂心”“内心”“外心”中选填一个). 解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0, ∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0, 故O 为△ABC 的垂心. 答案 垂心考点一 平面向量在平面几何中的应用【例1】 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.解析 (1)由题意,可知AC →=AB →+AD →,BE →=-12AB →+AD →.因为AC →·BE →=1,所以(AB →+AD →)·⎝ ⎛⎭⎪⎫-12AB →+AD →=1,即AD →2+12AB →·AD →-12AB →2=1.①因为|AD →|=1,∠BAD =60°,所以AB →·AD →=12|AB →|,因此①式可化为1+14|AB →|-12|AB →|2=1,解得|AB →|=0(舍去)或12,所以AB 的长为12.(2)法一 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝ ⎛⎭⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎫BC →+1λAB →=⎝ ⎛⎭⎪⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝ ⎛⎭⎪⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2. 法二 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0), D (3,0).由BC =3BE ,DC =λDF ,可求点E ,F 的坐标分别为E ⎝ ⎛⎭⎪⎫-233,-13,F ⎝ ⎛⎭⎪⎫3⎝⎛⎭⎪⎫1-1λ,-1λ,∴AE →·AF →=⎝ ⎛⎭⎪⎫-233,-43·⎝ ⎛⎭⎪⎫3⎝ ⎛⎭⎪⎫1-1λ,-1λ-1=-2⎝ ⎛⎭⎪⎫1-1λ+43⎝ ⎛⎭⎪⎫1+1λ=1,解得λ=2.答案 (1)12(2)2规律方法 用平面向量解决平面几何问题时,在便于建立直角坐标系的情况下建立平面直角坐标系,这样可以使向量的运算更简便一些.在解决这类问题时,共线向量定理和平面向量基本定理起主导作用.【训练1】 (1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的______心. (2)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________. 解析 (1)由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.(2)因为AP →=AD →+DP →=AD →+14AB →,BP →=BC →+CP →=AD →-34AB →,所以AP →·BP →=⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫AD →-34AB →=|AD →|2-316|AB →|2-12AD →·AB →=2,将AB =8,AD =5代入解得AB →·AD →=22. 答案 (1)重 (2)22考点二 平面向量在三角函数中的应用【例2】 (2015·广东卷)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1. (2)因为|m |=|n |=1, 所以m ·n =cos π3=12,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.规律方法 (1)解决平面向量与三角函数的交汇问题,关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.(2)还应熟练掌握向量数量积的坐标运算公式、几何意义、向量模、夹角的坐标运算公式以及三角恒等变换、正、余弦定理等知识.【训练2】 (1)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为________. (2)△ABC 的三个内角A ,B ,C 所对的边长分别是a ,b ,c ,设向量m =(a +b ,sin C ),n =(3a +c ,sin B -sin A ),若m ∥n ,则角B 的大小为________. 解析 (1)由m ⊥n 得m·n =0, 即3cos A -sin A =0,即2cos ⎝⎛⎭⎪⎫A +π6=0,∵π6<A +π6<7π6, ∴A +π6=π2,即A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C ,且a cos B +b cos A =c sin C , ∴c =c sin C ,所以sin C =1,又C ∈(0,π),∴C =π2,所以B =π-π3-π2=π6.(2)∵m ∥n ,∴(a +b )(sin B -sin A )-(3a +c )sin C =0,又∵a sin A =b sin B =csin C ,则化简得a 2+c 2-b 2=-3ac ,∴cos B =a 2+c 2-b 22ac =-32,∵0<B <π,∴B =5π6.答案 (1)π3,π6 (2)5π6考点三 向量在解析几何中的应用【例3】 已知平面上一定点C (2,0)和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且⎝⎛⎭⎪⎫PC →+12PQ →·⎝ ⎛⎭⎪⎫PC →-12PQ →=0. (1)求动点P 的轨迹方程;(2)若EF 为圆N :x 2+(y -1)2=1的任一条直径,求PE →·PF →的最值. 解 (1)设P (x ,y ),则Q (8,y ). 由(PC →+12PQ →)·(PC →-12PQ →)=0,得|PC →|2-14|PQ →|2=0,即(x -2)2+y 2-14(x -8)2=0,化简得x 216+y 212=1.所以点P 在椭圆上,其方程为x 216+y 212=1.(2)因PE →·PF →=(NE →-NP →)·(NF →-NP →)=(-NF →-NP →)·(NF →-NP →)=NP →2-NF →2=NP →2-1,P 是椭圆x 216+y 212=1上的任一点,设P (x 0,y 0),则有x 2016+y 2012=1,即x 2=16-4y 23,又N (0,1),所以NP →2=x 20+(y 0-1)2=-13y 20-2y 0+17=-13(y 0+3)2+20.因y 0∈[-23,23],所以当y 0=-3时,NP →2取得最大值20,故PE →·PF →的最大值为19; 当y 0=23时,NP →2取得最小值为13-43(此时x 0=0),故PE →·PF →的最小值为12-4 3. 规律方法 向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.【训练3】 (1)(2017·南京、盐城模拟)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________. (2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x=________.解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.当k <0时可知k =-2,则过点(2,-1)且斜率为k =-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k2=3,得k =±3,即y x=± 3.答案 (1)2x +y -3=0 (2)± 3[思想方法]1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.3.向量的两个作用:①载体作用:关键是利用向量的意义、运算脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. [易错防范]1.对三角形“四心”的意义不明,向量关系式的变换出错,向量关系式表达的向量之间的相互位置关系判断错误等.2.注意向量夹角和三角形内角的关系,两者并不等价.3.注意向量共线和两直线平行的关系;两向量a ,b 夹角为锐角和a ·b >0不等价.基础巩固题组(建议用时:40分钟)一、填空题1.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 解析 因为a =(-2,-6), 所以|a |=-2+-2=210,又|b |=10,向量a 与b 的夹角为60°,所以a ·b =|a |·|b |·cos 60°=210×10×12=10.答案 102.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是________三角形(填“等边”、“等腰”、“直角”、“等腰直角”). 解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形. 答案 直角3.(2017·深圳调研)在△ABC 中,AB =AC =2,BC =23,则AB →·AC →=________. 解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =22+22-322×2×2=-12,所以AB →·AC →=|AB →|·|AC →|cos A=2×2×⎝ ⎛⎭⎪⎫-12=-2. 答案 -24.(2017·扬州中学质检)设O 是△ABC 的外心(三角形外接圆的圆心).若AO →=13AB →+13AC →,则∠BAC 等于________(用角度表示).解析 取BC 的中点D ,连接AD ,则AB →+AC →=2 AD →.由题意得3AO →=2AD →,∴AD 为BC 的中线且O 为重心.又O 为外心,∴△ABC 为正三角形,∴∠BAC =60°.答案 60°5.(2017·南京师大附中模拟)在平面内,若A (1,7),B (5,1),M (2,1),点P 是直线OM 上的一个动点,且PA →·PB →=-8,则cos ∠APB =________.解析 由题意可得直线OM 的方程为y =12x ,设P (2y ,y ),则PA →=(1-2y,7-y ),PB →=(5-2y,1-y ),所以PA →·PB →=(1-2y,7-y )·(5-2y,1-y )=5y 2-20y +12=-8,解得y =2,所以P (4,2),PA →=(-3,5),PB →=(1,-1),所以cos ∠APB =PA →·PB →|PA →|·|PB →|=-834×2=-41717.答案 -417176.(2017·苏北四市模拟)已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值与最小值的和为________.解析 由题意可得a ·b =3cos θ-sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π6,则|2a -b |=a -b2=4|a |2+|b |2-4a ·b =8-8cos ⎝⎛⎭⎪⎫θ+π6∈[0,4],所以|2a -b |的最大值与最小值的和为4. 答案 47.(2017·苏州调研)已知m =(cos α,sin α),n =(2,1),α∈⎝ ⎛⎭⎪⎫-π2,π2,若m ·n =1,则sin ⎝⎛⎭⎪⎫2α+3π2=________. 解析 因为m ·n =2cos α+sin α=1,所以sin α=1-2cos α,代入sin 2α+cos 2α=1中,整理得5cos 2α-4cos α=0⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫-π2,π2,解得cos α=45或cos α=0(舍去),故sin ⎝ ⎛⎭⎪⎫2α+3π2=-cos 2α=1-2cos 2α=-725.答案 -7258.(2017·南京、盐城模拟)在△ABC 中,A =120°,AB =4.若点D 在边BC 上,用BD →=2DC →,AD =273,则AC 的长为________. 解析 由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,则|AD →|2=⎝ ⎛⎭⎪⎫13AB →+23AC →2=19|AB →|2+49·|AB →|·|AC →|cos A +49|AC →|2,即289=169+49×4|AC →|×⎝ ⎛⎭⎪⎫-12+49|AC →|2,化简得|AC →|2-2|AC →|-3=0,解得|AC →|=3,即AC 的长为3. 答案 3 二、解答题9.(2017·泰州模拟)在△ABC 中,角A ,B 的对边分别为a ,b ,向量m =(cos A ,sin B ),n =(cos B ,sin A ).(1)若a cos A =b cos B ,求证:m ∥n ; (2)若m ⊥n ,a >b ,求tanA -B2的值.(1)证明 因为a cos A =b cos B , 所以sin A cos A =sin B cos B ,所以m ∥n .(2)解 因为m ⊥n ,所以cos A cos B +sin A sin B =0, 即cos(A -B )=0,因为a >b ,所以A >B ,又A ,B ∈(0,π),所以A -B ∈(0,π), 则A -B =π2,所以tan A -B 2=tan π4=1.10.(2017·南通调研)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x4.(1)若m ·n =1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围. 解 m ·n =3sin x 4cos x4+cos 2x4 =32sin x 2+12×cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. (1)∵m ·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝⎛⎭⎪⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin C cos B +sin B cos C , ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0, ∴cos B =12,B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1.又∵f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故1<f (A )<32.故f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.能力提升题组 (建议用时:25分钟)11.(2017·南京调研)在平面直角坐标系xOy 中,已知点A ,B 分别为x 轴、y 轴上一点,且AB =2,若点P (2,5),则|AP →+BP →+OP →|的取值范围是________.解析 设A (x,0),B (0,y ),则x 2+y 2=4.令x =2cos θ,y =2sin θ,则|AP →+BP →+OP →|=85-θ+φ∈[7,11],其中tan φ=255.答案 [7,11]12.△ABC 外接圆的半径等于1,其圆心O 满足AO →=12(AB →+AC →),|AO →|=|AC →|,则向量BA →在BC→方向上的投影等于________.解析 由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC→|,又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32.答案 3213.(2017·苏、锡、常、镇四市调研)在平面直角坐标系xOy 中,设M 是函数f (x )=x 2+4x(x >0)的图象上任意一点,过M 点向直线y =x 和y 轴作垂线,垂足分别是A ,B ,则MA →·MB →=________. 解析 由题意可得∠AMB =135°.设M ⎝ ⎛⎭⎪⎫x ,x +4x (x >0),则|MA →|=⎪⎪⎪⎪⎪⎪4x 2=22x,所以MA →·MB →=|MA →|·|MB →|cos 135°=22x ·x ·⎝ ⎛⎭⎪⎫-22=-2.答案 -214.(2017·苏州期中)如图,半径为1,圆心角为3π2的圆弧上有一点C .(1)当C 为圆弧的中点时,D 为线段OA 上任一点,求|OC →+OD →|的最小值;(2)当C 在圆弧上运动时,D ,E 分别为线段OA ,OB 的中点,求CE →·DE →的取值范围.解 以O 为原点,以OA →为x 轴正方向,建立如图所示的平面直角坐标系,(1)设D (t,0)(0≤t ≤1),C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22,所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12(0≤t ≤1), 当t =22时,|OC →+OD →|的最小值为22. (2)设OC →=(cos α,sin α),0≤α≤3π2,E ⎝⎛⎭⎪⎫0,-12,则CE →=OE →-OC →=⎝ ⎛⎭⎪⎫0,-12-(cos α,sin α)=⎝ ⎛⎭⎪⎫-cos α,-12-sin α.又因为D ⎝ ⎛⎭⎪⎫12,0,所以DE →=⎝ ⎛⎭⎪⎫-12,-12,所以CE →·DE →=12⎝ ⎛⎭⎪⎫cos α+12+sin α=22sin ⎝⎛⎭⎪⎫α+π4+14,因为0≤α≤3π2,所以π4≤α+π4≤7π4,所以sin ⎝ ⎛⎭⎪⎫α+π4∈[-1,1],则22sin ⎝ ⎛⎭⎪⎫α+π4+14∈⎣⎢⎡⎦⎥⎤14-22,14+22. 所以CE →·DE →∈⎣⎢⎡⎦⎥⎤14-22,14+22.。

全国2018年高考数学第2轮复习 专题五 解析几何 第四讲 大题考法——圆锥曲线中的定点、定值、存在性问题 文


[演练冲关] 3.(2017·惠州调研)已知椭圆C:xa22+by22=1(a>b>0)的左、右焦
点分别为F1(-1,0),F2(1,0),点A1, 22在椭圆C上. (1)求椭圆C的标准方程; (2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不 同交点M,N时,能在直线y=53上找到一点P,在椭圆C上 找到一点Q,满足―PM→=―N→Q ?若存在,求出直线的方 程;若不存在,说明理由.
[演练冲关] 1.如图,过顶点在原点、对称轴为y轴的抛
物线E上的点A(2,1)作斜率分别为k1,k2的
直线,分别交抛物线E于B,C两点.
(1)求抛物线E的标准方程和准线方程;
(2)若k1+k2=k1k2,证明:直线BC恒过定点. 解:(1)设抛物线E的标准方程为x2=ay,a>0, 将A(2,1)代入得,a=4. 所以抛物线E的标准方程为x2=4y,准线方程为y=-1. (2)证明:由题意得,直线AB的方程为y=k1x+1-2k1, 直线AC的方程为y=k2x+1-2k2,
(1)证明:由于 F 在线段 AB 上,故 1+ab=0. 设 AR 的斜率为 k1,FQ 的斜率为 k2,则 k1=1a+-ab2=aa2--abb=1a=-aab=-b=-b-1-01=k2.
22 所以 AR∥FQ. (2)设 l 与 x 轴的交点为 D(x1,0), 则 S△ABF=12|b-a||FD| =12|b-a|x1-12,S△PQF=|a-2 b|.
[解] (1)如图,由已知得M(0,t),P 2t2p,t .又N为M关于 点P的对称点,故N tp2,t,
故直线ON的方程为y=pt x, 将其代入y2=2px整理得px2-2t2x=0, 解得x1=0,x2=2pt2.因此H 2pt2,2t. 所以N为OH的中点,即||OOHN||=2.

高考数学大一轮复习 高考专题突破五 高考中的圆锥曲线问题教师用书 文 苏教版(2021年最新整理)

(江苏专用)2018版高考数学大一轮复习高考专题突破五高考中的圆锥曲线问题教师用书文苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习高考专题突破五高考中的圆锥曲线问题教师用书文苏教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习高考专题突破五高考中的圆锥曲线问题教师用书文苏教版的全部内容。

高考专题突破五高考中的圆锥曲线问题1.(2015·课标全国Ⅱ改编)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为________.答案2解析如图,设双曲线E的方程为错误!-错误!=1(a>0,b>0),则AB=2a,由双曲线的对称性,可设点M(x1,y1)在第一象限内,过M作MN⊥x轴于点N(x1,0),∵△ABM为等腰三角形,且∠ABM=120°,∴BM=AB=2a,∠MBN=60°,∴y1=MN=BM sin∠MBN=2a sin 60°=错误!a,x1=OB+BN=a+2a cos 60°=2a。

将点M(x1,y1)的坐标代入错误!-错误!=1,可得a2=b2,∴e=ca=错误!=错误!.2。

如图,已知椭圆C的中心为原点O,F(-2错误!,0)为C的左焦点,P为C上一点,满足OP =OF,且PF=4,则椭圆C的方程为______________.答案错误!+错误!=1解析设椭圆的标准方程为错误!+错误!=1(a〉b>0),焦距为2c,右焦点为F′,连结PF′,如图所示,因为F(-2错误!,0)为C的左焦点,所以c=2错误!.由OP=OF=OF′知,∠FPF′=90°,即FP⊥PF′.在Rt△PFF′中,由勾股定理,得PF′=错误!=错误!=8.由椭圆定义,得PF+PF′=2a=4+8=12,所以a=6,a2=36,于是b2=a2-c2=36-(2错误!)2=16,所以椭圆的方程为错误!+错误!=1. 3.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为________.答案错误!解析由已知得焦点坐标为F(错误!,0),因此直线AB的方程为y=错误!(x-错误!),即4x-4错误!y-3=0。

2018版高考数学理江苏专用大一轮复习讲义教师版文档高考专题突破六 高考中的圆锥曲线问题 含答案 精品

1.(2017·淮安月考)一射手对同一目标进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为________.答案 23解析 设此射手未命中目标的概率为p ,则1-p 4=8081,所以p =13,故1-p =23.2.在可行域内任取一点,其规则如流程图所示,则能输出数对(x ,y )的概率是________.答案 π4解析 依题意可行域为正方形,输出数对(x ,y )形成的图形为图中阴影部分,故所求概率为P =14π⎝⎛⎭⎫22222·22=π4.3.红、蓝两色车、马、炮棋子各一枚,将这6枚棋子按车、马、炮顺序排成一列,记事件“每对同字的棋子中,均为红棋子在前,蓝棋子在后”为事件A ,则事件A 发生的概率为________. 答案 18解析 红、蓝两色车、马、炮棋子各一枚,将这6枚棋子按车、马、炮顺序排成一列,基本事件总数n =2×2×2=8.每对同字的棋子中,均为红棋子在前,蓝棋子在后为事件A , 则事件A 包含的基本事件个数m =1, ∴事件A 发生的概率P =m n =18.4.设集合P ={-2,-1,0,1,2},x ∈P 且y ∈P ,则点(x ,y )在圆x 2+y 2=4内部的概率为________. 答案925解析 以(x ,y )为基本事件,可知满足x ∈P 且y ∈P 的基本事件有25个.若点(x ,y )在圆x 2+y 2=4内部,则x ,y ∈{-1,1,0},用列表法或坐标法可知满足x ∈{-1,1,0}且y ∈{-1,1,0}的基本事件有9个.所以点(x ,y )在圆x 2+y 2=4内部的概率为925.5.为了从甲、乙两名运动员中选拔一人参加某次运动会跳水项目,对甲、乙两名运动员进行培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得到茎叶图如图所示.从平均成绩及发挥稳定性的角度考虑,你认为选派________(填甲或乙)运动员合适.答案 甲解析 根据茎叶图,可得x 甲=16×(78+79+81+84+93+95)=85,x 乙=16×(75+80+83+85+92+95)=85.s 2甲=16×[(78-85)2+(79-85)2+(81-85)2+(84-85)2+(93-85)2+(95-85)2]=1333, s 2乙=16×[(75-85)2+(80-85)2+(83-85)2+(85-85)2+(92-85)2+(95-85)2]=1393.因为x 甲=x 乙,s 2甲<s 2乙,所以甲运动员的成绩比较稳定,选派甲运动员参赛比较合适.题型一 古典概型与几何概型例1 (1)(2016·山东)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.(2)若任意x ∈A ,则1x ∈A ,就称A 是“和谐”集合,则在集合M ={-1,0,13,12,1,2,3,4}的所有非空子集中,“和谐”集合的概率是________. 答案 (1)34 (2)117解析 (1)由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝⎛⎭⎫-341-(-1)=34.(2)由题意,“和谐”集合中不含0和4,而2和12,3和13成对出现,1和-1可单独出现,故“和谐”集合分别为{1},{-1},{-1,1},{2,12},{3,13},{1,3,13},{1,2,12},{-1,2,12},{-1,3,13},{3,13,2,12},{2,12,1,-1},{3,13,1,-1},{1,3,13,2,12},{-1,3,13,2,12},{3,13,2,12,1,-1},共15个,而集合M 的非空子集有28-1=255个,故“和谐”集合的概率是P =15255=117.思维升华 几何概型与古典概型的本质区别在于试验结果的无限性,几何概型经常涉及的几何度量有长度、面积、体积等,解决几何概型的关键是找准几何测度;古典概型是命题的重点,对于较复杂的基本事件空间,列举时要按照一定的规律进行,做到不重不漏.(1)(2016·江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.(2)已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记函数f (x )满足条件⎩⎪⎨⎪⎧f (2)≤12,f (-1)≤3为事件A ,则事件A 发生的概率为________. 答案 (1)56 (2)58解析 (1)基本事件共有36个.列举如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个.故所求概率为P =3036=56.(2)⎩⎪⎨⎪⎧ f (2)≤12,f (-1)≤3即为⎩⎪⎨⎪⎧ 2b +c ≤8,-b +c ≤2.作出0≤b ≤4,0≤c ≤4及⎩⎪⎨⎪⎧2b +c ≤8,-b +c ≤2表示的区域(图略),由几何概型概率公式得所求概率为P =16-616=58.题型二 求离散型随机变量的均值与方差例2 某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)求员工甲抽奖一次所得奖金ξ的概率分布与均值;(2)若员工乙幸运地先后获得四次抽奖机会,则他中奖次数η的方差是多少?解 (1)由题意知甲抽奖一次,基本事件总数是C 310=120,奖金ξ的可能取值是0,30,60,240, ∴P (ξ=240)=1120,P (ξ=60)=8120=115,P (ξ=30)=7×2+6×7120=715,P (ξ=0)=1-1120-115-715=1124.故ξ的概率分布为∴E (ξ)=0×1124+30×715+60×115+240×1120=20.(2)由(1)可得乙抽奖一次中奖的概率是1-1124=1324,四次抽奖是相互独立的,∴中奖次数η~B (4,1324),∴V (η)=4×1324×1124=143144.思维升华 离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其概率分布然后代入相应公式计算,注意离散型随机变量的取值与概率间的对应.(2016·泰州模拟)为了参加市中学生运动会,某校从四支较强的班级篮球队A ,B ,C ,D 中选出12人组成校男子篮球队,队员来源如下表:队别 A B C D (1)从这12(2)比赛结束后,学校要评选出3名优秀队员(每一个队员等可能被评为优秀队员),设其中来自A 队的人数为ξ,求随机变量ξ的概率分布和均值.解 (1)“从这12名队员中随机选出两名,两人来自同一个队”记作事件A ,则P (A )=C 24+C 23+C 22+C 23C 212=1366. (2)ξ的所有可能取值为0,1,2,3.因为P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.所以ξ的概率分布为E (ξ)=0×1455+1×2855+2×1255+3×155=1.题型三 概率与统计的综合应用例3 经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的均值. 解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的概率分布为所以E (T )=45 000×思维升华 概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解 (1)由已知,得10×(0.005+0.010+0.020+a +0.025+0.010)=1,解得a =0.03. (2)根据频率分布直方图,可知成绩不低于60分的频率为1-10×(0.005+0.010)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A ,B ;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C ,D ,E ,F .若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,故所求概率P (M )=715.1.(2016·陕西西北工业大学附中二模)甲、乙两人进行两种游戏,两种游戏规则如下: 游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢. 游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球、2个红球,由裁判有放回地摸两次球,即第一次摸出记下颜色后放回再摸第二次,摸出两球同色算甲赢,摸出两球不同色算乙赢.(1)求游戏Ⅰ中甲赢的概率;(2)求游戏Ⅱ中乙赢的概率,并比较这两种游戏哪种游戏更公平,请说明理由.解 (1)∵游戏Ⅰ中有放回地依次摸出两球的基本事件有5×5=25(个),其中甲赢有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),(2,2),(2,4),(4,4),(4,2),共13个基本事件,∴游戏Ⅰ中甲赢的概率为P =1325.(2)设4个白球为a ,b ,c ,d,2个红球为A ,B ,则游戏Ⅱ中有放回地依次摸出两球,基本事件有6×6=36(个),其中乙赢有(a ,A ),(b ,A ),(c ,A ),(d ,A ),(a ,B ),(b ,B ),(c ,B ),(d ,B ),(A ,a ),(A ,b ),(A ,c ),(A ,d ),(B ,a ),(B ,b ),(B ,c ),(B ,d ),共16个基本事件,∴游戏Ⅱ中乙赢的概率为P ′=1636=49.∵|1325-12|<|49-12|,∴游戏Ⅰ更公平. 2.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本平均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 解 (1)样本平均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人占的比例为26=13,故推断该车间12名工人中有12×13=4(名)优秀工人.(3)设事件A :“从该车间12名工人中,任取2人,恰有1名优秀工人”,则P (A )=C 14C 18C 212=1633.3.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解 (1)因为是投掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0, 即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知(b ,c )的所有可能取值为(1,2),(2,3),(3,4), 所以方程为“漂亮方程”的概率为P =316.4.(2016·南京、盐城、徐州联考)已知某校有甲、乙两个兴趣小组,其中甲组有2名男生、3名女生,乙组有3名男生、1名女生,学校计划从两兴趣小组中随机各选2名成员参加某项活动.(1)求选出的4名选手中恰好有一名女生的选派方法数;(2)记X 为选出的4名选手中女选手的人数,求X 的概率分布和均值.解 (1)选出的4名选手中恰好有一名女生的选派方法数为C 12·C 13·C 23+C 22C 13C 11=21种.(2)X 的可能取值为0,1,2,3.P (X =0)=C 22C 23C 25C 24=310×6=120,P (X =1)=C 12C 13C 23+C 22C 13C 11C 25C 24=2×3×3+310×6=720, P (X =3)=C 23C 13C 11C 25C 24=3×3×110×6=320,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)=920.所以X 的概率分布为E (X )=0×120+1×720+2×920+3×320=1710.5.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论); (2)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率. 解 (1)甲、乙两人10次训练的成绩的茎叶图如图:从统计图中可以看出,乙的成绩较为集中,差异程度较小,乙成绩的稳定性更好,所以选派乙同学代表班级参加比赛更好.(2)设甲同学的成绩为x ,乙同学的成绩为y , 则|x -y |<0.8, 得x -0.8<y <0.8+x ,如图,阴影部分面积即为3×3-2.2×2.2=4.16,则P (|x -y |<0.8)=P (x -0.8<y <0.8+x ) =4.163×3=104225. *6.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生: (1)得60分的概率;(2)所得分数X 的概率分布和均值.解 (1)设“可判断两个选项是错误的”两道题之一选对为事件A ,“有一道题可以判断一个选项是错误的”选对为事件B ,“有一道题不理解题意”选对为事件C , ∴P (A )=12,P (B )=13,P (C )=14,∴得60分的概率为P =12×12×13×14=148.(2)X 可能的取值为40,45,50,55,60. P (X =40)=12×12×23×34=18;P (X =45)=C 12×12×12×23×34+12×12×13×34+12×12×23×14=1748; P (X =50)=12×12×23×34+C 12×12×12×13×34+C 12×12×12×23×14+12×12×13×14=1748;P (X =55)=C 12×12×12×13×14+12×12×23×14+12×12×13×34=748; P (X =60)=12×12×13×14=148. 故X 的概率分布为 E (X )=40×18+45×1748+50×1748+55×748+60×148=57512.。

2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题突破五 高考中的圆锥曲线问题1.(2015·课标全国Ⅱ改编)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为________. 答案2解析 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则AB =2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°, ∴BM =AB =2a ,∠MBN =60°,∴y 1=MN =BM sin∠MBN =2a sin 60°=3a ,x 1=OB +BN =a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2= 2. 2.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为______________.答案x236+y216=1 解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c ,右焦点为F ′,连结PF ′,如图所示,因为F (-25,0)为C 的左焦点,所以c =2 5.由OP =OF =OF ′知,∠FPF ′=90°,即FP ⊥PF ′.在Rt△PFF ′中,由勾股定理, 得PF ′=FF ′2-PF 2=52-42=8.由椭圆定义,得PF +PF ′=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆的方程为x 236+y 216=1.3.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 94解析 由已知得焦点坐标为F (34,0),因此直线AB 的方程为y =33(x -34), 即4x -43y -3=0.方法一 联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 故|y A -y B |=y A +y B2-4y A y B =6.因此S △OAB =12·OF ·|y A -y B |=12×34×6=94.方法二 联立方程得x 2-212x +916=0,故x A +x B =212.根据抛物线的定义有AB =x A +x B +p =212+32=12,同时原点到直线AB 的距离为h =|-3|42+-432=38, 因此S △OAB =12·AB ·h =94.4.(2016·北京)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =OB =22,又∠AOB =π4,∴b a =tan π4=1,即a =b .又a 2+b 2=c 2=8,∴a =2.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________. 答案x 24-y 23=1 解析 由题意得,双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点坐标为(7,0),(-7,0),c =7且双曲线的离心率为2×74=72=c a⇒a =2,b 2=c 2-a 2=3, 所以双曲线的方程为x 24-y 23=1.题型一 求圆锥曲线的标准方程例1 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,则椭圆的方程为______________. 答案 x 25+3y 210=1或3x 210+y25=1解析 设椭圆的两个焦点分别为F 1,F 2,PF 1=453,PF 2=253.由椭圆的定义,知2a =PF 1+PF 2=25,即a = 5. 由PF 1>PF 2知,PF 2垂直于长轴. 故在Rt△PF 2F 1中,4c 2=PF 21-PF 22=609, ∴c 2=53,于是b 2=a 2-c 2=103.又所求的椭圆的焦点可以在x 轴上,也可以在y 轴上,故所求的椭圆方程为x 25+3y 210=1或3x 210+y 25=1. 思维升华 求圆锥曲线的标准方程是高考的必考题型,主要利用圆锥曲线的定义、几何性质,解得标准方程中的参数,从而求得方程.(2015·天津改编)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为________________. 答案 x 2-y 23=1解析 双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax , 由题意得2ba 2+b 2=3,②联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1.题型二 圆锥曲线的几何性质例2 (1)(2015·湖南改编)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为________.(2)(2016·天津改编)设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过抛物线上一点A 作l的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E .若CF =2AF ,且△ACE 的面积为32,则p 的值为________. 答案 (1)53(2) 6解析 (1)由条件知y =-b ax 过点(3,-4),∴3ba=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2, ∴25a 2=9c 2,∴e =53.(2)∵抛物线方程为y 2=2px (p >0),∴F ⎝ ⎛⎭⎪⎫p2,0, AB =AF =32p ,可得A (p ,2p ). 易知△AEB ∽△FEC ,∴AE FE =AB FC =12,故S △ACE =13S △ACF =13×3p ×2p ×12=22p 2=32, ∴p 2=6,∵p >0,∴p = 6.思维升华 圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线渐近线,是常考题型,解决这类问题的关键是熟练掌握各性质的定义,及相关参数间的联系.掌握一些常用的结论及变形技巧,有助于提高运算能力.已知椭圆x 2a 2+y 2b2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若PQ 经过焦点F ,则椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为____________.答案2-1解析 因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p2,0,设椭圆另一焦点为E .当x =p2时,代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p2,p 且PF ⊥OF . 所以PE =p 2+p22+p 2=2p ,PF =p ,EF =p .故2a = 2p +p,2c =p ,e =2c2a =2-1.题型三 最值、范围问题例3 设椭圆M :y 2a 2+x 2b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4. (1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 面积的最大值.解 (1)双曲线的离心率为2, 则椭圆的离心率e =ca =22, 由⎩⎪⎨⎪⎧2a =4,c a =22,b 2=a 2-c2⇒⎩⎨⎧a =2,c =2,b =2,故椭圆M 的方程为y 24+x 22=1.(2)由⎩⎪⎨⎪⎧y =2x +m ,x 22+y 24=1,得4x 2+22mx +m 2-4=0,由Δ=(22m )2-16(m 2-4)>0,得-22<m <2 2. ∵x 1+x 2=-22m ,x 1x 2=m 2-44,∴AB =1+2|x 1-x 2|=3·x 1+x 22-4x 1x 2=3·12m 2-m 2+4=3·4-m22.又P 到直线AB 的距离d =|m |3,则S △PAB =12·AB ·d =12·3·4-m 22·|m |3=12 m 2⎝ ⎛⎭⎪⎫4-m 22=122m 2-m2≤122·m 2+-m22=2,当且仅当m =±2∈(-22,22)时取等号,∴(S △PAB )max = 2.思维升华 圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值与范围.直线l :x -y =0与椭圆x 22+y 2=1相交于A ,B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________. 答案2解析 由⎩⎪⎨⎪⎧x -y =0,x 2+2y 2-2=0,得3x 2=2,∴x =±63,设点A 在第一象限, ∴A (63,63),B (-63,-63),∴AB =433. 设与l 平行的直线l ′:y =x +m 与椭圆相切于P 点. 则△ABP 面积最大.由⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,得3x 2+4mx +2m 2-2=0,∴Δ=(4m )2-4×3×(2m 2-2)=0,∴m =±3.∴P 到AB 的距离即为l 与l ′的距离, ∴d =32.∴S △ABC =12×433×32= 2.题型四 定值、定点问题例4 (2016·全国乙卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明EA +EB 为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为AD =AC ,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以EB =ED ,故EA +EB =EA +ED =AD .又圆A 的标准方程为(x +1)2+y 2=16,从而AD =4, 所以EA +EB =4.由题设得A (-1,0),B (1,0),AB =2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -,x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以MN =1+k 2|x 1-x 2|=k 2+4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到m 的距离为2k 2+1,所以PQ =242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12MN ·PQ =121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,MN =3,PQ =8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 思维升华 求定点及定值问题常见的方法有两种 (1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2016·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:AN ·BM 为定值. (1)解 由已知ca =32,12ab =1.又a 2=b 2+c 2,解得a =2,b =1,c = 3. ∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2.从而BM =|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1. ∴AN =|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴AN ·BM =⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1·⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,BM =2,AN =2, ∴AN ·BM =4. 故AN ·BM 为定值. 题型五 探索性问题例5 (2015·广东)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1:x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,∴圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点, ∴由圆的性质知MC 1⊥MO , ∴MC 1→·MO →=0.又∵MC 1→=(3-x ,-y ),MO →=(-x ,-y ), ∴由向量的数量积公式得x 2-3x +y 2=0. 易知直线l 的斜率存在, ∴设直线l 的方程为y =mx , 当直线l 与圆C 1相切时,d =|3m -0|m 2+1=2, 解得m =±255.把相切时直线l 的方程代入圆C 1的方程, 化简得9x 2-30x +25=0,解得x =53.当直线l 经过圆C 1的圆心时,M 的坐标为(3,0). 又∵直线l 与圆C 1交于A ,B 两点,M 为AB 的中点, ∴53<x ≤3. ∴点M 的轨迹C 的方程为x 2-3x +y 2=0,其中53<x ≤3.(3)由题意知直线L 表示过定点(4,0),斜率为k 的直线,把直线L 的方程代入轨迹C 的方程x 2-3x +y 2=0,其中53<x ≤3,化简得(k 2+1)x 2-(3+8k 2)x +16k 2=0,其中53<x ≤3,记f (x )=(k 2+1)x 2-(3+8k 2)x +16k 2,其中53<x ≤3.若直线L 与曲线C 只有一个交点,令f (x )=0.当Δ=0时,解得k 2=916,即k =±34,此时方程可化为25x 2-120x +144=0,即(5x -12)2=0,解得x =125∈⎝ ⎛⎦⎥⎤53,3,∴k =±34满足条件.当Δ>0时,①若x =3是方程的解,则f (3)=0⇒k =0⇒另一根为x =0<53,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意;②若x =53是方程的解,则f ⎝ ⎛⎭⎪⎫53=0⇒k =±257⇒另外一根为x =6423,53<6423≤3,故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意;③若x =3和x =53均不是方程的解,则方程在区间⎝ ⎛⎭⎪⎫53,3上有且仅有一个根,只需f ⎝ ⎛⎭⎪⎫53·f (3)<0⇒-257<k <257.故在区间⎝ ⎛⎦⎥⎤53,3上有且仅有一个根,满足题意. 综上所述,k 的取值范围是-257≤k ≤257或k =±34.思维升华 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2016·苏州、无锡、常州、镇江二模)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(1,62),过椭圆的左顶点A 作直线l ⊥x轴,点M 为直线l 上的动点(点M 与点A 不重合),点B 为椭圆的右顶点,直线BM 交椭圆C 于点P .(1)求椭圆C 的方程; (2)求证:AP ⊥OM ;(3)试问:OP →·OM →是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.(1)解 因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,所以a 2=2c 2,所以a 2=2b 2. 又因为椭圆C 过点(1,62),所以1a 2+32b2=1, 所以a 2=4,b 2=2,所以椭圆C 的方程x 24+y 22=1.(2)证明 设直线BM 的斜率为k ,则直线BM 的方程为y =k (x -2),设P (x 1,y 1),将y =k (x -2)代入椭圆C 的方程x 24+y 22=1中,化简得(2k 2+1)x 2-8k 2x +8k 2-4=0, 解得x 1=4k 2-22k 2+1,x 2=2,所以y 1=k (x 1-2)=-4k2k 2+1,从而P (4k 2-22k 2+1,-4k2k 2+1).令x =-2,得y =-4k ,所以M (-2,-4k ),OM →=(-2,-4k ).又因为AP →=(4k 2-22k 2+1+2,-4k 2k 2+1)=(8k 22k 2+1,-4k 2k 2+1),所以AP →·OM →=-16k22k 2+1+16k 22k 2+1=0,所以AP ⊥OM .(3)解 因为OP →·OM →=(4k 2-22k 2+1,-4k 2k 2+1)·(-2,-4k )=-8k 2+4+16k 22k 2+1=8k 2+42k 2+1=4, 所以OP →·OM →为定值4.1.(2015·陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0),经过点A (0,-1),且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2. (1)解 由题设知ca =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0, 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4kk -1+2k2,x 1x 2=2kk -1+2k2,从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -2k k -=2k -2(k -1)=2.2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为32,其中一条渐近线的方程为x -2y =0.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E ,过原点O 的动直线与椭圆E 交于A ,B 两点.(1)求椭圆E 的方程;(2)若点P 为椭圆E 的左顶点,PG →=2GO →,求|GA →|2+|GB →|2的取值范围.解 (1)由双曲线x 2a 2-y 2b2=1的焦距为32,得c =322,∴a 2+b 2=92.① 由题意知b a =22,②由①②解得a 2=3,b 2=32,∴椭圆E 的方程为x 23+23y 2=1.(2)由(1)知P (-3,0). 设G (x 0,y 0),由PG →=2GO →, 得(x 0+3,y 0)=2(-x 0,-y 0),即⎩⎨⎧x 0+3=-2x 0,y 0=-2y 0,解得⎩⎪⎨⎪⎧x 0=-33,y 0=0,∴G (-33,0). 设A (x 1,y 1),则B (-x 1,-y 1),|GA →|2+|GB →|2=(x 1+33)2+y 21+(x 1-33)2+y 21=2x 21+2y 21+23=2x 21+3-x 21+23=x 21+113. 又∵x 1∈[-3,3],∴x 21∈[0,3], ∴113≤x 21+113≤203, ∴|GA →|2+|GB →|2的取值范围是[113,203].3.已知椭圆x 24+y 23=1的左顶点为A ,右焦点为F ,过点F 的直线交椭圆于B ,C 两点.(1)求该椭圆的离心率;(2)设直线AB 和AC 分别与直线x =4交于点M ,N ,问:x 轴上是否存在定点P 使得MP ⊥NP ?若存在,求出点P 的坐标;若不存在,说明理由. 解 (1)由椭圆方程可得a =2,b =3, 从而椭圆的半焦距c =a 2-b 2=1.所以椭圆的离心率为e =c a =12.(2)依题意,直线BC 的斜率不为0,设其方程为x =ty +1,B (x 1,y 1),C (x 2,y 2), 将其代入x 24+y 23=1,整理得(4+3t 2)y 2+6ty -9=0. 所以y 1+y 2=-6t 4+3t 2,y 1y 2=-94+3t 2.易知直线AB 的方程是y =y 1x 1+2(x +2),从而可得M (4,6y 1x 1+2), 同理可得N (4,6y 2x 2+2). 假设x 轴上存在定点P (p,0)使得MP ⊥NP , 则有PM →·PN →=0. 所以(p -4)2+36y 1y 2x 1+x 2+=0.将x 1=ty 1+1,x 2=ty 2+1代入上式,整理得(p -4)2+36y 1y 2t 2y 1y 2+3t y 1+y 2+9=0,所以(p -4)2+-t2-+3t -6t ++3t2=0,即(p -4)2-9=0,解得p =1或p =7. 所以x 轴上存在定点P (1,0)或P (7,0), 使得MP ⊥NP .4.(2016·苏北四市联考)如图所示,已知点F 1(0,-2),F 2(0,2),动点M 到F 2的距离是4,线段MF 1的中垂线交MF 2于点P .(1)当点M 变化时,求动点P 的轨迹G 的方程;(2)若斜率为2的动直线l 与轨迹G 相交于A ,B 两点,Q (1,2)为定点,求△QAB 面积的最大值.解 (1)如图,连结PF 1.∵MF 2=4,∴PM +PF 2=4. 又∵PM =PF 1,∴PF 1+PF 2=4>F 1F 2=22, 由椭圆的定义可知,动点P 的轨迹G 是以F 1,F 2为焦点的椭圆,其方程为y 24+x 22=1.(2)设直线l 的方程为y =2x +m , 代入椭圆方程得(2x +m )2+2x 2=4, 即4x 2+22mx +m 2-4=0.由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 得m 2<8.又点Q 不在直线l 上,所以m ≠0,所以0<m 2<8. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-2m 2,x 1x 2=m 2-44.所以AB =1+2|x 1-x 2| =3×x 1+x 22-4x 1x 2=3× m 22-m 2-=3×4-m 22. 又点Q 到直线l 的距离d =|m |3, 则S △QAB =12·AB ·d =12×3×4-m 22×|m |3=24m 2-m 2. 因为m2-m2≤m 2+8-m 22=4,则S △QAB ≤2,当且仅当m 2=4,即m =±2时取等号, 故△QAB 面积的最大值为 2.5.(2016·盐城三模)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为63,直线l 与x 轴交于点E ,与椭圆C 交于A ,B 两点.当直线l 垂直于x 轴且点E 为椭圆C 的右焦点时,弦AB 的长为263.(1)求椭圆C 的方程; (2)若点E 的坐标为(32,0),点A 在第一象限且横坐标为3,连结点A 与原点O 的直线交椭圆C 于另一点P ,求△PAB 的面积; (3)是否存在点E ,使得1EA2+1EB 2为定值?若存在,请指出点E 的坐标,并求出该定值;若不存在,请说明理由.解 (1)由e =c a =63,设a =3k (k >0),则c =6k ,b 2=3k 2, 所以椭圆C 的方程为x 29k 2+y 23k2=1.因为直线l 垂直于x 轴且点E 为椭圆C 的右焦点, 即x A =x B =6k ,代入椭圆方程,解得y =±k ,于是2k =263,即k =63,所以椭圆C 的方程为x 26+y 22=1.(2)将x =3代入x 26+y 22=1,解得y =±1.因为点A 在第一象限,从而A (3,1). 由点E 的坐标为(32,0),所以k AB =23, 所以直线AB 的方程为y =23(x -32), 联立直线AB 与椭圆C 的方程,解得B (-35,-75). 又PA 过原点O ,于是P (-3,-1),PA =4, 所以直线PA 的方程为x -3y =0,所以点B 到直线PA 的距离h =|-35+735|2=335,故S △PAB =12×4×335=635.(3)假设存在点E ,使得1EA2+1EB2为定值,设E (x 0,0),当直线AB 与x 轴重合时,有1EA2+1EB 2=1x 0+62+16-x 02=12+2x 2-x 202; 当直线AB 与x 轴垂直时, 1EA2+1EB2=2-x 206=66-x 20, 由12+2x 20-x 202=66-x 20,解得x 0=±3,66-x 20=2,所以若存在点E ,此时E (±3,0),1EA2+1EB 2为定值2.根据对称性,只需考虑直线AB 过点E (3,0),设A (x 1,y 1),B (x 2,y 2),又设直线AB 的方程为x =my +3,与椭圆C 联立方程组,化简得(m 2+3)y 2+23my -3=0, 所以y 1+y 2=-23m m 2+3,y 1y 2=-3m 2+3.又1EA 2=1x 1-32+y 21=1m 2y 21+y 21=1m 2+1y 21, 所以1EA2+1EB2=1m 2+1y 21+1m 2+1y 22=y 1+y 22-2y 1y 2m 2+y 21y 22, 将上述关系代入,化简可得1EA2+1EB 2=2. 综上所述,存在点E (±3,0),使得1EA2+1EB 2为定值2.。

相关文档
最新文档